Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.080
Filtrar
1.
Nat Commun ; 12(1): 360, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452252

RESUMO

Endogenous attention is the cognitive function that selects the relevant pieces of sensory information to achieve goals and it is known to be controlled by dorsal fronto-parietal brain areas. Here we expand this notion by identifying a control attention area located in the temporal lobe. By combining a demanding behavioral paradigm with functional neuroimaging and diffusion tractography, we show that like fronto-parietal attentional areas, the human posterior inferotemporal cortex exhibits significant attentional modulatory activity. This area is functionally distinct from surrounding cortical areas, and is directly connected to parietal and frontal attentional regions. These results show that attentional control spans three cortical lobes and overarches large distances through fiber pathways that run orthogonally to the dominant anterior-posterior axes of sensory processing, thus suggesting a different organizing principle for cognitive control.


Assuntos
Atenção/fisiologia , Lobo Frontal/fisiologia , Lobo Parietal/fisiologia , Lobo Temporal/fisiologia , Adulto , Mapeamento Encefálico , Imagem de Tensor de Difusão , Feminino , Lobo Frontal/diagnóstico por imagem , Voluntários Saudáveis , Humanos , Masculino , Percepção de Movimento/fisiologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Lobo Parietal/diagnóstico por imagem , Estimulação Luminosa/métodos , Lobo Temporal/diagnóstico por imagem , Adulto Jovem
2.
PLoS One ; 15(12): e0243430, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33315877

RESUMO

A large number of psychophysical and neurophysiological studies have demonstrated that smooth pursuit eye movements are tightly related to visual motion perception. This could be due to the fact that visual motion sensitive cortical areas such as meddle temporal (MT), medial superior temporal (MST) areas are involved in motion perception as well as pursuit initiation. Although the directional-discrimination and perceived target velocity tasks are used to evaluate visual motion perception, it is still uncertain whether the speed of visual motion perception, which is determined by visuomotor reaction time (RT) to a small target, is related to pursuit initiation. Therefore, we attempted to determine the relationship between pursuit latency/acceleration and the visual motion RT which was measured to the visual motion stimuli that moved leftward or rightward. The participants were instructed to fixate on a stationary target and press one of the buttons corresponding to the direction of target motion as soon as possible once the target starts to move. We applied five different visual motion stimuli including first- and second-order motion for smooth pursuit and visual motion RT tasks. It is well known that second-order motion induces lower retinal image motion, which elicits weaker responses in MT and MST compared to first-order motion stimuli. Our results showed that pursuit initiation including latency and initial eye acceleration were suppressed by second-order motion. In addition, second-order motion caused a delay in visual motion RT. The better performances in both pursuit initiation and visual motion RT were observed for first-order motion, whereas second-order (theta motion) induced remarkable deficits in both variables. Furthermore, significant Pearson's correlation and within-subjects correlation coefficients were obtained between visual motion RT and pursuit latency/acceleration. Our findings support the suggestion that there is a common neuronal pathway involved in both pursuit initiation and the speed of visual motion perception.


Assuntos
Movimentos Oculares/fisiologia , Neurônios/fisiologia , Acompanhamento Ocular Uniforme/fisiologia , Córtex Visual/fisiologia , Adulto , Animais , Feminino , Humanos , Macaca mulatta/fisiologia , Masculino , Percepção de Movimento/fisiologia , Estimulação Luminosa , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Lobo Temporal/fisiologia , Percepção Visual/fisiologia , Adulto Jovem
3.
Nat Commun ; 11(1): 4518, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908146

RESUMO

The human brain is specialized for face processing, yet we sometimes perceive illusory faces in objects. It is unknown whether these natural errors of face detection originate from a rapid process based on visual features or from a slower, cognitive re-interpretation. Here we use a multifaceted approach to understand both the spatial distribution and temporal dynamics of illusory face representation in the brain by combining functional magnetic resonance imaging and magnetoencephalography neuroimaging data with model-based analysis. We find that the representation of illusory faces is confined to occipital-temporal face-selective visual cortex. The temporal dynamics reveal a striking evolution in how illusory faces are represented relative to human faces and matched objects. Illusory faces are initially represented more similarly to real faces than matched objects are, but within ~250 ms, the representation transforms, and they become equivalent to ordinary objects. This is consistent with the initial recruitment of a broadly-tuned face detection mechanism which privileges sensitivity over selectivity.


