Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.941
Filtrar
1.
J Hazard Mater ; 441: 129909, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36099736

RESUMO

Soil pollution caused by cadmium (Cd) is a serious concern. Phytoremediation is a popular technology in the remediation of Cd-contaminated soil. Salix matsudana var. matsudana f. umbraculifera Rehd. has been characterized as a high Cd-accumulating and tolerant willow (HCW). Here, transcriptome and proteome profiling, along with morphology analyses were performed to explore molecular cross-talk involved in Cd tolerance. Our results showed that 73%- 83% of the Cd in roots accumulated in the cell walls and root xylem cell walls were significantly thickened. From transcriptome and proteome analysis, a total of 153 up-regulated differentially-expressed genes and 655 up-regulated differentially-expressed proteins were found in common between two comparison groups (1 d and 4 d vs. respective control). Furthermore, phenylpropanoid biosynthesis was identified as a key pathway in response to Cd stress. In this pathway, lignin biosynthesis genes or proteins were significantly up-regulated, and lignin content increased significantly in roots under Cd stress. Two Cd-induced genes cinnamoyl-CoA reductase 1 (SmCCR1) and cinnamyl alcohol dehydrogenase 7 (SmCAD7) from HCW increased the lignin content and enhanced Cd tolerance in transgenic poplar calli. These results lay the foundation for further clarifying the molecular mechanisms of Cd tolerance in woody plants.


Assuntos
Salix , Poluentes do Solo , Cádmio/análise , Cádmio/toxicidade , Lignina , Raízes de Plantas/química , Raízes de Plantas/genética , Proteoma , Salix/genética , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Transcriptoma
2.
Enzyme Microb Technol ; 162: 110147, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36335860

RESUMO

Expression of lignin-oxidising Pseudomonas fluorescens Dyp1B in the periplasm of Pseudomonas putida KT2440, using a tat fusion construct, was found to lead to enhanced whole cell activity for oxidation of DCP and polymeric lignin substrates. Four amino acid residues predicted to lie at the manganese ion binding site of Pseudomonas fluorescens peroxidase Dyp1B were investigated using site-directed mutagenesis. Mutants H127R and S223A showed 2-fold and 4-fold higher kcat for Mn(II) oxidation respectively, and mutant S223A showed 2-fold enhanced production of low molecular weight phenolic products from a polymeric soda lignin. The mutant Pfl Dyp1B genes were expressed as tat fusions to investigate their effect on lignin oxidation by P. putida KT2440.


Assuntos
Pseudomonas fluorescens , Pseudomonas putida , Lignina/metabolismo , Peroxidase/metabolismo , Periplasma/metabolismo , Peroxidases/metabolismo , Corantes/metabolismo , Polímeros/metabolismo
3.
Carbohydr Polym ; 300: 120263, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36372513

RESUMO

The scCO2-assisted organosolv pretreatment of sugarcane bagasse was carried out using aqueous ethanol and organic acid catalysts. Variables involved were temperature (150-190 °C), time (0-60 min), type of catalyst (acetic, citric, and oxalic acids), amount of CO2 (25-50 g), ethanol titer in water (0-80 vol%), and catalyst concentration (0.5 to 1.5 % w·v-1). The best delignification (86 wt%) and glucan retention (89 wt%) were achieved at 170 °C for 15 min using 60 vol% ethanol in water, 1 wt% oxalic acid, and 25 g CO2. Organic acid esterification was a limitation for pretreatment operations using ethanol titers above 60 vol%. Enzymatic hydrolysis of pretreated materials at 1 % (w·v-1) glucans released 74.3 ± 0.2 % glucose in 96 h using Cellic CTec3 (Novozymes) at 9.89 FPU·gglucans-1. The concentrated pretreatment liquor allowed lignin recovery by water precipitation in high yields, while the aqueous supernatant contained low levels of fermentation inhibitors.


