RESUMO
Abstract Mammals have a limited capacity to regenerate their tissues and organs. One of the mechanisms associated with natural regeneration is dedifferentiation. Several small molecules such as vitamin C and growth factors could improve reprogramming efficiency. In this study, the NTERA2-D1 (NT2) cells were induced towards differentiation (NT2-RA) with 10-5 M retinoic acid (RA) for three days and then subjected to various amounts of vitreous humor (VH). Results show that the growth rate of these cells was reduced, while this rate was partly restored upon treatment with VH (NT2-RA-VH). Cell cycle analysis with PI method also showed that the numbers of cells at the S phase of the cell cycle in these cells were increased. The levels of SSEA3 and TRA-1-81 antigens in NT2-RA were dropped but they increased in NT2- RA-VH to a level similar to the NT2 cells. The level of SSEA1 had an opposite pattern. Expression of OCT4 gene dropped after RA treatment, but it was recovered in NT2-RA-VH cells. In conclusion, we suggest VH as a potent mixture for improving the cellular reprogramming leading to dedifferentiation.
Resumo Os mamíferos têm uma capacidade limitada de regenerar seus tecidos e órgãos. Um dos mecanismos associados à regeneração natural é a desdiferenciação. Várias moléculas pequenas, como vitamina C e fatores de crescimento, podem melhorar a eficiência da reprogramação. Neste estudo, as células NTERA2-D1 (NT2) foram induzidas à diferenciação (NT2-RA) com ácido retinóico (RA) 10-5 M por três dias e depois submetidas a várias quantidades de humor vítreo (VH). Os resultados mostram que a taxa de crescimento dessas células foi reduzida, enquanto essa taxa foi parcialmente restaurada após o tratamento com VH (NT2-RA-VH). A análise do ciclo celular com o método PI também mostrou que o número de células na fase S do ciclo celular nessas células estava aumentado. Os níveis de antígenos SSEA3 e TRA-1-81 em NT2-RA diminuíram, mas aumentaram em NT2-RA-VH a um nível semelhante ao das células NT2. O nível de SSEA1 teve um padrão oposto. A expressão do gene OCT4 diminuiu após o tratamento com AR, mas foi recuperado em células NT2-RA-VH. Em conclusão, sugerimos o VH como uma mistura potente para melhorar a reprogramação celular levando à desdiferenciação.
Assuntos
Humanos , Corpo Vítreo , Proliferação de Células , Desdiferenciação Celular , Tretinoína , Células Tumorais Cultivadas , Diferenciação Celular , Divisão Celular , Linhagem CelularRESUMO
In the last decade, the kynurenine pathway, which is the primary metabolic route for tryptophan (TRP) catabolism, has sparked great interest in the pharmaceutical sciences due to its role in immune regulation and cancer immunoediting. In this context, the development of cell-based assays might represent a tool to: i) characterize the cell secretome according to cell types; ii) gain more insight into the role of kynurenines in different disease scenarios; iii) screen hIDO1 (human indoleamine 2,3-dioxygenase) inhibitors and evaluate their effect on downstream TRP-catabolizing enzymes. This paper reports a validated Liquid Chromatography with tandem mass spectrometry (LC-MS/MS) method to simultaneously quantify TRP, L-kynurenine (KYN), xanthurenic acid (XA), 3-hydroxykynurenine (3OHKYN), kynurenic acid (KA), 3-hydroxyanthranilic acid (3OHAA), anthranilic acid (AA), 5-hydroxytryptamine (serotonin, 5HT) and tryptamine (TRYP) in Dulbecco's Modified Eagle and Eagle's Minimum Essential Media (DMEM and EMEM, respectively). The quantitative method was validated according to FDA, ICH and EMA guidelines, later applied: i) to assess the impact of selective inhibition of hIDO1 or hTDO (human tryptophan 2,3-dioxygenase) on the kynurenine pathway in A375 (melanoma), MDA-MB-231 (breast cancer), and U87 (glioblastoma) cell lines using multivariate analysis (MVA); ii) to determine the IC50 values of both well-known (i.e., epacadostat, linrodostat) and the novel hIDO1 inhibitor (i.e., BL5) in the aforementioned cell lines. The proposed LC-MS/MS method is reliable and robust. Furthermore, it is highly versatile and suitable for applications in the preclinical drug research and in vitro assays.
