Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.578
Filtrar
1.
Sci Total Environ ; 802: 149759, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34464793

RESUMO

Numerous studies have explored the transport mechanism of biochar colloids in porous medium. However, the effect of feedstock biopolymer compositions and pyrolytic temperature on carbon stability and mobility of biochar colloids is limited. This study prepared four ball milled biochar colloids pyrolyzed from lignin-rich pinewoods and cellulose-rich corn stalks under 300 °C and 500 °C (termed as PW300, PW500, CS300, CS500) and analyzed their differences in the chemical stability and transport behaviors. The results indicated that high contents of lignin in biomass and pyrolytic temperature could enhance the compact aromatic structures of biochar colloids characterized by the elemental composition, FTIR, 13C NMR and XRD analyses. Therefore, PW500 with the strongest chemical stabilities (least C loss of 13%), electronegativity (-44.9 mV vs. -41.6-28.3 mV) and smallest hydrodynamic diameter (608.7 nm vs. 622-997.2 nm) was obtained under ball milling. Moreover, both the critical coagulation concentrations (CCC) and the maximum relative effluent concentration (C/C0) with the NaCl ionic strength of 1 mM were demonstrated to be in the increase order of CS300 (76.1 mM, 70%) < PW300 (183.1 mM, 78%) < CS500 (363.9 mM, 89%) < PW500 (563.1 mM, 95%), which suggested stronger colloidal stability and mobility of PW biochar colloids than those of CS biochar colloids. In addition, the C/C0 for CS300, PW300 and CS500 were about 7.3%-36% lower than that for PW500 with the NaCl ionic strength increasing to 50 mM indicated the notable superiority in the mobility of PW500. These findings can provide new insights toward understanding the transformation and migration, and evaluating the environmental risk of biochar colloids.


Assuntos
Carbono , Lignina , Celulose , Carvão Vegetal , Coloides
2.
Chemosphere ; 286(Pt 1): 131635, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34346339

RESUMO

Composting is a biodegradation and transformation process that converts lignocellulosic biomass into value-added products, such as humic substances (HSs). However, the recalcitrant nature of lignocellulose hinders the utilization of cellulose and hemicellulose, decreasing the bioconversion efficiency of lignocellulose. Pretreatment is an essential step to disrupt the structure of lignocellulosic biomass. Many pretreatment methods for composting may cause microbial inactivation and death. Thus, the pretreatment methods suitable for composting can promote the degradation and transformation of lignocellulosic biomass. Therefore, this review summarizes the pretreatment methods suitable for composting. Microbial consortium pretreatment, Fenton pretreatment and surfactant-assisted pretreatment for composting may improve the bioconversion process. Microbial consortium pretreatment is a cost-effective pretreatment method to enhance HSs yields during composting. On the other hand, the efficiency of enzyme production during composting is very important for the degradation of lignocellulose, whose action mechanism is unknown. Therefore, this review describes the mechanism of action of lignocellulase, the predominant microbes producing lignocellulase and their related genes. Finally, optimizing pretreatment conditions and increasing enzymatic hydrolysis to improve the quality of composts by controlling suitable microenvironmental factors and core target microbial activities as a research focus in the bioconversion of lignocellulose during composting in the future.


Assuntos
Compostagem , Biomassa , Celulose , Lignina
3.
J Environ Manage ; 301: 113833, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34592667

RESUMO

The influence of fossil fuels on the environment focused on the development of new technology on biofuels. In this situation, lignocellulolytic hydrolysis enzymes such as Cellobiohydrolase, ß-Glucosidase, Endoglucanase, cellulase and xylanase have broad applications in the biofuel production. The Trichoderma have used for the production of cellulase and xylanase to hydrolyze the lignocellulose. Hence, in the present study, co-culture has been employed to induce the production of polysaccharide hydrolyzing enzymes under both induction and repression conditions. The enzyme activity and its gene expression were induced by the co-culture of T. asperellum and B. amyloliquefaciens compared to the monoculture. Further, the co-culture upregulated the transcription regulatory genes and downregulated the repressor genes under both repressor and inducer conditions, respectively. The crude enzyme produced by the co-culture and monocultures using the optimized medium containing molasses, cornmeal and rice bran were further used to hydrolyze the pretreated corn Stover, rice straw, and wheat straw. These results indicate that the co-culture of T. asperellum and B. amyloliquefaciens is a promising and inexpensive method to advance the innovation on the continuous production of cellulase and xylanase under different circumstances for the bioconversion of lignocellulosic biomass into glucose for the bio-fuels.