Assuntos
Saccharum , Celulose/metabolismo , Dióxido de Carbono , Etanol , Lignina , Hidrólise , Ácidos , Compostos Orgânicos , Fermentação , Água
4.
J Ethnopharmacol ; 300: 115740, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36162549

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Antrodia camphorata is a genus of wood-rot basidiomycete in the family Fomitopsidaceae. It is a valuable medicinal fungus in China that contains more than 78 kinds of active compounds. A. camphorata has good protection effects on the liver, especially on alcoholic liver injury (ALI). AIM: This paper summarizes the complex occurrence and development of alcoholic liver disease (ALD). In addition, the effect of ALD on the intestine through the gut-liver axis is summarized. The protective mechanism of A. camphorata on ALI is reviewed to reveal its therapeutic potential, offering insights into future research. MATERIALS AND METHODS: A comprehensive search in the literature was obtained from books and online databases such as Web of Science, Google Scholar, PubMed, Scopus, Science direct, ACS Publications and Baidu Scholar. RESULTS: The pathogenesis of ALD mainly includes oxidative stress injury, intestinal microflora imbalance, inflammatory mediator injury and nutritional imbalance. A. camphorata contains rich active components (e.g. polysaccharides, triterpenoids, maleic and succinic acid derivatives, amino acids, superoxide dismutase, vitamins, lignin and sterols). These components have good antioxidant, anti-inflammatory and intestinal protection activities. Therefore, A. camphorata has a wide application in the prevention and treatment of ALI. CONCLUSIONS: ALD develops from a mild disease to alcoholic hepatitis and cirrhosis, which is the main reason of global morbidity and mortality. At present, there is no effective drug for the treatment of ALD. A. camphorata, as a valuable medicinal fungus unique to Taiwan, has a great protective effect on the liver. It is expected to be an effective drug for ALI treatment. Although many studies have performed the protective effects of A. camphorata on ALI, its regulatory effects on the gut-liver axis of ALD patients need to be further explored.


Assuntos
Antrodia , Hepatopatias Alcoólicas , Triterpenos , Aminoácidos/metabolismo , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antrodia/química , Humanos , Mediadores da Inflamação/metabolismo , Lignina , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/prevenção & controle , Polyporales , Esteróis , Succinatos , Superóxido Dismutase/metabolismo , Triterpenos/uso terapêutico , Vitaminas/metabolismo
5.
Food Chem ; 403: 134404, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182850

RESUMO

Roasting is a technological process in some food applications of agricultural products. To investigate the composition changes of the extractable functional/bioactive components of cottonseed, in this work, glandless cottonseed kernels were roasted at 110, 120, 140 and 150 °C for 15 min, respectively. The UV/vis data of the 80 % ethanol extracts found that roasting increased the level of phenolic compounds. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry of the extracts identified about 44 % to 55 % of total formulas as potential phenolic compounds. Roasting (up to 140 °C) mainly increased carbohydrate-, lignin-, and tannin-like compounds while lipid-like compounds decreased. The compositional changes at 150 °C were less than those at 140 °C, attributed to devolatilization at the higher temperature. The information of chemical profiling of cottonseed and the roasting impact would be greatly useful in enhanced utilization of cottonseed as nutrient and functional foods or food supplements.


Assuntos
Óleo de Sementes de Algodão , Ciclotrons , Óleo de Sementes de Algodão/química , Análise de Fourier , Espectrometria de Massas/métodos , Lignina , Espectrometria de Massas por Ionização por Electrospray/métodos
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121840, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36115308

RESUMO

Non-destructive preservation state estimation is an essential prerequisite for the preservation and conservation of waterlogged archaeological wooden artifacts. Herein, Near Infrared (NIR) spectroscopy coupled with orthogonal partial least squares discriminant analysis (OPLS-DA) were applied to assess sixty-four waterlogged archaeological woods collected from seven excavation sites in the period range of 2900 BCE-1912 CE, aiming at developing a non-destructive, accurate and rapid preservation state estimation methodology. The role of non-decayed recent wood of relevant species on preservation state estimation was studied in prior, showing the use of non-decayed recent wood could not improve the predictive ability. Besides, the high variability in terms of chemical structure between archaeological softwoods and archaeological hardwoods did affect the preservation state estimation. Thus, a simple OPLS-DA model of non-destructively distinguishing archaeological hardwoods from softwoods, R2Xcum of 0.659, R2Ycum of 0.836 and Q2cum of 0.763, was established to avoid and overcome destructive approach for wood identification. Then, the well-defined three grouped separations of slightly-decayed, moderately-decayed and severely-decayed waterlogged archaeological woods were revealed in OPLS-DA models, providing R2Xcum of 0.793, R2Ycum of 0.738, Q2cum of 0.680, and R2Xcum of 0.780, R2Ycum of 0.901, Q2cum of 0.870, for waterlogged archaeological hardwoods and waterlogged archaeological softwoods respectively. Potential predictive wood spectral bands were screened and tentatively identified as hydroxyls of crystalline cellulose, acetyl groups of hemicelluloses, C-H bands of lignin, which guaranteed the elimination of non-structural compounds, such as water and inorganic components interference. Furthermore, the developed NIR methodology was validated by an extensively used destructive method consisting of anatomical characteristics, maximum water content and basic density analyses. The results indicated that NIR coupled to chemometrics could non-destructively and accurately predict the preservation states of waterlogged archaeological wooden artifacts and avoid the interference of water and inorganic deposits.