Assuntos
Neoplasias da Mama , Triptofano , Humanos , Feminino , Triptofano/metabolismo , Cinurenina/metabolismo , Cromatografia Líquida/métodos , Triptofano Oxigenase , Espectrometria de Massas em Tandem/métodos , Linhagem Celular , Indolamina-Pirrol 2,3,-DioxigenaseRESUMO
Fish cell-based assays represent potential alternative methods to vertebrates' use in ecotoxicology. In this study, we evaluated the cytotoxicity of thirteen chemicals, chosen from OECD guidelines 236 and 249, in two zebrafish cell lines (ZEM2S and ZFL). We aimed to investigate whether the IC50 values obtained by viability assays (alamar blue, MTT, CFDA-AM, and neutral red) can predict the LC50 values of Acute Fish Toxicity (AFT) test and Fish Embryo Toxicity (FET) test. There was no significant difference between the values obtained by the different viability assays. ZFL strongly correlated with AFT and FET tests (R2AFT = 0.73-0.90; R2FET48h = 0.79-0.90; R2FET96h = 0.76-0.87), while ZEM2S correlated better with the FET test (48h) (R2 = 0.70-0.86) and weakly with AFT and FET tests (96h) (R2AFT = 0.68-0.74 and R2FET96h = 0.62-0.64). The predicted LC50 values allowed the correct categorization of the chemicals in 76.9% (AFT test) - 90.9% (FET test) using ZFL and in 30.7% (AFT test) - 63.6% (FET test) using ZEM2S considering the US EPA criterion for classifying acute aquatic toxicity. ZFL is a promising cell line to be used in alternative methods to adult fish and fish embryos in ecotoxicity assessments, and the method performed in 96-well plates is advantageous in promoting high-throughput cytotoxicity assessment.
Assuntos
Embrião não Mamífero , Peixe-Zebra , Animais , Embrião não Mamífero/metabolismo , Testes de Toxicidade Aguda/métodos , Fígado , Linhagem CelularRESUMO
Polypyrrole (Ppy) is an electroconductive polymer used in various applications, including in vitro experiments with cell cultures under electrical stimulation (ES). Ppy can be applied in various forms and most importantly, it is biocompatible with cells. Ppy specifically directs ES to cells, which makes Ppy a potential polymer for the development of novel technologies for targeted tissue regeneration. The high potential of ES in combination with different Ppy-based systems, such as hydrogels, scaffolds, or Ppy-layers is advantageous to stimulate cellular differentiation towards neurogenic, cardiac, muscle, and osteogenic lineages. Different in-house devices and the principles of ES application used to stimulate cellular functions are reviewed and summarized. The focus of this review is to observe the most relevant studies and their in-house techniques regarding the application of Ppy-based materials for the use of bone, neural, cardiac, and muscle tissue regeneration under ES. Different types of Ppy materials, such as Ppy particles, layers/films, membranes, and 3D-shaped synthetic and natural scaffolds, as well as combining Ppy with different active molecules are reviewed.