Assuntos
Reconhecimento Facial/fisiologia , Ilusões/fisiologia , Modelos Neurológicos , Lobo Temporal/fisiologia , Córtex Visual/fisiologia , Adolescente , Adulto , Mapeamento Encefálico , Simulação por Computador , Feminino , Humanos , Imagem por Ressonância Magnética , Magnetoencefalografia , Masculino , Neuroimagem , Estimulação Luminosa , Tempo de Reação , Lobo Temporal/diagnóstico por imagem , Córtex Visual/diagnóstico por imagem , Adulto Jovem
4.
Nat Commun ; 11(1): 3886, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753603

RESUMO

The ability to recognize written letter strings is foundational to human reading, but the underlying neuronal mechanisms remain largely unknown. Recent behavioral research in baboons suggests that non-human primates may provide an opportunity to investigate this question. We recorded the activity of hundreds of neurons in V4 and the inferior temporal cortex (IT) while naïve macaque monkeys passively viewed images of letters, English words and non-word strings, and tested the capacity of those neuronal representations to support a battery of orthographic processing tasks. We found that simple linear read-outs of IT (but not V4) population responses achieved high performance on all tested tasks, even matching the performance and error patterns of baboons on word classification. These results show that the IT cortex of untrained primates can serve as a precursor of orthographic processing, suggesting that the acquisition of reading in humans relies on the recycling of a brain network evolved for other visual functions.


Assuntos
Evolução Biológica , Macaca mulatta/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Lobo Temporal/fisiologia , Animais , Mapeamento Encefálico , Tomada de Decisões , Imagem por Ressonância Magnética , Masculino , Estimulação Luminosa/métodos , Leitura , Lobo Temporal/diagnóstico por imagem
5.
Proc Natl Acad Sci U S A ; 117(37): 23011-23020, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32839334

RESUMO

The fusiform face area responds selectively to faces and is causally involved in face perception. How does face-selectivity in the fusiform arise in development, and why does it develop so systematically in the same location across individuals? Preferential cortical responses to faces develop early in infancy, yet evidence is conflicting on the central question of whether visual experience with faces is necessary. Here, we revisit this question by scanning congenitally blind individuals with fMRI while they haptically explored 3D-printed faces and other stimuli. We found robust face-selective responses in the lateral fusiform gyrus of individual blind participants during haptic exploration of stimuli, indicating that neither visual experience with faces nor fovea-biased inputs is necessary for face-selectivity to arise in the lateral fusiform gyrus. Our results instead suggest a role for long-range connectivity in specifying the location of face-selectivity in the human brain.


Assuntos
Face/fisiologia , Reconhecimento Facial/fisiologia , Lobo Temporal/fisiologia , Percepção Visual/fisiologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Imagem por Ressonância Magnética/métodos , Masculino , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa/métodos , Reconhecimento Psicológico/fisiologia
6.
PLoS One ; 15(8): e0236897, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760113

RESUMO

Advancing age affects the recruitment of task related neural resources thereby changing the efficiency, capacity and use of compensatory processes. With advancing age, brain activity may therefore increase within a region or be reorganized to utilize different brain regions. The different brain regions may be exclusive to old adults or accessible to young and old alike, but non-optimal. Interference during verbal working memory information retention recruits parahippocampal brain regions in young adults similar to brain activity recruited by old adults in the absence of external interference. The current work tests the hypothesis that old adults recruit neural resources to combat increases in age-related intrinsic noise that young adults recruit during high levels of interference during information retention. This experiment administered a verbal delayed item recognition task with low and high levels of an interfering addition task during information maintenance. Despite strong age-related behavioral effects, brain imaging results demonstrated no significant interaction effects between age group and the interference or memory tasks. Significant effects were only found for the interaction between interference level and memory load within the inferior frontal cortex, supplementary motor cortex and posterior supramarginal regions. Results demonstrate that neural resources were shared when facing increasing memory load and interference. The combined cognitive demands resulted in brain activity reaching a neural capacity limit which was similar for both age groups and which brain activation did not increase above. Despite significant behavioral differences the neural capacity limited the detection of age group differences in brain activity.