Assuntos
Arqueologia , Artefatos , Arqueologia/métodos , Lignina/química , Celulose/análise , Água/química
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121893, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36137500

RESUMO

The transformation of sapwood (SW) into heartwood (HW) during ageing of wood tissues is the result of physiological and biochemical changes initiated in the transition zone (TZ). These changes contribute to the evolution of active (living) wood cells in SW into less/non-active (dead) wood cells in HW. Previous studies established that the biosynthesis of extractive contents is the most prominent process that occurs in the TZ. To improve our understanding of the extent and characteristics of the TZ in oak wood, the present study reports the results of color parameters (using CIELab color space) and molecular structure and composition of polysaccharide and lignin compounds (using FTIR-ATR and Py-GC-MS). For that purpose, six wood cores from individual living oak (Quercus spp.) trees were collected from two forests with similar environmental conditions, located in the Basque Country (Northern Spain). The color data indicated significant differences between SW, TZ and HW by showing that SW samples were characterized by higher hue (h°) and lower redness (a*) values than the HW, and intermediate values for the TZ. They also suggested that the variations of wood color from SW to HW occur gradually, along a wide TZ counting 4-10 measurement points in a row, depending on the tree. Furthermore, FTIR and Py-GC-MS data gave evidence of the variation trends of polysaccharide and lignin contents in the radial direction, through various FTIR ratios (1735/1325, 1590/1735, 1590/1230, and 1230/1325 cm-1) and one pyrolysis ratio (acetic acid/total polysaccharide: Ps01/Tot_Ps). The observed variations in this present study suggest that the cross-sectional transition patterns can be related to the continuous lignification process of xylem parenchyma cells, as well as the storage of polysaccharide compounds. These results contribute to our fundamental knowledge on the TZ, which may be valuable in research and industrial applications where a clear delimitation of sapwood and/or heartwood is required.


Assuntos
Quercus , Madeira , Madeira/química , Árvores/química , Árvores/fisiologia , Lignina/análise , Estudos Transversais
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121912, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36174400

RESUMO

Lignin determination in lignocellulose with the conventional two-step acid hydrolysis method is highly laborious and time-consuming. However, its quantification is crucial to monitor fungal pretreatment of wood, as the increase of acid-insoluble lignin (AIL) degradation linearly correlates with the achievable enzymatic saccharification yield. Therefore, in this study, a new attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy method was developed to track fungal delignification in an easy and rapid manner. Partial least square regression (PLSR) with cross-validation (CV) was applied to correlate the ATR-FTIR spectra with the AIL content (19.9 %-27.1 %). After variable selection and normalization, a PLSR model with a high coefficient of determination (RCV2 = 0.87) and a low root mean square (RMSECV = 0.60 %) were obtained despite the heterogeneous nature of the fungal solid-state fermentation. These results show that ATR-FTIR can reliably predict the AIL content in fungus-treated wood while being a high-throughput method. This novel method can facilitate the transition to the wood-based economy.