Assuntos
Polímeros , Pirróis , Polímeros/química , Pirróis/farmacologia , Pirróis/química , Linhagem Celular , Estimulação ElétricaRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Cisplatin (CP) results in acute kidney injury (AKI) and negatively affects patients' therapy and survival. The dried rhizome of Gastrodia elata Blume has been used to treat clinical kidney diseases. Gastrodin (GAS) is an active ingredient of the G. elata tuber. It is unknown whether GAS can alleviate CP-induced AKI. AIM OF THE STUDY: This study aimed to investigate whether GAS, an active ingredient of G. elata Blume, can alleviate CP-induced AKI and to explore its underlying mechanisms. MATERIALS AND METHODS: Experiments were conducted with a CP-induced AKI mouse model and an immortalized human renal tubular epithelial cell line (HK-2). Serum creatinine, Periodic acid-Schiff staining, tissue iron, glutathione, malondialdehyde, and 4-Hydroxynonenal were detected in serum and kidney samples to observe whether GAS inhibits CP-induced tubule ferroptosis. The drug target was verified by detecting the effects of GAS on sirtuin-1 (SIRT1) activity in vitro. Transcriptional regulation of glutathione peroxidase 4 (GPX4) by forkhead box O3A (FOXO3A) was verified by siRNA knockdown, overexpression, and chromatin immunoprecipitation. The effects of FOXO3A, SIRT1, and GAS on CP-induced ferroptosis were measured with propidium iodide, dihydroethidium, monobromobimane, and dipyrromethene boron difluoride staining in HK-2 cells. The relationship between GAS and the SIRT1/FOXO3A/GPX4 pathway was studied using Western blotting. RESULTS: GAS treatment inhibited CP-induced reactive oxygen species, lipid peroxidation, and tubule death in the cell and animal models. GAS activated SIRT1 in vitro. The SIRT1 inhibitor blocked the protective role of GAS in reducing lipid peroxidation in HK-2 cells. FOXO3A transcriptionally regulated GPX4 expression and inhibited CP-induced cell ferroptosis. Compared to CP-damaged mouse kidneys, GAS-treated mice demonstrated significantly increased SIRT1 and GPX4 expression levels, decreased CP-induced acetylation of FOXO3A, and inhibited lipid peroxidation and cell death. CONCLUSIONS: GAS alleviated CP-induced AKI by inhibiting ferroptosis via the SIRT1/FOXO3A/GPX4 signaling pathway. The results offer new insights into the development of new anti-AKI drugs from traditional Chinese medicine.
Assuntos
Injúria Renal Aguda , Ferroptose , Sirtuínas , Humanos , Camundongos , Animais , Cisplatino/toxicidade , Sirtuína 1/metabolismo , Sirtuínas/metabolismo , Linhagem Celular , Transdução de Sinais , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismoRESUMO
Injury to the renal tubular epithelium has emerged as a leading factor underlying the formation of kidney stones. Indeed, epithelial cell damage contributes to the adherence and aggregation of crystals, thereby accelerating the formation of renal stones. Meanwhile, exosomes play an instrumental role in cellular communication, including DNA, RNA, mRNA, etc. In this study, homogenous cells were treated with exosomes derived from damaged cells in an attempt to establish "positive feedback" of cell damage, and the desired results were achieved. To begin, a serum-free medium and supersaturated concentrations of oxalate were added to the HK-2 cell line, and then exosomes were isolated from the two groups for analysis and comparison, and the autophagy-related gene Ambra1 (autophagy and beclin-1 regulator 1) was detected. Subsequently, normal HK-2 cells were treated with exosomes, and the related indexes of autophagy, ferroptosis and mitophagy were determined. Thereafter, Ambra1 was knocked down in exosome-derived HK-2 cells, resulting in the down-regulation of Ambra1 expression in exosomes produced by HK-2 cells following oxalate intervention. Thereafter, the ability of exosomes to stimulate autophagy, mitophagy and ferroptosis was re-evaluated in HK-2 cells after Ambra1 knockdown. The results corroborated that exosomes secreted by oxalate-treated HK-2 can directly elevate autophagy, ferroptosis and mitophagy levels in normal cells, and this effect was significantly mitigated following Ambra1 knockdown within exosomes. Meanwhile, exosomes-induced autophagy and ferroptosis were alleviated after knockdown of beclin-1 in recipient HK-2 cells. These results further suggest that beclin-1 plays a critical role in the process of exosome-induced autophagy-ferroptosis.