Assuntos
Encéfalo/fisiologia , Memória , Adulto , Envelhecimento/fisiologia , Feminino , Humanos , Masculino , Córtex Pré-Frontal/fisiologia , Tempo de Reação , Lobo Temporal/fisiologia
7.
PLoS Biol ; 18(8): e3000800, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32776945

RESUMO

Studies of neural processes underlying delay of gratification usually focus on prefrontal networks related to curbing affective impulses. Here, we provide evidence for an alternative mechanism that facilitates delaying gratification by mental orientation towards the future. Combining continuous theta-burst stimulation (cTBS) with functional neuroimaging, we tested how the right temporoparietal junction (rTPJ) facilitates processing of future events and thereby promotes delay of gratification. Participants performed an intertemporal decision task and a mental time-travel task in the MRI scanner before and after receiving cTBS over the rTPJ or the vertex (control site). rTPJ cTBS led to both stronger temporal discounting for longer delays and reduced processing of future relative to past events in the mental time-travel task. This finding suggests that the rTPJ contributes to the ability to delay gratification by facilitating mental representation of outcomes in the future. On the neural level, rTPJ cTBS led to a reduction in the extent to which connectivity of rTPJ with striatum reflected the value of delayed rewards, indicating a role of rTPJ-striatum connectivity in constructing neural representations of future rewards. Together, our findings provide evidence that the rTPJ is an integral part of a brain network that promotes delay of gratification by facilitating mental orientation to future rewards.


Assuntos
Corpo Estriado/fisiologia , Tomada de Decisões/fisiologia , Desvalorização pelo Atraso/fisiologia , Rede Nervosa/fisiologia , Lobo Parietal/fisiologia , Lobo Temporal/fisiologia , Adulto , Mapeamento Encefálico , Corpo Estriado/anatomia & histologia , Corpo Estriado/diagnóstico por imagem , Feminino , Neuroimagem Funcional , Humanos , Comportamento Impulsivo/fisiologia , Masculino , Rede Nervosa/anatomia & histologia , Rede Nervosa/diagnóstico por imagem , Lobo Parietal/anatomia & histologia , Lobo Parietal/diagnóstico por imagem , Recompensa , Lobo Temporal/anatomia & histologia , Lobo Temporal/diagnóstico por imagem , Estimulação Magnética Transcraniana
8.
Nat Hum Behav ; 4(9): 937-948, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32601459

RESUMO

Despite large individual differences in memory performance, people remember certain stimuli with overwhelming consistency. This phenomenon is referred to as the memorability of an individual item. However, it remains unknown whether memorability also affects our ability to retrieve associations between items. Here, using a paired-associates verbal memory task, we combine behavioural data, computational modelling and direct recordings from the human brain to examine how memorability influences associative memory retrieval. We find that certain words are correctly retrieved across participants irrespective of the cues used to initiate memory retrieval. These words, which share greater semantic similarity with other words, are more readily available during retrieval and lead to more intrusions when retrieval fails. Successful retrieval of these memorable items, relative to less memorable ones, results in faster reinstatement of neural activity in the anterior temporal lobe. Collectively, our data reveal how the brain prioritizes certain information to facilitate memory retrieval.


Assuntos
Associação , Rememoração Mental/fisiologia , Lobo Temporal/fisiologia , Adulto , Mapeamento Encefálico , Eletroencefalografia , Feminino , Humanos , Masculino , Testes Neuropsicológicos
9.
PLoS One ; 15(7): e0234104, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32609778

RESUMO

Advances in computer and communications technology have deeply affected the way we communicate. Social media have emerged as a major means of human communication. However, a major limitation in such media is the lack of non-verbal stimuli, which sometimes hinders the understanding of the message, and in particular the associated emotional content. In an effort to compensate for this, people started to use emoticons, which are combinations of keyboard characters that resemble facial expressions, and more recently their evolution: emojis, namely, small colorful images that resemble faces, actions and daily life objects. This paper presents evidence of the effect of emojis on memory retrieval through a functional Magnetic Resonance Imaging (fMRI) study. A total number of fifteen healthy volunteers were recruited for the experiment, during which successive stimuli were presented, containing words with intense emotional content combined with emojis, either with congruent or incongruent emotional content. Volunteers were asked to recall a memory related to the stimulus. The study of the reaction times showed that emotional incongruity among word+emoji combinations led to longer reaction times in memory retrieval compared to congruent combinations. General Linear Model (GLM) and Blind Source Separation (BSS) methods have been tested in assessing the influence of the emojis on the process of memory retrieval. The analysis of the fMRI data showed that emotional incongruity among word+emoji combinations activated the Broca's area (BA44 and BA45) in both hemispheres, the Supplementary Motor Area (SMA) and the inferior prefrontal cortex (BA47), compared to congruent combinations. Furthermore, compared to pseudowords, word+emoji combinations activated the left Broca's area (BA44 and BA45), the amygdala, the right temporal pole (BA48) and several frontal regions including the SMA and the inferior prefrontal cortex.