Assuntos
Lignina , Madeira , Lignina/análise , Madeira/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise de Fourier , Hidrólise
9.
J Hazard Mater ; 443(Pt A): 130123, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36270193

RESUMO

The simultaneous removal and selective separation of U(VI) and Th(IV) via adsorption remain challenging due to their strong mobility, reactivity, and similar chemical properties. Thus, a surface-functioned lignin nanoparticle (AL-PEI) was synthesized to adsorb U(VI)/Th(IV) in a unitary system via a pH-dependent process. In alkaline solution, AL-PEI exhibited excellent adsorption performance, and the maximum adsorption capacities for U(VI) and Th(IV) reached 392 and 396 mg/g, respectively. Discrepantly in acidic solution, the adsorption performance of AL-PEI for U(VI) could still reach a high capacity (332 mg/g), whereas highly limited adsorption capacity (less than 40 mg/g) for Th(IV) was obtained, and the separation factor of U(VI) from U(VI)-Th(IV) matrix significantly reached 6662 in 3 M of the HNO3 medium. The simultaneously efficient adsorption in alkaline solution and highly selective separation performance in acidic solution of AL-PEI also showed excellent anti-ions interference capacities, high reusability, and strong stability. This study is the first to apply lignin fabricating radiation-resistant adsorbent material, and the adsorbent displays good performance for U(VI)/Th(IV) removal and selective separation via a novel pH-dependent process, which is important to the green and sustainable development of nuclear energy and environmental protection.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Adsorção , Lignina/química , Poluentes Químicos da Água/química , Cinética , Concentração de Íons de Hidrogênio
10.
Chemosphere ; 310: 136754, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36228733

RESUMO

Lignin is the most abundant heterogeneous aromatic polymer present on planet Earth and is recalcitrant to degradation due to its complex structure, therefore, imposing a challenge to biorefinery procedures. Identifying new microbial strains with the potential to valorize lignin into useful compounds is indispensable to achieving green sustainable consumption. In this study, a novel Pseudomonas strain designated as Hu109A was isolated from the termite gut and the genome was sequenced and analyzed further. The genome contains a circular chromosome with the size of 5,131,917 bp having a GC content of 62.6% and 4698 genes. Genome annotation reveals that the strain possesses lignin-oxidizing enzymes such as DyP-type peroxidases, laccase, dioxygenase, and aromatic degradation gene clusters. The genome also contains O-methyltransferases which function in accelerating the lignin degradation by methylating the free hydroxyl phenolic compounds which in high concentration can inhibit the lignin peroxidase. Furthermore, the genome exhibits two gene clusters encoding the enzymes related to polyhydroxyalkanoates (PHA) synthesis. Pseudomonas strains are generally assumed to produce medium chain length PHAs (mcl-PHAs) only, however, strain Hu109A contains both Class II PHA synthase genes involved in mcl-PHAs and Class III PHA synthase gene involved in short-chain length PHAs (scl-PHAs). Gas Chromatography-Mass Spectrometry (GC-MS) analysis showed that using 1 g/L lignin as the sole carbon source, the maximum production of PHA observed was 103.68 mg/L, which increased to 186 mg/L with an increase in lignin concentration to 3 g/L. However, PHA production while using glucose as the sole carbon source was significantly lower than the lignin source, and maximum production was 125.6 mg/L with 3 g/L glucose. The strain Hu109A can tolerate a broad range of solvents including methanol, isopropanol, dimethylformamide, and ethanol, revealing its potential for industrial applications.


Assuntos
Poli-Hidroxialcanoatos , Poli-Hidroxialcanoatos/química , Pseudomonas/genética , Pseudomonas/metabolismo , Lignina/química , Bactérias/metabolismo , Genômica , Carbono/metabolismo
11.
J Colloid Interface Sci ; 629(Pt A): 422-433, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36088690

RESUMO

HYPOTHESIS: Super-hydrophilic/underwater super-oleophobic materials composed of biomass show great advantages for the treatment of oily wastewater due to their inherent fouling resistance. However, the development of three-dimensional materials from biomass for oil-water separation is still a challenge. It is universally acknowledged that constructing a rough structure on the surface of hydrophilic substrates would significantly improve the underwater oleophobicity and oil-water separation performance. EXPERIMENTS: In this work, a three-dimensional lignin/cellulose aerogel (LCA) was developed through sol-gel method with freeze-drying. The rough microstructure and 3D interconnected network composed of lignin and cellulose impart excellent underwater superoleophobicity to LCA for efficient oil-water separation. FINDINGS: The introduction of lignin to cellulose aerogel could effectively enhance its surface roughness, water permeation speed and underwater oil contact angle. Especially, the swelling properties of the hydrogel could be regulated by modulating the content of lignin, which could further control the pore size of aerogels to optimize the separation flux. The as-prepared aerogel showed remarkable performance in separating various oil-water mixtures and oil-in-water emulsions, with a separation flux of 7646 ± 167 L·m-2·h-1 and oil rejection rate >99 %. These excellent properties combined with its facile fabrication make LCA a promising candidate for the treatment of oily wastewater.