Assuntos
Exossomos , Ferroptose , Cálculos Renais , Humanos , Autofagia , Proteína Beclina-1/metabolismo , Exossomos/metabolismo , Cálculos Renais/metabolismo , Cálculos Renais/patologia , Mitofagia , Oxalatos/farmacologia , Linhagem CelularRESUMO
Nitrogen-doped graphene (C2 N), a novel graphene-based materials, has been proposed as a potential alternative to graphene oxide (GO) in biomedical applications. However, due to the challenges in synthesizing C2 N, reports in the biomedical field are currently rare. Here, we have modified the reported procedure and successfully synthesized C2 N nanoparticles at 120°C, which we refer to as C2 N-120. The toxicity and biocompatibility of GO and C2 N-120 were evaluated using a mouse model injected with GO/C2 N-120 via the tail vein, as well as cell models treated with GO/C2 N-120. In vivo studies revealed that GO/C2 N-120 showed similar distribution patterns after tail vein injection. The liver, spleen, and lung are the major nanoparticle uptake organs of GO and C2 N-120. However, GO deposition in the major nanoparticle uptake organs was more significant than that of C2 N-120. In addition, GO deposition caused structural abnormalities, increased apoptotic cells, and enhanced macrophage infiltration whereas C2 N-120 exhibited fewer adverse effects. In vitro experiments were conducted using different cell lines treated with GO/C2 N-120. Unlike GO which induced mitochondrial damage, oxidative stress, inflammatory response, autophagic flux blockage and cell apoptosis, C2 N-120 showed lower cytotoxicity in cell models. Our data demonstrated that C2 N-120 exhibits higher biocompatibility than GO, both in vivo and in vitro, suggesting its potential for biomedical application in the future.
Assuntos
Grafite , Nanopartículas , Grafite/farmacologia , Grafite/química , Apoptose , Linhagem Celular , Nanopartículas/química , Óxidos/farmacologia , Óxidos/químicaRESUMO
Acute toxicity determination is essential in the ecological risk assessment. Traditionally, acute toxicity testing requires substantial numbers of animals and uses death as an apical end point which requires large number of experimental animals and takes days to obtain the results. Application of fish cell lines can provide a possible alternative to traditional acute toxicity test. However, cell-based assay may show several orders of magnitude less sensitive than the animal-based results. Some changes in cellular organelles could have the sensitivity in responding to pollutants. For this reason, a cell-based fluorescent assay was developed using rabbitfish fin cells as model and fluorescent probes to visualize the subcellular responses. The subcellular responses under sewage effluents exposure were captured by confocal microscopy. These cellular responses were quantified and several subcellular indexes represented the toxicity. The optimized assay was then used to determine the toxicity of sewage effluents displaying toxicity to aquatic animals. Through visualization of cellular responses, we further screened several cellular indexes including lysosomal number and mitochondrial size which had a good linear relationship with sewage effluents content. Besides, these cellular indexes had a good agreement between in vivo and in vitro results, demonstrating the accuracy of cellular parameters in representing the acute toxicity of sewage effluents. The developed cell-based testing assay presented here has the characteristics of a faster and cheaper method, which does not require complex facilities and large amount of testing samples. The developed assay may be further applied in predicting the acute toxicity to sewage effluents.
Assuntos
Esgotos , Poluentes Químicos da Água , Animais , Esgotos/efeitos adversos , Linhagem Celular , Testes de Toxicidade Aguda , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análiseRESUMO
To identify functional differences between vertebrate clathrin light chains (CLCa or CLCb), phenotypes of mice lacking genes encoding either isoform were characterised. Mice without CLCa displayed 50% neonatal mortality, reduced body weight, reduced fertility, and â¼40% of aged females developed uterine pyometra. Mice lacking CLCb displayed a less severe weight reduction phenotype compared with those lacking CLCa and had no survival or reproductive system defects. Analysis of female mice lacking CLCa that developed pyometra revealed ectopic expression of epithelial differentiation markers (FOXA2 and K14) and a reduced number of endometrial glands, indicating defects in the lumenal epithelium. Defects in lumen formation and polarity of epithelial cysts derived from uterine or gut cell lines were also observed when either CLCa or CLCb were depleted, with more severe effects from CLCa depletion. In cysts, the CLC isoforms had different distributions relative to each other, although they converge in tissue. Together, these findings suggest differential and cooperative roles for CLC isoforms in epithelial lumen formation, with a dominant function for CLCa.