Assuntos
Celulase , Trichoderma , Biomassa , Lignina
4.
Sci Total Environ ; 802: 149922, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34525730

RESUMO

Iron oxide is a natural mineral that generally exists in the form of iron oxide-organic complexes (Fe-OM) in soil. Lignin is a naturally occurring polymer that is considered to be an important part of soil carbon cycling. In this study we prepared a composite material (MGE) with iron oxide and lignin based on the Fe-OM present in the soil. MGE was then applied to remediate Cd and Pb in contaminated soil. The results show that DTPA-Cd and DTPA-Pb levels were reduced by 58.87% and 78.09%, respectively. The bacterial community diversity index decreased in the iron oxide (GE) group, but a slight increase was observed in the MGE group. In terms of species composition in the MGE group, the abundance of Proteobacteria, Gemmatimonadota and Acidobacteriota increased, while the abundance of Bacteroidota, Actinobacteriota and Firmicutes decreased. The outcome in the GE group was the opposite. In the MGE group, HCl-Fe2+, HCl-Fe3+, and pH were significantly higher than in the other groups, indicating that MGE stimulated the growth of iron-reducing bacteria (FeRB) and promoted iron redox reactions. Iron oxide could be reduced to Fe2+ due to the activity of FeRB, and then Fe2+ would be oxidised and hydrolysed, which led to an increase in soil pH. Secondary minerals were formed during this process. With the oxidation of Fe2+ and the formation of secondary minerals, Cd and Pb could be stabilised in the oxides and were not easily released through a co-precipitation mechanism.


Assuntos
Poluentes do Solo , Solo , Bactérias , Cádmio/análise , Compostos Férricos , Chumbo , Lignina , Poluentes do Solo/análise
5.
J Hazard Mater ; 421: 126722, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34332480

RESUMO

The novel sulfomethylated lignin-grafted-polyacrylic acid (SL-g-PAA) hydrogel was fabricated in this work via a facile and green synthetic strategy for the efficient removal of heavy metal ions from wastewater, and then successively reused for chemiluminescence (CL). The sulfomethylation of lignin was first performed to improve its water solubility and introduce numerous active sites for adsorption of heavy metal ions. The as-synthesized SL-g-PAA hydrogel with high content of lignin exhibited the highly efficient and rapid removal of various metal ions from simulated wastewater. More importantly, the spent hydrogel (M2+@SL-g-PAA) after adsorption was reused for the first time to develop a new CL system by an ingenious strategy, in which these metal ions adsorbed on M2+@SL-g-PAA act as heterogeneous catalytic sites to catalyze the CL reaction between N-(4-aminobutyl)-N-ethylisoluminol (ABEI) and H2O2. The resultant CL system displayed high CL intensity and long duration time, which could be observed by naked eye in the dark and lasted for > 24 h. The combination of facile fabrication process, renewable raw materials, and ingenious strategy for successive application in adsorption and CL endows this lignin-based composite hydrogel with a great potential for application in wastewater treatment, biological imaging and cold light sources.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Hidrogéis , Peróxido de Hidrogênio , Íons , Lignina , Luminescência , Águas Residuárias , Poluentes Químicos da Água/análise
6.
J Colloid Interface Sci ; 605: 648-656, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34352445

RESUMO

Pancake-like TiO2 (M-TiO2) derived from the metal-organic framework was inlaid into three-dimensional flower-like BiOI through a facile solvothermal method. M-TiO2 supplies large surface area and mesoporous structure for attachment and transfer of the substrates and products, while BiOI acts as a photosensitizer to absorb visible light and generates electrons and holes. The distinct structure of M-TiO2/BiOI gives a favorable contact between the two monomers, and promotes the transfer of charge carriers. In conjunction with the proper band positions of M-TiO2 and BiOI, the efficient separation of electron-hole pairs is attained. Benefiting from the above cooperative effects of M-TiO2 and BiOI, the performance for the vanillin generation from sodium lignosulfonate (SLS) over M-TiO2/BiOI composites has a prominent improvement under visible light. Specifically, the yield over optimal M-TiO2/BiOI sample is about 5.8 mg/gSLS, obviously superior to that over pristine M-TiO2 (~1 mg/gSLS) and BiOI (~1.1 mg/gSLS). It is found that h+ and O2- play the key role for vanillin generation from sodium lignosulfonate, and the low vanillin generation under UV-vis light sheds light on that OH is an adverse factor. We hoped that this work could inspire the studies on the photocatalytic valorization of biomass using noble metal-free catalysts.