Assuntos
Celulose , Purificação da Água , Celulose/química , Lignina , Purificação da Água/métodos , Hidrogéis , Águas Residuárias , Óleos/química
12.
J Hazard Mater ; 442: 130070, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36183515

RESUMO

Advanced oxidation processes (AOP) are a common tool to remove organic compounds from the water cycle. The process is mostly relied on free radicals (i.e., SO4•- and HO•) with high oxidation power in solution. Surface-mediated mechanism could improve this process to prevent undesired quenching of aqueous radicals that widely exists in free radical pathways and alleviate metal leaching through direct electron transfer. In this work, a facile low-temperature pre-treatment combined with pyrolytic strategy was employed to construct a green catalyst with iron oxides embedded in Kraft-lignin derived bio-char (γ-Fe2O3 @KC), upon which radicals stay surface mediated and the activity-stability trade-off is achieved for pollutant degradation. The γ-Fe2O3 @KC is capable of activating PMS to generate non-radical species which are more stable (1O2 and Fe(V)=O) and of enhancing electron transfer efficiency. A surface-bound reactive complex (Catalyst-PMS*) was identified by electrochemical characterization and was discussed with primary surface-bound radical pairs to explain the contradictions between quenching and EPR detection results. We analyzed the γ-Fe2O3 @KC as a PMS-activating catalyst for a wider range of oxidation targets, such as Rhodamine B (∼100%), p-nitrophenol (∼85%), and Ciprofloxacin (∼63%), and found competitive removal efficiencies. The system also shows an encouraging reusability for at least 5 times and high stability at pH 3-9, and the low concentration of iron in γ-Fe2O3 @KC/PMS system implies the carbon scaffold of biochar alleviate the leakage process. The combined findings highlight the applicability in 'green (source) to green (application)' processes using cost-effective and bio-friendly iron@carbon catalysts, where alternative oxidation pathways are activated to play a dominant role for water purification.


Assuntos
Carbono , Poluentes Ambientais , Carbono/química , Água , Peróxidos/química , Lignina , Ferro , Radicais Livres , Ciprofloxacina
13.
Sci Total Environ ; 857(Pt 2): 159541, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36265625

RESUMO

Wastewater treatment plants (WWTPs) play a critical role in receiving, removing, and discharging dissolved organic matter (DOM) in aquatic systems. To date, understanding the composition and fate of DOM in different WWTPs with various environmental and socioeconomic conditions is limited. This study analyzed DOM components in the influent and effluent samples from 49 WWTPs in China using EEM-PARAFAC and ESI-FT-ICR-MS methods. The influencing factors of DOM components in the influent were also analyzed. Geographic location and GDP showed significant (p < 0.05) correlations with DOM components in the influent. The removal efficiency of DOM in WWTPs was closely related to the DOM compositions, where carbohydrates, lipids, and protein-like components (removal efficiencies > 75 %) were more readily decomposed than the humic-like components, lignin, and tannin. The relative fraction of humic-like compound C3 in the influent was correlated negatively with total nitrogen (TN) and chemical oxygen demand (COD) removal in WWTPs (p < 0.05). Besides, the relative fraction of DOM containing the element sulfur also showed significant negative correlations with the humification of DOM (p < 0.05). The results from EEM-PARAFAC and ESI-FT-ICR-MS methods showed no obvious correlation for the DOM characterizations except for humic-like fluorescent fraction C3 and lignin, while significant positive correlations (p < 0.05) between the aromatic index (AI_mod) from the ESI-FT-ICR-MS analysis and the humification index (HIX) from spectrofluorimetry. This supports the use of these spectral indexes as simple surrogates to represent part chemical compositions in further research.