Assuntos
Cistos , Piometra , Humanos , Feminino , Animais , Camundongos , Cadeias Leves de Clatrina/genética , Cadeias Leves de Clatrina/metabolismo , Linhagem Celular , Isoformas de ProteínasRESUMO
Detection and imaging of cell membrane receptor proteins have gained widespread interest in recent years. However, recognition based on a single biomarker can induce false positive feedback, including off-target phenomenon caused by the absence of tumor-specific antigens. In addition, nucleic acid probes often cause nonspecific and undesired cell internalization during cell imaging. In this work, we constructed a logic gate DNA nano-platform (LGDP) for single-molecule imaging of cell membrane proteins to synergistically diagnose cancer cells. The traffic light-like color response of LGDP facilitates the precise discrimination among different cell lines. Combined with single molecule technology, the target proteins were qualitatively and quantitatively analyzed synergistically. Logic-gated recognition integrated in aptamer-functionalized molecular machines will prompt fast cells analysis, laying the foundation of cancer early diagnosis and treatment.
Assuntos
DNA , Neoplasias , DNA/metabolismo , Oligonucleotídeos , Nanotecnologia , Linhagem Celular , Receptores de Superfície Celular , Neoplasias/diagnóstico por imagemRESUMO
CFTR is a membrane protein that functions as an ion channel. Mutations that disrupt its biosynthesis, trafficking or function cause cystic fibrosis (CF). Here, we present a novel in vitro model system prepared using CRISPR/Cas9 genome editing with endogenously expressed WT-CFTR tagged with a HiBiT peptide. To enable the detection of CFTR in the plasma membrane of live cells, we inserted the HiBiT tag in the fourth extracellular loop of WT-CFTR. The 11-amino acid HiBiT tag binds with high affinity to a large inactive subunit (LgBiT), generating a reporter luciferase with bright luminescence. Nine homozygous clones with the HiBiT knock-in were identified from the 182 screened clones; two were genetically and functionally validated. In summary, this work describes the preparation and validation of a novel reporter cell line with the potential to be used as an ultimate building block for developing unique cellular CF models by CRISPR-mediated insertion of CF-causing mutations.
Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Sistemas CRISPR-Cas/genética , Fibrose Cística/genética , Fibrose Cística/metabolismo , Membrana Celular/metabolismo , Linhagem CelularRESUMO
The safe and efficient delivery of nucleic acids is crucial for both clinical applications of gene therapy and pre-clinical laboratory research. Such delivery strategies rely on vectors to condense nucleic acid payloads and escort them into the cell without being degraded in the extracellular environment; however, the construction and utilization of these vectors can be difficult and time-consuming. Here, we detail the steps involved in the rapid, laboratory-scale production and assessment of a versatile, nucleic acid delivery vehicle, known as the lipoproteoplex. In this chapter, we outline: (1) the recombinant synthesis and subsequent purification of the supercharged coiled-coil protein component known as N8; (2) the synthesis of cationic liposomes from dioleoyl-3-trimethylammonium propane (DOTAP) and sodium cholate; (3) and finally a protocol for the delivery of a model siRNA cargo into a cultured cell line.
Assuntos
Lipossomos , Ácidos Nucleicos , Linhagem Celular , Terapia Genética/métodos , Ácidos Graxos Monoinsaturados , Transfecção , Compostos de Amônio QuaternárioRESUMO
Many viruses have the ability to cause cells to fuse into large multi-nucleated cells, known as syncytia. While the existence of syncytia has long been known and its importance in helping spread viral infection within a host has been understood, few mathematical models have incorporated syncytia formation or examined its role in viral dynamics. This review examines mathematical models that have incorporated virus-mediated cell fusion and the insights they have provided on how syncytia can change the time course of an infection. While the modeling efforts are limited, they show promise in helping us understand the consequences of syncytia formation if future modeling efforts can be coupled with appropriate experimental efforts to help validate the models.
Assuntos
Células Gigantes , Vírus , Linhagem Celular , Modelos TeóricosRESUMO
Wolbachia, an intracellular bacterium of arthropods, is an ideal candidate for use in the biological control of insect pests. The inability of Wolbachia to grow in the extracellular environment requires maintenance in live insects or insect cell cultures. Growing and adapting high-density Wolbachia in the targeted host cells improves the possibility of cross-species transinfection. Here, we describe a method for the establishment of a primary cell culture from insect embryos and its transinfection with Wolbachia.
Assuntos
Wolbachia , Animais , Insetos , Linhagem CelularRESUMO
Removal of Wolbachia from infected insects is required in most experimental settings when the effects of Wolbachia on biological traits, pathogen blocking, reproduction, and fitness are assessed. This is to ensure that the genetic backgrounds of Wolbachia-infected and uninfected insects are the same. Here, we describe methodologies used for the elimination of Wolbachia from insects and insect cell lines with antibiotics.
Assuntos
Aedes , Wolbachia , Animais , Antibacterianos/farmacologia , Wolbachia/genética , Linhagem Celular , Técnicas de Cultura de CélulasRESUMO
Eventual genetic engineering of Wolbachia will require maximizing recovery of infectious bacteria, maintaining Wolbachia in a viable state for efficient manipulation, and reinfection of host cells for propagation and expansion of recombinant progeny. Challenges to manipulating Wolbachia arise from its obligate intracellular lifestyle and inability to divide outside a host cell, requiring modifications of standard bacteriological methods. The Aedes albopictus C7-10 cell line has proven to be a good recipient for the Wolbachia supergroup B strain, wStri, from the planthopper Laodelphax striatellus; the persistently infected C/wStri1 population provides a source of wStri inoculum that can be used systematically to explore conditions that increase yields of infectious material from input Wolbachia and identify conditions conducive to Wolbachia replication. After reintroduction into naive, uninfected C7-10 cells, wStri recovery, relative to the input inoculum, is influenced by diverse conditions, such as the cell cycle arrest that follows treatment of infected host cells with the insect steroid hormone, 20-hydroxyecdysone. Pretreatment of recipient cells with mitomycin C, which cross-links DNA and inhibits host cell replication, can improve recovery from low levels of input Wolbachia. This protocol describes preparation of infectious inoculum from Aedes albopictus C/wStri1 cells and amplification of Wolbachia in mitomycin C-treated, uninfected C7-10 cells, followed by a brief description of conditions used for various small-scale manipulations of Wolbachia in infected cells.
Assuntos
Aedes , Wolbachia , Animais , Wolbachia/genética , Mitomicina , Linhagem CelularRESUMO
Natural preservatives are causing a rethinking of current preservation means. As a sweetener resource, exploitation of Stevia rebaudiana leaves (SRLs) is still restricted due to human conventional cognition. Herein, Lactobacillus plantarum fermented SRLs containing diverse free secondary metabolites derived from microbial deglycosylation and bioenzymatic decomposition were investigated. The apparent resistance to typical foodborne bacteria (Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Pseudomoas aeruginosa, Bacillus amyloliquefaciens) by fermented SRLs and their extracts were validated. The metabolite diversity and in-depth organic solvent extraction gave the possibilities for better antimicrobial actions, anti-HepG2/SGC-7901 cells in vitro in contrast with aqueous extract of unfermented SRLs. Crucially, compound identification and attribution revealed that fermentation products may be maximally contributing to antimicrobial and antitumor mechanisms rather than intrinsic plant and/or microbial components. Additionally, pork sausage models with 15 g/kg ethyl acetate extract as a preservative candidate presented preferred storage characteristics (21 days and 37 °C) compared to those without ethyl acetate extract, e.g. the minimal total plate count (3.86 ± 0.27 log CFU/g), peroxsignide value (8.02 ± 0.92 meq/kg), and acid value (2.01 ± 0.04 (KOH)/(mg/g)).
Assuntos
Lactobacillus plantarum , Neoplasias , Stevia , Humanos , Conservantes Farmacêuticos , Linhagem Celular , Escherichia coliRESUMO
We present a simple and quantitative assay system that accurately models human endothelium by use of primary human umbilical vein endothelial cells (HUVECs) in cell culture plates coated with gelatin, a matrix that mimics basal lamina, the matrix that is tightly associated with the vascular endothelium and is critical for its proper function. We describe using this system to quantitatively measure adhesion of the inflammatory cells - monocytic THP-1 cell line to the HUVEC monolayer. The THP-1 cells are fluorescently labeled which allows to quantify the number of the fluorescent THP-1 cells adhering to the endothelium under a microscope and the level of florescence - a quantitative measure of the number of adhering fluorescent THP-1 cells using a fluorescent plate reader. After optimization, we were able to detect increased adhesion of the THP-1 cells to the endothelium in response to the inflammatory cytokine TNFα in a dose-dependent manner like what has been observed in vivo.
Assuntos
Células Endoteliais , Monócitos , Humanos , Adesão Celular , Células Endoteliais/fisiologia , Linhagem Celular , Monócitos/metabolismo , Endotélio Vascular/metabolismo , Células CultivadasRESUMO
INTRODUCTION: Skin cancer is the most common type of cancer caused by the uncontrolled growth of abnormal cells in the epidermis and the outermost skin layer. AIM: This study aimed to study the anti-skin cancer potential of [6]-Gingerol and 21 related structural analogs using in vitro and in silico studies. METHODS: The ethanolic crude extract of the selected plant was subjected to phytochemical and GC-MS analysis to confirm the presence of the [6]-gingerol. The anticancer activity of the extract was evaluated by MTT (3-[4, 5-dimethylthiazol-2-y]-2, 5-diphenyl tetrazolium bromide) assay using the A431 human skin adenocarcinoma cell line. RESULTS: The GC-MS analysis confirmed the presence of [6]-Gingerol compound, and its promising cytotoxicity IC50 was found at 81.46 ug/ml in the MTT assay. Furthermore, the in silico studies used [6]-Gingerol and 21 structural analogs collected from the PubChem database to investigate the anticancer potential and drug-likeliness properties. Skin cancer protein, DDX3X, was selected as a target that regulates all stages of RNA metabolism. It was docked with 22 compounds, including [6]-Gingerol and 21 structural analogs. The potent lead molecule was selected based on the lowest binding energy value. CONCLUSION: Thus, the [6]-Gingerol and its structure analogs could be used as lead molecules against skin cancer and future drug development process.
Assuntos
Gengibre , Neoplasias Cutâneas , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Gengibre/química , Linhagem Celular , Neoplasias Cutâneas/tratamento farmacológicoRESUMO
Abnormal expression of myotubularin-related protein 2 (MTMR2) has been identified in certain types of cancer, leading to varying effects on tumor genesis and progression. However, the various biological significances of MTMR2 in hepatocellular carcinoma (HCC) have not been systematically and comprehensively studied. The aim of this study was to explore the role of MTMR2 in HCC. We obtained the raw data from Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Afterward, we analyzed the data using R and cBioPortal. We investigated the connection between MTMR2 and its expression, prognosis, clinical significance, methylation, genetic alterations, tumor microenvironment (TME), tumor mutation burden (TMB), and drug reactivity in HCC patients. MTMR2 expression levels in HCC cells were validated through western blotting and RT-qPCR. MTMR2 exhibits high levels of expression across a wide range of cancer types, including HCC. MTMR2 is diagnostically valuable in detecting HCC, with its up-regulated expression often being indicative of poor prognosis among HCC patients. The in vitro experiments confirmed elevated MTMR2 expression in HepG2, HUH-7, and MHCC-97H cells. Univariate and multivariate Cox analysis demonstrated that MTMR2 was an independent prognostic factor in HCC patients. The cg20195272 site has the highest degree of methylation in MTMR2, and it is positively correlated with MTMR2 expression. Patients with high levels of methylation at the cg20195272 site show poor prognosis. Analysis of the TME indicates that high expression of MTMR2 is associated with elevated ESTIMATE score and that MTMR2 expression correlates positively with infiltration by resting memory CD4 T cells, activated dendritic cells, as well as several immune checkpoints. There is a negative correlation between MTMR2 expression and TMB, and drug sensitivity analyses have shown that higher MTMR2 expression is associated with lower IC50 values. This study indicates that increased expression of MTMR2 may play a crucial role in the occurrence, progression, diagnosis, prognostic prediction and drug therapy of HCC.