Assuntos
Memória Episódica , Rememoração Mental/fisiologia , Simbolismo , Adulto , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Comunicação , Compreensão , Emoções , Expressão Facial , Feminino , Voluntários Saudáveis , Humanos , Imagem por Ressonância Magnética/métodos , Masculino , Memória/fisiologia , Córtex Motor/fisiologia , Comunicação não Verbal/psicologia , Córtex Pré-Frontal/fisiologia , Leitura , Lobo Temporal/fisiologia , Redação , Adulto Jovem
10.
Nature ; 583(7814): 103-108, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32494012

RESUMO

The inferotemporal (IT) cortex is responsible for object recognition, but it is unclear how the representation of visual objects is organized in this part of the brain. Areas that are selective for categories such as faces, bodies, and scenes have been found1-5, but large parts of IT cortex lack any known specialization, raising the question of what general principle governs IT organization. Here we used functional MRI, microstimulation, electrophysiology, and deep networks to investigate the organization of macaque IT cortex. We built a low-dimensional object space to describe general objects using a feedforward deep neural network trained on object classification6. Responses of IT cells to a large set of objects revealed that single IT cells project incoming objects onto specific axes of this space. Anatomically, cells were clustered into four networks according to the first two components of their preferred axes, forming a map of object space. This map was repeated across three hierarchical stages of increasing view invariance, and cells that comprised these maps collectively harboured sufficient coding capacity to approximately reconstruct objects. These results provide a unified picture of IT organization in which category-selective regions are part of a coarse map of object space whose dimensions can be extracted from a deep network.


Assuntos
Modelos Neurológicos , Percepção Espacial/fisiologia , Lobo Temporal/citologia , Lobo Temporal/fisiologia , Animais , Estimulação Elétrica , Macaca mulatta/fisiologia , Imagem por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Lobo Temporal/anatomia & histologia
11.
Nat Commun ; 11(1): 3192, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32581214

RESUMO

Resolving approach-avoidance conflicts relies on encoding motivation outcomes and learning from past experiences. Accumulating evidence points to the role of the Medial Temporal Lobe (MTL) and Medial Prefrontal Cortex (mPFC) in these processes, but their differential contributions have not been convincingly deciphered in humans. We detect 310 neurons from mPFC and MTL from patients with epilepsy undergoing intracranial recordings and participating in a goal-conflict task where rewards and punishments could be controlled or not. mPFC neurons are more selective to punishments than rewards when controlled. However, only MTL firing following punishment is linked to a lower probability for subsequent approach behavior. mPFC response to punishment precedes a similar MTL response and affects subsequent behavior via an interaction with MTL firing. We thus propose a model where approach-avoidance conflict resolution in humans depends on outcome value tagging in mPFC neurons influencing encoding of such value in MTL to affect subsequent choice.


Assuntos
Comportamento de Escolha/fisiologia , Objetivos , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Lobo Temporal/fisiologia , Adolescente , Adulto , Idoso , Mapeamento Encefálico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Córtex Pré-Frontal/citologia , Punição , Tempo de Reação , Recompensa , Lobo Temporal/citologia , Adulto Jovem
12.
PLoS One ; 15(6): e0234695, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32559213

RESUMO

When looking at a speaking person, the analysis of facial kinematics contributes to language discrimination and to the decoding of the time flow of visual speech. To disentangle these two factors, we investigated behavioural and fMRI responses to familiar and unfamiliar languages when observing speech gestures with natural or reversed kinematics. Twenty Italian volunteers viewed silent video-clips of speech shown as recorded (Forward, biological motion) or reversed in time (Backward, non-biological motion), in Italian (familiar language) or Arabic (non-familiar language). fMRI revealed that language (Italian/Arabic) and time-rendering (Forward/Backward) modulated distinct areas in the ventral occipito-temporal cortex, suggesting that visual speech analysis begins in this region, earlier than previously thought. Left premotor ventral (superior subdivision) and dorsal areas were preferentially activated with the familiar language independently of time-rendering, challenging the view that the role of these regions in speech processing is purely articulatory. The left premotor ventral region in the frontal operculum, thought to include part of the Broca's area, responded to the natural familiar language, consistent with the hypothesis of motor simulation of speech gestures.