Assuntos
Carbono , Purificação da Água , Matéria Orgânica Dissolvida , Nitrogênio , Lignina , Desnitrificação , Espectrometria de Fluorescência/métodos
14.
Sci Total Environ ; 856(Pt 1): 159009, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36162579

RESUMO

In this study, the effect of Fe3+ on the quinone redox cycling driving lignocellulosic degradation in composting systems was investigated. The results showed that the degradation rates of cellulose, hemicellulose, and lignin were higher in the experimental group (CT) with Fe2(SO4)3 addition than in the blank group (CK) (CT, 52.55 %, 45.14 %, 56.98 %; CK, 49.63 %, 37.34 %, 52.3 %). Changes in the abundance of key enzymes for quinone reduction (AA3_1, AA3_2, AA6) and the structural succession of microbial communities were analyzed by metagenomic analysis. Among them, Fe2(SO4)3 had the most significant effect on AA3_2, with an approximately 8-fold increase in abundance compared to the beginning of composting. The dominant phylum in the composting process was Actinobacteria. In conclusion, the addition of Fe2(SO4)3 contributed to the quinone redox cycling and effectively improved the degradation rate of lignocellulose in composting.


Assuntos
Compostagem , Lignina/metabolismo , Metagenômica , Solo , Quinonas , Oxirredução , Esterco/microbiologia
15.
J Environ Manage ; 325(Pt B): 116421, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36308953

RESUMO

Inoculation with microorganisms is an effective strategy for improving traditional composting processes. This study explored the effects of inoculation with lignocellulose-degrading microorganisms (LDM) on the degradation of organic matter (OM), methane (CH4) emissions, and the microbial community (bacteria and methanogens) during composting. The results showed that LDM accelerated the degradation of OM (including the lignocellulose fraction) and increased the CH4 releases in the later thermophilic and cooling stages during composting. At the ending of composting, LDM increased the CH4 emissions by 38.6% compared with the control. Moreover, LDM significantly increased the abundances of members of the bacterial and methanogenic community during the later thermophilic period (P < 0.05). In addition, LDM promoted the growth and activity of major bacterial genera (e.g., Ureibacillus) with the ability to degrade macromolecular OM, as well as affecting key methanogens (e.g., Methanocorpusculum) in the composting system. Network analysis and variance partitioning analysis indicated that OM and temperature were the main factors that affected the bacterial and methanogen community structures. Structural equation modeling demonstrated that the higher CH4 emissions under LDM were related to the growth of methanogens, which was facilitated by the anaerobic environment produced by large amounts of CO2. Thus, aerobic conditions should be improved during the end of the thermophilic and cooling composting period when inoculating with lignocellulose-degrading microorganisms in order to reduce CH4 emissions.


Assuntos
Compostagem , Euryarchaeota , Metano , Solo , Lignina/metabolismo , Euryarchaeota/metabolismo , Bactérias/metabolismo , Esterco/microbiologia
16.
J Environ Manage ; 325(Pt B): 116509, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36308959

RESUMO

In the wastewater treatment plant of pulp and paper mills, biosludge dewatering is needed to reduce the sludge handling and disposal costs. It is usually facilitated by means of the addition of synthetic polymers. There is increasing interest in replacing synthetic polymers with biopolymers derived from low value by-products or industrial residuals to improve the environmental footprint of dewatering. In this study, lignin-based flocculants (LBF) were tested for their ability to improve the biosludge dewaterability based on Capillary Suction Time (CST) and dry cake solids achieved with a Crown Press. The results demonstrate that LBFs alone can significantly enhance dewatering with a decrease in CSTs from 72.7 ± 5.1 s (unconditioned biosludge) to 23.3 ± 0.4 s and an increase in dry cake solids after pressing from 7.1 ± 0.5% to 13.9 ± 1.3% with a relatively high dosage of 7.5% w/w. However, with dual conditioning a LBF and 0.1% w/w anionic polyacrylamide (APAM), the required dosage of LBF was reduced to 3% w/w to achieve a dry cake solids content of 13.8 ± 0.4%, the same as that achieved with Zetag8165, a commercial synthetic polymer. LBF addition lowered the particle surface charge, allowing the particles to agglomerate and enhancing for the biosludge dewaterability. The application of LBFs for sludge dewatering offers novel considerable promise for providing more sustainable approaches by optimizing the use of lignin from different extraction processes, applying various types of lignin modifications in combination with anionic polymers, and exploring different methods of disposal or utilization of the dewatered sludge.