Assuntos
Bismuto , Estruturas Metalorgânicas , Benzaldeídos , Luz , Lignina/análogos & derivados , Sódio , Titânio
7.
Food Chem ; 368: 130822, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34411853

RESUMO

Lei bamboo (Phyllostachys violascens) shoots are delicious food in Asia. Here, the molecular basis of lignification in postharvest Lei bamboo shoots under low temperature (LT) is revealed by transcriptomic and metabolomics analyses for the first time. We identified substantial accumulations of jasmonates (JAs) and major lignin biosynthesis precursors (coumarin, trans-4-coumaric acid, trans-ferulic acid and L-phenylalanine). Transcriptome analysis indicated that some regulatory genes were significantly differentially expressed, and the expression patterns of them were highly consistent with the changes in the key lignin precursors or JA profiles. Co-expression analysis showed that the LT responsive genes PvCRPK-4/-5, PvICE2-1/2, PvDREB2B might form a network module with the lignin (PvC3H-2/3, PvC4H-2/4, PvCAD-1/2/3/4, etc.) or JA biosynthesis genes (PvOPR2, PvJAZ-4 and PvPEX5, etc.), indicating a LT-lignification or LT-JA-lignification regulatory pathway in Lei bamboo shoots. Above all, our findings provide new an insight into the LT-associated lignification in postharvest bamboo shoots.


Assuntos
Redes Reguladoras de Genes , Transcriptoma , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Metabolômica , Temperatura
8.
Bioresour Technol ; 343: 126120, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34695590

RESUMO

The chemical structure of lignin has an important effect on the lignin pyrolysis product distributions. Therefore, it is of great significance to regulate the selectivity of pyrolysis products by modifying the lignin structure. Herein, deep eutectic solvents (DESs) including choline chloride/ethylene glycol (CE), zinc chloride/ethylene glycol (ZE) and choline chloride/acetic acid, treatment of softwood kraft lignin (SKL) is demonstrated. Systematic characterization indicate that the DESs are not only highly conducive to increasing the hydrogen to carbon efficient ratio, reducing the molecular weight and ß-O-4 linkage, but also contributes to the maximum degradation rate and thermal stability of SKL. Noticeably, CE and ZE treatment are significantly improved the amount of H-phenols and C-phenols derived lignin pyrolysis, respectively. In addition, DESs pretreatment are also beneficial to the increment of monomer aromatic hydrocarbons. More importantly, the CE pretreatment contributes to the improvement of bio-oil yield and decrease of char content from lignin pyrolysis.


Assuntos
Lignina , Pirólise , Colina , Peso Molecular , Solventes
9.
J Environ Manage ; 301: 113925, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34731961

RESUMO

Biomass waste generation concerns regulatory authorities to develop novel methods to sustain biotransformation processes. Particularly, lactic acid (LA) is a bulk commodity chemical used in diverse industries and holds a growing global market demand. Recently, lignocellulosic waste biomass is preferred for LA bio-production because of its non-edible and inexpensive nature. However, the information about new pretreatment methods for lignocellulosic feedstock, and novel strains capable to produce LA through fermentation is limited. Therefore, this review highlights the advancement of pretreatments methods of lignocellulosic biomass and biotransformation. Herein, we first briefly explored the main sources of lignocellulosic waste biomass, then we explored their latest advances in pretreatment processes particularly supercritical fluid extraction, and microwave-assisted extraction. Approaches for bioconversion were also analyzed, such as consolidated bioprocessing (CBP), simultaneous saccharification and fermentation (SSF), separate hydrolysis fermentation (SHF), among other alternatives. Also, new trends and approaches were documented, such as metagenomics to find novel strains of microorganisms and the use of recombinant strategies for the creation of new strains. Finally, we developed a holistic and sustainable perspective based on novel microbial ecology tools such as next-gen sequencing, bioinformatics, and metagenomics. All these shed light on the needs to culture powerful microbial isolates, co-cultures, and mixed consortia to improve fermentation processes with the aim of optimizing cultures and feedstock pretreatments.