Assuntos
Área de Broca/fisiologia , Gestos , Idioma , Córtex Motor/fisiologia , Lobo Occipital/fisiologia , Fala/fisiologia , Lobo Temporal/fisiologia , Adulto , Comportamento , Discriminação Psicológica , Feminino , Humanos , Modelos Lineares , Imagem por Ressonância Magnética , Masculino , Análise e Desempenho de Tarefas , Adulto Jovem
13.
An Acad Bras Cienc ; 92(2): e20190564, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32556052

RESUMO

We studied the multiunit responses to moving and static stimuli from 585 cell clusters in area MT using multi-electrode arrays. Our aim was to explore if MT columns exhibit any larger-scale tangential organization or clustering based on their response properties. Neurons showing both motion and orientation selectivity were classified into four categories: 1- Type I (orientation selectivity orthogonal to the axis of motion); 2- Type II (orientation selectivity coaxial to the axis of motion); 3- Type DS (significant response to moving stimuli, but non-significant response to static stimuli); and 4- Type OS (significant orientation selectivity, but non-significant direction selectivity). Type I (34%), Type II (24%) and Type DS (32%) clusters were the most predominant and may be associated with different stages of motion processing in MT. On the other hand, the rarer Type OS (9%) may be integrating motion and form processing. Type I and unidirectional sites were the only classes to exhibit significant clustering. Type OS sites showed a trend for clustering, which did not reach statistical significance. We also found a trend for unidirectional sites to have bidirectional sites as neighbors. In conclusion, neuronal clustering associated with these four categories may be related to distinct MT functional circuits.


Assuntos
Neurônios/fisiologia , Orientação/fisiologia , Sapajus apella/fisiologia , Lobo Temporal/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Animais
14.
PLoS Comput Biol ; 16(5): e1007614, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32421716

RESUMO

For stimuli near perceptual threshold, the trial-by-trial activity of single neurons in many sensory areas is correlated with the animal's perceptual report. This phenomenon has often been attributed to feedforward readout of the neural activity by the downstream decision-making circuits. The interpretation of choice-correlated activity is quite ambiguous, but its meaning can be better understood in the light of population-wide correlations among sensory neurons. Using a statistical nonlinear dimensionality reduction technique on single-trial ensemble recordings from the middle temporal (MT) area during perceptual-decision-making, we extracted low-dimensional latent factors that captured the population-wide fluctuations. We dissected the particular contributions of sensory-driven versus choice-correlated activity in the low-dimensional population code. We found that the latent factors strongly encoded the direction of the stimulus in single dimension with a temporal signature similar to that of single MT neurons. If the downstream circuit were optimally utilizing this information, choice-correlated signals should be aligned with this stimulus encoding dimension. Surprisingly, we found that a large component of the choice information resides in the subspace orthogonal to the stimulus representation inconsistent with the optimal readout view. This misaligned choice information allows the feedforward sensory information to coexist with the decision-making process. The time course of these signals suggest that this misaligned contribution likely is feedback from the downstream areas. We hypothesize that this non-corrupting choice-correlated feedback might be related to learning or reinforcing sensory-motor relations in the sensory population.


Assuntos
Comportamento de Escolha/fisiologia , Tomada de Decisões/fisiologia , Retroalimentação Sensorial/fisiologia , Animais , Córtex Cerebral , Percepção de Profundidade/fisiologia , Feminino , Macaca mulatta , Masculino , Modelos Teóricos , Estimulação Luminosa/métodos , Células Receptoras Sensoriais , Lobo Temporal/fisiologia , Percepção Visual/fisiologia
15.
Neuron ; 107(2): 383-393.e5, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32386524

RESUMO

Sensory experience shapes what and how knowledge is stored in the brain-our knowledge about the color of roses depends in part on the activity of color-responsive neurons based on experiences of seeing roses. We compared the brain basis of color knowledge in congenitally (or early) blind individuals, whose color knowledge can only be obtained through language descriptions and/or cognitive inference, to that of sighted individuals whose color-knowledge benefits from both sensory experience and language. We found that some regions support color knowledge only in the sighted, whereas a region in the left dorsal anterior temporal lobe supports object-color knowledge in both the blind and sighted groups, indicating the existence of a sensory-independent knowledge coding system in both groups. Thus, there are (at least) two forms of object knowledge representations in the human brain: sensory-derived and language- and cognition-derived knowledge, supported by different brain systems.