Assuntos
Esgotos , Purificação da Água , Lignina , Água , Purificação da Água/métodos , Polímeros , Eliminação de Resíduos Líquidos/métodos
17.
Bioresour Technol ; 367: 128208, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36323374

RESUMO

Deconstruction of cell wall structure is important for biorefining of lignocellulose to produce various biofuels and chemicals. Oxidative delignification is an effective way to increase the enzymatic digestibility of cellulose. In this work, the current research progress on conventional oxidative pretreatment including wet oxidation, alkaline hydrogen peroxide, organic peracids, Fenton oxidation, and ozone oxidation were reviewed. Some recently developed novel technologies for coupling pretreatment and direct biomass-to-electricity conversion with recyclable oxidants were also introduced. The primary mechanism of oxidative pretreatment to enhance cellulose digestibility is delignification, especially in alkaline medium, thus eliminating the physical blocking and non-productive adsorption of enzymes by lignin. However, the cost of oxidative delignification as a pretreatment is still too expensive to be applied at large scale at present. Efforts should be made particularly to reduce the cost of oxidants, or explore valuable products to obtain more revenue.


Assuntos
Biocombustíveis , Lignina , Biomassa , Hidrólise , Lignina/química , Celulose/química , Estresse Oxidativo , Oxidantes
18.
Bioresour Technol ; 367: 128242, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36332855

RESUMO

In this study, an ammonia fiber expansion (AFEX)-assisted deep eutectic solvent (DES) pretreatment method was developed for the rapid separation of wheat straw fractions, which reduced the pretreatment time for DES and improved the pretreatment efficiency. This study describes the feasibility of the AFEX-assisted DES pretreatment in terms of both progressive and parallel relationships and analyzes the subsequent enzymatic effect in generating glucose from cellulose. Ammonia fiber expansion-assisted DES one-pot pretreatment at 120 °C, for 1.5 h resulted in an enzymatic efficiency of 98.0 ± 3.1 %. Moreover, the enzyme efficiency remained greater than 85 % after three recovery cycle experiments. The comparison between regenerated-lignin (d-lignin) and alkaline-lignin showed that regenerated lignin has a lower molecular weight and belongs to para-hydroxy-phenyl-guaiacyl-syringyl (H-G-S) type lignin. This study developed is a green and efficient pretreatment process with great potential in the separation and utilization of biomass fractions.


Assuntos
Amônia , Lignina , Triticum , Solventes Eutéticos Profundos , Hidrólise , Carboidratos , Biomassa , Fibras na Dieta , Solventes
19.
Bioresour Technol ; 367: 128252, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36334864

RESUMO

Enzymatic hydrolysis is the key step limiting the efficiency of the biorefinery of lignocellulosic biomass. Enzymes involved in enzymatic hydrolysis and their interactions with biomass should be comprehended to form the basis for looking for strategies to improve process efficiency. This article updates the contemporary research on the properties of key enzymes in the lignocellulose biorefinery and their interactions with biomass, adsorption, and hydrolysis. The advanced analytical techniques to track the interactions for exploiting mechanisms are discussed. The challenges and prospects for future research are outlined.


Assuntos
Lignina , Biomassa , Lignina/metabolismo , Hidrólise , Adsorção
20.
Bioresour Technol ; 367: 128281, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36370945

RESUMO

As the global demand for sustainable energy increases, lignocellulosic (such as agricultural residues, forest biomass, municipal waste, and dedicated energy crops) and algal (including macroalgae and microalgae) biomass have attracted considerable attention, because of their high availability of carbohydrates. This is a potential feedstock to produce biochemical and bioenergy. Pretreatment of biomass can disrupt their complex structure, increasing conversion efficiency and product yield. Therefore, this review comprehensively discusses recent advances in different pretreatments (physical, chemical, physicochemical, and biological pretreatments) for lignocellulosic and algal biomass and their biorefining methods. Life cycle assessment (LCA) which enables the quantification of the environmental impact assessment of a biorefinery also be introduced. Biorefinery processes such as raw material acquisition, extraction, production, waste accumulation, and waste conversion are all monitored under this concept. Nevertheless, there still exist some techno-economic barriers during biorefinery and extensive research is still needed to develop cost-effective processes.


Assuntos
Biocombustíveis , Lignina , Biomassa , Lignina/metabolismo , Produtos Agrícolas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...