Assuntos
Ácido Láctico , Lignina , Biomassa , Fermentação , Hidrólise , Lignina/metabolismo
10.
Sci Total Environ ; 806(Pt 1): 150316, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34555609

RESUMO

In the last decade, lignin has received much attention as a feedstock to produce bio-based products. This study investigates the potential benefits of using lignin to mitigate the environmental impact of the road construction sector. An environmental life cycle assessment (LCA) of various top-layer bio-based asphalts using kraft lignin was conducted. From a cradle-to-grave perspective, lignin-based asphalts were compared with conventional asphalts. The results of the LCA revealed that the climate change impact of lignin-based asphalts could be 30-75% lower than conventional asphalts. For the other ten impact categories, trade-offs were observed. Overall, two key factors to make the environmental impact of lignin-based asphalts lower than conventional asphalts are 1) increasing the amount of bitumen-substituted and 2) using low-grade biomass fuels for process steam in the pulp mill. The substitution of weak filler with lignin was beneficial only for climate change and could lead to a worse overall environmental performance than conventional asphalts. Similarly, higher environmental impacts for lignin-based asphalts could be obtained if the pulp mill consumed natural gas to complete the energy balance to replace the part of the black liquor from which lignin is extracted. This study also includes an in-depth discussion on methodological choices such as the allocation methods for lignin, functional units, and asphalt layers considered. We believe that such a methodological discussion could be helpful to support future Product Category Rules for asphalt mixtures.


Assuntos
Hidrocarbonetos , Lignina , Biomassa
11.
Chemosphere ; 287(Pt 4): 132436, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34610375

RESUMO

Green composite processing technology of wood fibers is an inevitable choice for global sustainable development. In this research, waste poplar powder with different particle sizes was used to prepare glue-free biocomposites with good mechanical and waterproof properties by hot-molding. The biocomposites made of larger size wood powder had better tensile strength (40.3 MPa) and the biocomposites made of smaller size wood powder had the greater bending strength (50.5 MPa). The thickness swelling rate of the biocomposites was only 4.26% after soaking in water for 24 h. The cross-section morphology of the biocomposites showed that the cell wall collapses enhanced the interfacial bonding. Chemical analysis showed that lignin repolymerized with cellulose and hemicellulose for the vitrification transition. In addition, the biocomposites with excellent mechanical properties had no formaldehyde release, which can replace the traditional density boards made of adhesives and applied as furniture materials and in line with the concept of cleaner production.


Assuntos
Celulose , Madeira , Lignina , Tecnologia , Resistência à Tração
12.
Chemosphere ; 287(Pt 1): 132058, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34474381

RESUMO

Tellurium is massively used as the main light-absorbing layer component in the manufacturing of CdTe thin-film solar cells, a critical component in the photovoltaic industry. However, the process of manufacturing and renewing components has produced large amounts of tellurium-containing wastewater that is difficult to degrade and poses a serious threat to the aquatic ecosystem and human health. Hence, to achieve the recovery of tellurium resources for reducing their damages, a win-win approach was employed to utilize waste lignin to construct functional copper-doped activated lignin (CAL) adsorbents for selective separation and recovery of tellurium from wastewater. CAL exhibited superior adsorption properties towards tellurium (248.45 mg/g), mainly attributed to the adsorption mechanism of coordination interactions. Kinetic and isotherm results elucidated that monolayer chemisorption dominated CAL adsorption process. Besides, CAL had a satisfactory regeneration capability with minimal loss adsorption capacity after six consecutive cycles, which also exhibited high antifouling properties. Meanwhile, CAL achieved high selectivity for tellurium adsorption under the simulated wastewater, revealing the potential of CAL for practical application in wastewater. Therefore, this work provides a promising environmental strategy for exploring the application of lignin-based materials for tellurium recovery from wastewater.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Poluentes Químicos da Água , Adsorção , Ecossistema , Humanos , Cinética , Lignina , Telúrio , Águas Residuárias
13.
Bioresour Technol ; 343: 126061, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34597806

RESUMO

Hydrothermal pretreatment (HTP) using only water offers great potential to reduce the overall cost of the bioconversion process. However, traditional HTP performed in a batch has limitations in removing lignin and often needs to be performed under severe conditions to achieve reasonable pretreatment effects. Lignin left in the pretreated residue at these conditions is also highly condensed, thus possessing an even more adverse impact on the hydrolysis process, which requires high enzyme loadings. To address these technical challenges, HTP performed in a flow-through configuration was developed to simultaneously achieve near-complete hemicellulose recovery, high lignin removal and high sugar release. Despite facing challenges such as potentially large water usage, flow-through HTP still represents one of the most cost-effective and eco-friendly pretreatment methods. This review mainly covers the latest cutting-edge innovations of flow-through HTP along with structural and compositional changes of cellulose, hemicellulose, and lignin before and after pretreatment.


Assuntos
Celulose , Lignina , Biomassa , Hidrólise , Água
14.
Bioresour Technol ; 343: 126022, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34600092

RESUMO

Microwave-assisted guanidine hydrochloride deep eutectic solvents (DESs) was developed for rapid and efficient pretreatment of castor stalk. The DES synthesized with guanidine hydrochloride and lactic acid showed a better delignification (92.02%) and enzymatic saccharification yield (96.3%) than choline chloride and lactic acid DES resulted. In addition, high-purity (up to 98%) lignin was recovered from the pretreatment liquor. The good recyclability of the guanidine hydrochloride-based DES was also proven with up to 90% cellulose hydrolysis with third-time recycled DES without post purification. The proposed microwave-assisted guanidine hydrochloride/lactic acid DES showed its great potentials as a highly effective and recyclable pretreatment solvent for future biorefinery strategies.


Assuntos
Lignina , Micro-Ondas , Biomassa , Guanidina , Solventes
15.
Bioresour Technol ; 343: 126071, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34606923

RESUMO

One of the potential bioresources for bioethanol production is Napier grass, considering its high cellulose and hemicellulose content. However, the cost of pretreatment hinders the bioethanol produced from being economical. This study examines the effect of hydrothermal process with dilute acid on extruded Napier grass, followed by enzymatic saccharification prior to simultaneous saccharification and co-fermentation (SScF). Extrusion facilitated lignin removal by 30.2 % prior to dilute acid steam explosion. Optimum pretreatment condition was obtained by using 3% sulfuric acid, and 30-min retention time of steam explosion at 190 °C. Ethanol yield of 0.26 g ethanol/g biomass (60.5% fermentation efficiency) was attained by short-term liquefaction and fermentation using a cellulose-hydrolyzing and xylose-assimilating Saccharomyces cerevisiae NBRC1440/B-EC3-X ΔPHO13, despite the presence of inhibitors. This proposed method not only reduced over-degradation of cellulose and hemicellulose, but also eliminated detoxification process and reduced cellulase loading.


Assuntos
Saccharomyces cerevisiae , Xilose , Celulose/metabolismo , Etanol , Fermentação , Hidrólise , Lignina/metabolismo , Saccharomyces cerevisiae/metabolismo , Ácidos Sulfúricos
16.
Bioresour Technol ; 343: 126093, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34624476

RESUMO

A multistep approach was undertaken for biobutanol production targeting valorization of agricultural waste. Optimum production of lignocellulolytic enzymes [CMCase (3822.93U/mg), FPase (3640.93U/mg), ß-glucosidase (3873.92U/mg), xylanase (3460.24U/mg), pectinase (3359.57U/mg), α-amylase (4136.54U/mg), and laccase (3863.16U/mg)] was accomplished through solid-substrate fermentation of pretreated mixed substrates (wheat bran, sugarcane bagasse and orange peel) by Aspergillus niger SKN1 and Trametes hirsuta SKH1. Partially purified enzyme cocktail was employed for saccharification of the said substrate mixture into fermentable sugar (69.23 g/L, product yield of 24% w/w). The recovered sugar with vegetable extract supplements was found as robust fermentable medium that supported 16.51 g/L biobutanol production by Clostridium acetobutylicum ATCC824. The sequential bioprocessing of low-priced substrates and exploitation of vegetable extract as growth factor for microbial butanol production will open a new vista in biofuel research.


Assuntos
Clostridium acetobutylicum , Biomassa , Butanóis , Fermentação , Hidrólise , Lignina , Polyporaceae , Trametes
17.
Bioresour Technol ; 343: 126097, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34626758

RESUMO

Lignocellulosic wastes were recently considered as biomass resources, however, its conversion to valuable products is still immature although researchers have put lots of effort into this issue. This article reviews the key challenges of the biorefinery utilizing lignocellulosic materials and recent developments to conquer those obstacles. Available biological techniques and processes, from the pretreatments of cellulosic materials to the valorization processes, were emphasized. Biological pretreatments, including hydrolysis using microbial consortia, fungi, enzymes, engineered bacterial/fungal strains, and co-culture systems, could enhance the release of reducing sugar. Resources recovery, including biogases, ethanol, butanol, PHA, etc., from lignocellulosic materials were also discussed, while the influences of composition of lignocellulosic materials and pretreatment options, applications of co-culture system, and integrated treatments with other wastes, were described. In the review, co-culture system and metabolic engineering are emphasized as the promising biological technologies, while perspectives are provided for their future developments.


Assuntos
Biocombustíveis , Lignina , Biomassa , Biotecnologia , Hidrólise
18.
Bioresour Technol ; 343: 126100, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34626760

RESUMO

The development of lignocellulosic biorefineries requires a first stage of pretreatment which enables the efficient valorization of all fractions present in this renewable material. In this sense, this review aims to show the main advantages of hydrothermal treatment as a first step of a biorefinery infrastructure using hardwood as raw material, as well as, main drawback to overcome. Hydrothermal treatment of hardwood highlights for its high selectivity for hemicelluloses solubilization as xylooligosaccharides (XOS). Nevertheless, the suitable conditions for XOS production are inadequate to achieve an elevate cellulose to glucose conversion. Hence, several strategies namely the combination of hydrothermal treatment with delignification process, in situ modification of lignin and the mixture with another renewable resources (concretely, seaweeds, and by-products generated in the food industry with high sugar content) were pinpointed as promising alternative to increase the final ethanol concentration coupled with XOS recovery in the hydrolysate.


Assuntos
Lignina , Oligossacarídeos , Celulose , Glucuronatos , Hidrólise
19.
Bioresour Technol ; 343: 126068, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34626762

RESUMO

The efforts have been made to review phyllosilicate derived (clay-based) heterogeneous catalysts for biodiesel production via lignocellulose derived feedstocks. These catalysts have many practical and potential applications in green catalysis. Phyllosilicate derived heterogeneous catalysts (modified via any of these approaches like acid activated clays, ion exchanged clays and layered double hydroxides) exhibits excellent catalytic activity for producing cost effective and high yield biodiesel. The combination of different protocols (intercalated catalysts, ion exchanged catalysts, acidic activated clay catalysts, clay-supported catalysts, composites and hybrids, pillared interlayer clay catalysts, and hierarchically structured catalysts) was implemented so as to achieve the synergetic effects (acidic-basic) in resultant material (catalyst) for efficient conversion of lignocellulose derived feedstock (non-edible oils) to biodiesel. Utilisation of these Phyllosilicate derived catalysts will pave path for future researchers to investigate the cost-effective, accessible and improved approaches in synthesising novel catalysts that could be used for converting lignocellulosic biomass to eco-friendly biodiesel.


Assuntos
Biocombustíveis , Óleos Vegetais , Biomassa , Catálise , Esterificação , Lignina
20.
Bioresour Technol ; 343: 126092, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34634465

RESUMO

In the downstream process, the bioconversion of lignocellulosic biomass can be improved by applying a biological pretreatment procedure using microorganisms to produce hydrolytic enzymes to modify the recalcitrant structure of lignocellulose. In this study, various Bacillus strains (B. subtilis B.01162 and B.01212, B. coagulans B.01123 and B.01139, B. cereus B.00076 and B.01718, B. licheniformis B.01223 and B.01231) were evaluated for the degrading capacity of wheat bran in the submerged medium using enzymatic activities, reducing sugars and weight loss as indicators. The obtained results revealed that the B. subtilis B.01162, B. coagulans B.01123 and B. cereus B.00076 could be promising degraders for the wheat bran pretreatment. Besides, the application of their consortium (the combination of 2-3 Bacillus species) showed the positive effects on cellulose bioconversion compared with monocultures. Among them, the mixture of B. subtilis B.01162 and B. coagulans B.01123 increased significantly the cellulase, endo-glucanase, and xylanase enzyme activity resulting in accelerating the lignocellulose degradation. Our results served a very good base for the development of microbial consortium for biological pretreatment of lignocellulosic raw materials.


Assuntos
Bacillus , Celulase , Biomassa , Fibras na Dieta , Hidrólise , Lignina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...