Assuntos
Encéfalo/fisiologia , Conhecimento , Adulto , Idoso , Cegueira/congênito , Cegueira/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Cognição , Percepção de Cores , Feminino , Humanos , Idioma , Imagem por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Sensação/fisiologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia , Visão Ocular , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiologia , Adulto Jovem
16.
Sci Rep ; 10(1): 7575, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32372046

RESUMO

The human brain has a close relationship with music. Music-induced structural and functional brain changes have been demonstrated in the healthy adult. In the present study, adults with left-behind experience (ALB) were divided into two groups. The experimental group (ALB-E) took part in the music therapy experiment with three stages, including before listening to music (pre-stage), initially listening to music (mid-stage) and after listening to music (post-stage). The control group (ALB-C) did not participate in music therapy. Scalp resting-state EEGs of ALB were recorded during the three stages. We found no significant frequency change in the ALB-C group. In the ALB-E group, only the theta power spectrum was significantly different at all stages. The topographical distributions of the theta power spectrum represented change in trends from the frontal regions to the occipital regions. The result of Granger causal analysis (GCA), based on theta frequency, showed a stronger information flow from the middle frontal gyrus to the middle temporal gyrus (MFG → MTG) in the left hemisphere at the pre-stage compared to the post-stage. Additionally, the experimental group showed a weaker information flow from inferior gyrus to superior temporal gyrus (IFG → STG) in the right hemisphere at post-test stage compared to the ALB-C group. Our results demonstrate that listening to music can play a positive role on improving negative feelings for individuals with left behind experience.


Assuntos
Percepção Auditiva , Mapeamento Encefálico , Encéfalo/fisiologia , Eletroencefalografia , Adulto , Área Sob a Curva , Mapeamento Encefálico/métodos , Humanos , Musicoterapia , Lobo Temporal/fisiologia
17.
Neuron ; 107(3): 566-579.e7, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32473095

RESUMO

Mother-infant bonding develops rapidly following parturition and is accompanied by changes in sensory perception and behavior. Here, we study how ultrasonic vocalizations (USVs) are represented in the brain of mothers. Using a mouse line that allows temporally controlled genetic access to active neurons, we find that the temporal association cortex (TeA) in mothers exhibits robust USV responses. Rabies tracing from USV-responsive neurons reveals extensive subcortical and cortical inputs into TeA. A particularly dominant cortical source of inputs is the primary auditory cortex (A1), suggesting strong A1-to-TeA connectivity. Chemogenetic silencing of USV-responsive neurons in TeA impairs auditory-driven maternal preference in a pup-retrieval assay. Furthermore, dense extracellular recordings from awake mice reveal changes of both single-neuron and population responses to USVs in TeA, improving discriminability of pup calls in mothers compared with naive females. These data indicate that TeA plays a key role in encoding and perceiving pup cries during motherhood.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Comportamento Materno , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Lobo Temporal/fisiologia , Vocalização Animal , Animais , Córtex Auditivo/citologia , Fenômenos Eletrofisiológicos , Feminino , Camundongos , Vias Neurais , Apego ao Objeto , Lobo Temporal/citologia , Ondas Ultrassônicas
18.
Proc Natl Acad Sci U S A ; 117(23): 13162-13167, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32457153

RESUMO

Keeping track of other people's gaze is an essential task in social cognition and key for successfully reading other people's intentions and beliefs (theory of mind). Recent behavioral evidence suggests that we construct an implicit model of other people's gaze, which may incorporate physically incoherent attributes such as a construct of force-carrying beams that emanate from the eyes. Here, we used functional magnetic resonance imaging and multivoxel pattern analysis to test the prediction that the brain encodes gaze as implied motion streaming from an agent toward a gazed-upon object. We found that a classifier, trained to discriminate the direction of visual motion, significantly decoded the gaze direction in static images depicting a sighted face, but not a blindfolded one, from brain activity patterns in the human motion-sensitive middle temporal complex (MT+) and temporo-parietal junction (TPJ). Our results demonstrate a link between the visual motion system and social brain mechanisms, in which the TPJ, a key node in theory of mind, works in concert with MT+ to encode gaze as implied motion. This model may be a fundamental aspect of social cognition that allows us to efficiently connect agents with the objects of their attention. It is as if the brain draws a quick visual sketch with moving arrows to help keep track of who is attending to what. This implicit, fluid-flow model of other people's gaze may help explain culturally universal myths about the mind as an energy-like, flowing essence.


Assuntos
Atenção/fisiologia , Fixação Ocular/fisiologia , Lobo Parietal/fisiologia , Lobo Temporal/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Feminino , Voluntários Saudáveis , Humanos , Imagem por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Lobo Parietal/diagnóstico por imagem , Estimulação Luminosa , Comportamento Social , Lobo Temporal/diagnóstico por imagem , Teoria da Mente , Adulto Jovem
19.
Neurobiol Aging ; 91: 125-135, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32241582

RESUMO

Contingency awareness is thought to rely on an intact medial temporal lobe and also appears to be a function of age, as older subjects tend to be less aware. The current investigation used functional magnetic resonance imaging, transcranial direct current stimulation, and eyeblink classical conditioning to study brain processes related to contingency awareness as a function of age. Older adults were significantly less aware of the relationship between the tone-airpuff pairings than younger adults. Greater right parietal functional magnetic resonance imaging activation was associated with higher levels of contingency awareness for younger and older subjects. Cathodal transcranial direct current stimulation over the right parietal lobe led to lower levels of awareness in younger subjects without disrupting conditioned responses. Older adults exhibited hyperactivations in the parietal and medial temporal lobes, despite showing no conditioning deficits. These findings strongly support the idea that the parietal cortex serves as a substrate for contingency awareness and that age-related disruption of this region is sufficient to impair awareness, which may be a manifestation of some form of naturally occurring age-related neglect.


Assuntos
Envelhecimento/psicologia , Conscientização/fisiologia , Lobo Parietal/fisiologia , Adulto , Idoso , Piscadela , Condicionamento Clássico , Feminino , Humanos , Imagem por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Lobo Parietal/diagnóstico por imagem , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto Jovem
20.
PLoS Biol ; 18(4): e3000659, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32243450

RESUMO

Putting a name to a face is a highly common activity in our daily life that greatly enriches social interactions. Although this specific person-identity association becomes automatic with learning, it remains difficult and can easily be disrupted in normal circumstances or neurological conditions. To shed light on the neural basis of this important and yet poorly understood association between different input modalities in the human brain, we designed a crossmodal frequency-tagging paradigm coupled to brain activity recording via scalp and intracerebral electroencephalography. In Experiment 1, 12 participants were presented with variable pictures of faces and written names of a single famous identity at a 4-Hz frequency rate while performing an orthogonal task. Every 7 items, another famous identity appeared, either as a face or a name. Robust electrophysiological responses were found exactly at the frequency of identity change (i.e., 4 Hz / 7 = 0.571 Hz), suggesting a crossmodal neural response to person identity. In Experiment 2 with twenty participants, two control conditions with periodic changes of identity for faces or names only were added to estimate the contribution of unimodal neural activity to the putative crossmodal face-name responses. About 30% of the response occurring at the frequency of crossmodal identity change over the left occipito-temporal cortex could not be accounted for by the linear sum of unimodal responses. Finally, intracerebral recordings in the left ventral anterior temporal lobe (ATL) in 7 epileptic patients tested with this paradigm revealed a small number of "pure" crossmodal responses, i.e., with no response to changes of identity for faces or names only. Altogether, these observations provide evidence for integration of verbal and nonverbal person identity-specific information in the human brain, highlighting the contribution of the left ventral ATL in the automatic retrieval of face-name identity associations.


Assuntos
Reconhecimento Visual de Modelos/fisiologia , Lobo Temporal/fisiologia , Eletroencefalografia , Epilepsia/fisiopatologia , Epilepsia/psicologia , Face , Feminino , Humanos , Masculino , Nomes , Testes Neuropsicológicos , Experimentação Humana não Terapêutica , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA