Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.817
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338766

RESUMO

Stachydrine, a prominent bioactive alkaloid derived from Leonurus heterophyllus, is a significant herb in traditional medicine. It has been noted for its anti-inflammatory and antioxidant characteristics. Consequently, we conducted a study of its hepatoprotective effect and the fundamental mechanisms involved in acetaminophen (APAP)-induced liver injury, utilizing a mouse model. Mice were intraperitoneally administered a hepatotoxic dose of APAP (300 mg/kg). Thirty minutes after APAP administration, mice were treated with different concentrations of stachydrine (0, 2.5, 5, and 10 mg/kg). Animals were sacrificed 16 h after APAP injection for serum and liver tissue assays. APAP overdose significantly elevated the serum alanine transferase levels, hepatic pro-inflammatory cytokines, malondialdehyde activity, phospho-extracellular signal-regulated kinase (ERK), phospho-protein kinase B (AKT), and macrophage-stimulating protein expression. Stachydrine treatment significantly decreased these parameters in mice with APAP-induced liver damage. Our results suggest that stachydrine may be a promising beneficial target in the prevention of APAP-induced liver damage through attenuation of the inflammatory response, inhibition of the ERK and AKT pathways, and expression of macrophage-stimulating proteins.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Prolina/análogos & derivados , Camundongos , Animais , Acetaminofen/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Fígado/metabolismo , Transdução de Sinais , Macrófagos/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Estresse Oxidativo
2.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338909

RESUMO

Pancreatic cancer represents a formidable challenge in oncology, primarily due to its aggressive nature and limited therapeutic options. The prognosis of patients with pancreatic ductal adenocarcinoma (PDAC), the main form of pancreatic cancer, remains disappointingly poor with a 5-year overall survival of only 5%. Almost 95% of PDAC patients harbor Kirsten rat sarcoma virus (KRAS) oncogenic mutations. KRAS activates downstream intracellular pathways, most notably the rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling axis. Dysregulation of the RAF/MEK/ERK pathway is a crucial feature of pancreatic cancer and therefore its main components, RAF, MEK and ERK kinases, have been targeted pharmacologically, largely by small-molecule inhibitors. The recent advances in the development of inhibitors not only directly targeting the RAF/MEK/ERK pathway but also indirectly through inhibition of its regulators, such as Src homology-containing protein tyrosine phosphatase 2 (SHP2) and Son of sevenless homolog 1 (SOS1), provide new therapeutic opportunities. Moreover, the discovery of allele-specific small-molecule inhibitors against mutant KRAS variants has brought excitement for successful innovations in the battle against pancreatic cancer. Herein, we review the recent advances in targeted therapy and combinatorial strategies with focus on the current preclinical and clinical approaches, providing critical insight, underscoring the potential of these efforts and supporting their promise to improve the lives of patients with PDAC.


Assuntos
Carcinoma Ductal Pancreático , Fibrossarcoma , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas c-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-raf/metabolismo
3.
Funct Integr Genomics ; 24(1): 10, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38221563

RESUMO

Thyroid cancer is the most common type of endocrine cancer. Chemokine-like factor (CKLF)-like MARVEL transmembrane domain containing 6 (CMTM6) is recognized as one of its potential immunotherapy targets. The purpose of this study was to investigate the role and molecular mechanism of CMTM6 in regulating the development of thyroid cancer cells. In this study, expression levels of CMTM6 and the sodium/iodide symporter (NIS) were detected by qRT-PCR. Additionally, colony formation assay and flow cytometry were used to detect cell proliferation and apoptosis, while expression levels of various proteins were assessed using Western blotting. Further, the apoptosis and invasion capacity of cells were investigated by scratch and transwell experiments. Finally, the effect of CMTM6 on the epithelial-mesenchymal transition (EMT) of thyroid cancer cells was determined by immunofluorescence assay, which measured the expression levels of epithelial and mesenchymal phenotypic markers. The results of qRT-PCR experiments showed that CMTM6 was highly expressed in thyroid cancer tissues and cells. In addition, knockdown of CMTM6 expression significantly increased NIS expression. Function experiments demonstrated that small interfering (si)-CMTM6 treatment inhibited the proliferation, migration, invasion, and EMT of thyroid cancer cells, while promoting apoptosis of FTC133 cells. Furthermore, mechanistic studies showed that mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) phosphorylation were inhibited by si-CMTM6, as demonstrated by Western blot experiments. In conclusion, our findings demonstrated the role of CMTM6 in the metastasis of thyroid cancer. Briefly, CMTM6 exerts its tumor-promoting effect through the MAPK signaling pathway and could potentially be used as a valuable biomarker for thyroid cancer diagnosis and prognosis.


Assuntos
Proteínas com Domínio MARVEL , Proteínas da Mielina , Simportadores , Neoplasias da Glândula Tireoide , Humanos , Linhagem Celular Tumoral , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Simportadores/genética , Simportadores/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Proteínas com Domínio MARVEL/genética , Proteínas com Domínio MARVEL/metabolismo , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo
4.
J Cell Physiol ; 239(2): e31173, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38214103

RESUMO

Obesity and metabolic disorders caused by alterations in lipid metabolism are major health issues in developed, affluent societies. Adipose tissue is the only organ that stores lipids and prevents lipotoxicity in other organs. Mature adipocytes can affect themselves and distant metabolism-related tissues by producing various adipokines, including adiponectin and leptin. The engulfment adaptor phosphotyrosine-binding domain-containing 1 (GULP1) regulates intracellular trafficking of glycosphingolipids and cholesterol, suggesting its close association with lipid metabolism. However, the role of GULP1 in adipocytes remains unknown. Therefore, this study aimed to investigate the function of GULP1 in adipogenesis, glucose uptake, and the insulin signaling pathway in adipocytes. A 3T3-L1 cell line with Gulp1 knockdown (shGulp1) and a 3T3-L1 control group (U6) were established. Changes in shGulp1 cells due to GULP1 deficiency were examined and compared to those in U6 cells using microarray analysis. Glucose uptake was monitored via insulin stimulation in shGulp1 and U6 cells using a 2-NBDG glucose uptake assay, and the insulin signaling pathway was investigated by western blot analysis. Adipogenesis was significantly delayed, lipid metabolism was altered, and several adipogenesis-related genes were downregulated in shGulp1 cells compared to those in U6 cells. Microarray analysis revealed significant inhibition of peroxisome proliferator-activated receptor signaling in shGulp1 cells compared with U6 cells. The production and secretion of adiponectin as well as the expression of adiponectin receptor were decreased in shGulp1 cells. In particular, compared with U6 cells, glucose uptake via insulin stimulation was significantly decreased in shGulp1 cells through the disturbance of ERK1/2 phosphorylation. This is the first study to identify the role of GULP1 in adipogenesis and insulin-stimulated glucose uptake by adipocytes, thereby providing new insights into the differentiation and functions of adipocytes and the metabolism of lipids and glucose, which can help better understand metabolic diseases.


Assuntos
Adipogenia , Insulina , Transdução de Sinais , Animais , Camundongos , Células 3T3-L1 , Adipogenia/genética , Adiponectina/genética , Adiponectina/metabolismo , Diferenciação Celular , Regulação para Baixo , Glucose/metabolismo , Insulina/metabolismo , Lipídeos , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , PPAR gama/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo
5.
Life Sci ; 340: 122451, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38253311

RESUMO

AIMS: Chronic excessive alcohol intake is a significant cause of alcohol-associated liver disease (ALD), a leading contributor to liver-related morbidity and mortality. The Src homology phosphatase 2 (Shp2; encoded by Ptpn11) is a widely expressed protein tyrosine phosphatase that modulates hepatic functions, but its role in ALD is mostly uncharted. MAIN METHODS: Herein, we explore the effects of liver-specific Shp2 genetic disruption using the established chronic-plus-binge mouse model of ALD. KEY FINDINGS: We report that the hepatic Shp2 disruption had beneficial effects and partially ameliorated ethanol-induced injury, inflammation, and steatosis in the liver. Consistently, Shp2 deficiency was associated with decreased ethanol-evoked activation of extracellular signal-regulated kinase (ERK) and oxidative stress in the liver. Moreover, primary hepatocytes with Shp2 deficiency exhibited similar outcomes to those observed upon Shp2 disruption in vivo, including diminished ethanol-induced ERK activation, inflammation, and oxidative stress. Furthermore, pharmacological inhibition of ERK in primary hepatocytes mimicked the effects of Shp2 deficiency and attenuated oxidative stress caused by ethanol. SIGNIFICANCE: Collectively, these findings highlight Shp2 as a modulator of hepatic oxidative stress upon ethanol challenge and suggest the evaluation of this phosphatase as a potential therapeutic target for ALD.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Hepatopatias Alcoólicas , Camundongos , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Etanol/toxicidade , Estresse Oxidativo , Inflamação
6.
Biol Pharm Bull ; 47(1): 37-42, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38171778

RESUMO

Renal interstitial fibrosis in mice can be modeled using unilateral ureteral obstruction (UUO). Here, we investigated the anti-fibrotic effects of the dipeptidyl peptidase-4 inhibitor vildagliptin in this model. We found that vildagliptin given in the drinking water at 10.6 ± 1.5 mg/kg/d prevented fibrosis. Mechanistically, UUO was associated with extracellular signal-regulated kinase (ERK) phosphorylation and with the accumulation of the toxic lipid peroxidation product expression of 4-hydroxy-2-nonenal (4-HNE). Both were significantly inhibited by vildagliptin. Similarly, UUO caused reductions in heme oxygenase-1 (HO-1) mRNA in the kidney, whereas interleukin-6 (IL-6) and cyclooxygenase-1 (COX-1) mRNA were increased; these effects were also prevented by vildagliptin. Taking these data together, we propose that vildagliptin reduces renal interstitial fibrosis resulting from UUO by means of its effects on ERK phosphorylation and the amounts of 4-HNE, HO-1, IL-6 and COX-1 in the kidney.


Assuntos
Nefropatias , Obstrução Ureteral , Camundongos , Animais , Obstrução Ureteral/complicações , Obstrução Ureteral/tratamento farmacológico , Vildagliptina/farmacologia , Vildagliptina/uso terapêutico , Vildagliptina/metabolismo , Modelos Animais de Doenças , Interleucina-6/metabolismo , Nefropatias/tratamento farmacológico , Nefropatias/etiologia , Rim , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibrose , RNA Mensageiro/metabolismo
7.
Arch Insect Biochem Physiol ; 115(1): e22077, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38288489

RESUMO

The extracellular signal-regulated kinase (ERK) pathway, a critical genetic determinant, controls diverse physiological functions, including innate immunity, development, and stress response. In the current study, a full-length cDNA (1592bp) encoding the ERK gene (OfERK) was cloned from Ostrinia furnacalis Guenée (GenBank accession number: MF797866). The open reading frame of the OfERK gene encoded 364 amino acids and shared 96.43%-98.08% amino acid identities with other insect mitogen-activated protein kinases. For spatiotemporal analysis of the expression pattern, OfERK exhibited a significant peak expression on the 3rd day of the pupa stage and showed the highest expression in hemocytes specifically. Indirect immunofluorescence assays and immuno-electron microscopy revealed a wide distribution of the OfERK protein in hemocytes and epidermis. Moreover, the results demonstrated that the Bt Cry1Ab-activated toxin significantly induces the expression of OfERK. Other genes related to immune response, development, and stress response exhibited dynamic changes in expression after Cry1Ab oral treatment. The expression of OfERK was downregulated through RNA interference, and the correlation of its expression with other related genes was verified using quantitative real-time polymerase chain reaction. Our study provides valuable insights into the regulatory mechanism of ERK in insects for future studies.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Mariposas , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Mariposas/metabolismo , Imunidade Inata
8.
Sci Rep ; 14(1): 1799, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245585

RESUMO

Mucin overproduction is a common feature of chronic airway diseases such as asthma and chronic obstructive pulmonary disease (COPD), and exacerbates their underlying respiratory condition. Surfactant protein D (SP-D) protects against airway diseases through modulation of immune reactions, but whether it also exerts direct effects on airway epithelial cells has remained unclear. Therefore, we sought to investigate the inhibitory role of SP-D on mucin production in airway epithelial cells. We prepared air-liquid interface (ALI) cultures of human primary bronchial epithelial cells (HBECs), which recapitulated a well-differentiated human airway epithelium. Benzo(a)pyrene (BaP), a key toxicant in cigarette smoke, induced mucin 5AC (MUC5AC) production in ALI-cultured HBECs, airway secretory cell lines, and airway epithelia of mice. Then, the protective effects of SP-D against the BaP-induced mucin overproduction were examined. BaP increased MUC5AC production in ALI cultures of HBECs, and this effect was attenuated by SP-D. SP-D also suppressed the BaP-induced phosphorylation of extracellular signal-regulated kinase (ERK) and MUC5AC expression in NCI-H292 goblet-like cells, but not in NCI-H441 club-like cells. Signal regulatory protein α (SIRPα) was found to be expressed in HBECs and NCI-H292 cells but absent in NCI-H441 cells. In NCI-H292 cells, SP-D activated SH2 domain-containing tyrosine phosphatase-1 (SHP-1), downstream of SIRPα, and knockdown of SIRPα abolished the suppressive effects of SP-D on BaP-induced ERK phosphorylation and MUC5AC production. Consistent with these in vitro findings, intratracheal instillation of SP-D prevented the BaP-induced phosphorylation of ERK and Muc5ac expression in airway epithelial cells in a mouse model. SP-D acts directly on airway epithelial cells to inhibit mucin secretion through ligation of SIRPα and SHP-1-mediated dephosphorylation of ERK. Targeting of SIRPα is therefore a potential new therapeutic approach to suppression of mucin hypersecretion in chronic airway diseases such as COPD and asthma.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Animais , Humanos , Camundongos , Células Epiteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Caliciformes/metabolismo , Mucina-5AC/genética , Mucinas , Proteína D Associada a Surfactante Pulmonar
9.
J Gene Med ; 26(1): e3649, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282155

RESUMO

BACKGROUND: Ovarian cancer is one of the most common cancers in women. Profiles changes of microRNAs (miRNAs) are closely linked to malignant tumors. In the present study, we investigated expression of miR-451a in high-grade serous ovarian cancer (HGSOC). We also investigated the potential pathological roles and the likely mechanism of miR-451a in the development of HGSOC using animal models and cell lines. METHODS: Using bioinformatics techniques and a real-time PCR, we analyzed differently expressed miRNAs in HGSOC compared to normal tissue. MTT (i.e. 3-[4, 5-dimethyl thiazol-2-yl]-2,5-diphenyl tetrazolium bromide), EDU (i.e. 5-ethynyl-2'-deoxyuridine) and transwell assays were performed to investigate the effect of miR-451a on the proliferation and migration of HGSOC SKOV-3 cells. A dual luciferase reporter assay was performed to verify the targeting relationship of miR-451 and RAB5A (one of the Rab GTPase proteins that regulates endocytosis and vesicle transport). Also, we analyzed levels of the RAB5A mRNA and protein by real-time PCR, western blotting and immunohistochemistry assays in HGSOC cells and tissues. Finally, we performed in vivo experiments using HGSOC mice. RESULTS: miR-451a was substantially upregulated in HGSOC and associated with favorable clinical characteristics. miR-451a knockdown significantly increased growth and metastasis of HGSOC cell line SKOV-3 through Ras/Raf/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling. In addition, RAB5A, an early endosome marker, was shown to be a direct target of miR-451a. Moreover, RAB5A is correlated with unfavorable clinical features and shows independent prognostic significance in HGSOC. CONCLUSIONS: We found that the miR-451a/RAB5A axis is associated with tumorigenesis and progression through the Ras/Raf/MEK/ERK pathway, providing prognostic indicators and therapeutic targets for patients with HGSOC.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Humanos , Feminino , Animais , Camundongos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Ovarianas/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
10.
Arch Pharm Res ; 47(2): 127-145, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38267702

RESUMO

Insulin resistance (IR) is a key factor in the pathogenesis of disrupted glucose metabolism. Although the extract of Glycyrrhiza glabra has shown significant hypoglycemic activity, its bioactive components remain to be identified, and their mechanisms of action, especially on hepatocyte glucose metabolism, are yet to be explored. In the present study, the primary compounds from Glycyrrhiza glabra [named prenylated flavonoid fractions (PFFs)] have been identified and their chemical structures have been elucidated. The therapeutic effects of PFFs extracted from G. glabra on glucose metabolism disorders and IR in high insulin-induced insulin-resistant HepG2 (IR-HepG2) cells have been determined. Glabridin (GLD) was used as a control. The results indicated that, similar to GLD, PFFs increased glucose consumption, glucose uptake, and translocation of glucose transporter 4 to the plasma membrane in IR-HepG2 cells. In addition, they enhanced the activities of glycogen synthase, glucokinase, and pyruvate kinase, while reducing the activities of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. Furthermore, they activated the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway and suppressed the extracellular signal-regulated kinase/insulin receptor substrate-1 (ERK/IRS-1) pathway. These findings suggest that, similar to GLD, PFFs can alleviate impaired glucose metabolism and alleviate IR in IR-HepG2 cells.Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary.The authors and their affiliations have been confirmed as correct.


Assuntos
Glycyrrhiza , Resistência à Insulina , Insulinas , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Flavonoides/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Células Hep G2 , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/farmacologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Transdução de Sinais , Glucose/metabolismo , Glycyrrhiza/metabolismo , Insulinas/metabolismo , Insulinas/farmacologia , Insulina/metabolismo
11.
J Med Food ; 27(1): 88-94, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38236694

RESUMO

Capsicum annuum var. abbreviatum (CAAE), which is in the genus Capsicum L. (Solanaceae), was found to be richer in polyphenols and flavonoids than other prevalent peppers of Capsicum annuum var. angulosum and Capsicum annuum. L. Yet, it is still unclear how CAAE reduces inflammation. In this study, we used the lipopolysaccharide-stimulated RAW264.7 macrophage cell line and bone marrow-derived macrophages to assess its anti-inflammatory activities. Initially, we discovered that CAAE decreased the levels of nitric oxide and inducible nitric oxide synthase. In addition, CAAE decreased the intracellular reactive oxygen species levels and increased the nuclear factor-erythroid 2-related factor 2 and heme oxygenase-1 compared with the phenotype of M2 macrophages. CAAE inhibited the activation of mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinases, c-Jun N-terminal kinases, and p38 MAPKs. CAAE also inhibited the translocation of nuclear factor kappa B into nuclear, hence preventing the production of proinflammatory cytokines. Therefore, we suggest that CAAE might have potential as a candidate therapeutic agent for inflammatory diseases.


Assuntos
Capsicum , Lipopolissacarídeos/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Macrófagos/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , NF-kappa B/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fenótipo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo
12.
Front Biosci (Landmark Ed) ; 29(1): 5, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38287796

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is an autoimmune disease characterized by destruction of synovial joints, abnormal immune responses and chronic inflammatory manifestations, which seriously affects patients' well-being. We explored this study to ascertain the effect and mechanism of silent information regulator 6 (SIRT6) on RA. METHODS: Genes of RA patients and normal volunteers were analyzed using Gene Expression Omnibus (GEO), Kyoto-Encyclopedia of Genes and Genomes (KEGG) and Disconet databases. Serum samples of RA patients and normal subjects were collected before detection of myeloid differentiation factor-88 (MyD88)-extracellular signal-regulated kinase (ERK) pathway proteins expression with Western blot. In vitro RA fibroblast-like synoviocytes (FLS) cell model (RA-FLS) was established by treating RSC-364 with recombinant rat IL-1ß (10 ng/mL) after which SIRT6 and MyD88 adenoviruses treatment was carried out. The enzyme linked immunoassay (ELISA), real time polymerase chain reaction (RT-PCR) and Western blot were respectively used to measure inflammatory factors, related messenger ribonucleic acid (mRNA) and protein expressions. Also, we constructed RA rat model with bovine type II collagen (BIIC) and complete Freund's adjuvant, before treatment with SIRT6 and MyD88 adenoviruses. RESULTS: Low expression of SIRT6 gene were detected in RA patients. Also, levels of MyD88, ERK and phosphorylated extracellular signal-regulated protein kinase (p-ERK) protein expressions in RA patients were increased, whilst that of SIRT6 protein decreased. Compared to FLS cells in Control group, inflammatory factors levels of rats in Model batch increased significantly. SIRT6 adenovirus treatment potentially and significantly inhibited inflammation including suppression of increased inflammatory factors induced by MyD88. In comparison with FLS cells in Control group, Model batch cells' MyD88, interleukin (IL)-1ß, IL-21, IL-22, IL-6, IL-17, tumor necrosis factor-alpha (TNF-α) and monocyte chemo-attractant protein-1 (MCP-1) mRNA expressions increased but SIRT6 gene treatment could reduce mRNA expression of the aforesaid factors, even after MyD88 adenovirus treatment. Besides, overpressed SIRT6 negatively regulated levels of MyD88, ERK and p-ERK proteins expressions. SIRT6 demonstrated anti-RA effect by regulating MyD88-ERK pathway and inhibiting inflammatory response in RA rats. CONCLUSIONS: SIRT6 could potentially inhibit the inflammatory response of RA via a regulatory mechanism mainly relating to MyD88-ERK signal pathway. Thus, SIRT6 and its agonists may serve as new targets for developing drugs that can potentially treat RA.


Assuntos
Artrite Reumatoide , Sirtuínas , Humanos , Animais , Bovinos , Ratos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/farmacologia , Artrite Reumatoide/genética , Transdução de Sinais , Inflamação/metabolismo , RNA Mensageiro/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Sirtuínas/farmacologia , Fibroblastos/metabolismo , Células Cultivadas
13.
J Endocrinol ; 260(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37991884

RESUMO

Aging-related reduction in androgen levels may be a possible risk factor for neurodegenerative diseases and contribute to cognitive impairment. Androgens may affect synaptic function and cognition in an androgen receptor (AR)-independent manner; however, the mechanisms connecting theses effects are unknown. Therefore, we used testicular feminization mutation (Tfm) male mice, a model with AR mutation, to test the effects of testosterone on synaptic function and cognition. Our results showed that testosterone ameliorated spatial memory deficit and neuronal damage, and increased dendritic spines density and postsynaptic density protein 95 (PSD95) and glutamate receptor 1 (GluA1) expression in the hippocampus of Tfm male mice. And these effects of testosterone were not inhibited by anastrozole, which suppressed conversion of testosterone to estradiol. Mechanistically, testosterone activated the extracellular signal-related kinase 1/2 (Erk1/2) and cyclic adenosine monophosphate response element-binding protein (CREB) in the hippocampus of Tfm male mice. Meanwhile, Erk1/2 inhibitor SCH772984 blocked the upregulation of phospho-CREB, PSD95, and GluA1 induced by testosterone in HT22 cells pretreated with flutamide, an androgen antagonist. Collectively, our data indicate that testosterone may ameliorate hippocampal synaptic damage and spatial memory deficit by activating the Erk1/2-CREB signaling pathway in an AR-independent manner.


Assuntos
Receptores Androgênicos , Testosterona , Animais , Masculino , Camundongos , Androgênios/farmacologia , Androgênios/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hipocampo/metabolismo , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Receptores Androgênicos/metabolismo , Testosterona/metabolismo
14.
Anticancer Res ; 44(1): 13-22, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38160007

RESUMO

BACKGROUND/AIM: Brain metastasis (BM) is a complex multi-step process involving various immune checkpoint proteins. Mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinases 1/2 (ERK1/2), and signal transducer and activator of transcription 3 (STAT3) are implicated in tumorigenesis and are critical upstream regulators of Programmed Death Ligand 1 (PD-L1), an immunotherapy target. Tumor suppressor p53, dysregulated in cancers, regulates STAT3 and ERK1/2 signaling. This study examined the roles of STAT3, MAPK and p53 status in BM initiation and maintenance. MATERIALS AND METHODS: Twenty-six BM, with various primary malignancies, were used (IRB-approved) to determine mutant p53 (p53mt), pSTAT3Tyr705, pERK1/2Thr202/Tyr204, and PD-L1 expression using immunohistochemistry. cDNA microarray was used for gene expression analysis. Brain-metastatic breast cancer cells (MDA-MB-231) were treated with STAT3 (NSC74859) or MAPK/ERK1/2 (U0126) inhibitors in regular or astrocytic media. ERK1/2 pathway was assessed using western blotting, and cell proliferation and migration were determined using MTT and scratch-wound assays, respectively. RESULTS: pSTAT3Tyr705 and pERK1/2Thr202/Tyr204 were expressed at tumor margins, whereas p53mt and PD-L1 were uniformly expressed, with significant overlap between expression of these proteins. Gene expression analysis identified alterations in 18 p53- and 32 STAT3- or MAPK-associated genes contributing to dysregulated immune responses and cell cycle regulation. U0126 and NSC74859 reduced pERK1/2Thr202/Tyr204 expression. Cell proliferation decreased following each treatment (p≤0.01). Migration stagnated following U0126 treatment in astrocytic media (p≤0.01). CONCLUSION: Activation of STAT3 and ERK1/2 promotes BM and provides compelling evidence for use of STAT3, ERK1/2 and p53 status as potential immunotherapeutic targets in BM.


Assuntos
Antígeno B7-H1 , Neoplasias Encefálicas , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral
15.
Behav Brain Res ; 461: 114836, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38145873

RESUMO

Alzheimer's disease (AD) is characterized by cognitive impairment. It is common in the elderly. Etiologically, dysfunction of cholinergic neurotransmitter system is prominent in AD. However, disease modifying drug for AD is still unavailable. We hypothesized that krill oil and modified krill oil containing 20 % lysophosphatidylcholine-docosahexaenoic acid (LPC-DHA, LPC20K) could play a crucial role in AD by improving cognitive functions measured by several behavioral tests. We found that LPC20K could ameliorate short-term, long-term, spatial, and object recognition memory under cholinergic hypofunction states. To find the underlying mechanism involved in the effect of LPC20K on cognitive function, we investigated changes of signaling molecules using Western blotting. Expression levels of protein kinase C zeta (PKCζ) and postsynaptic density protein 95 (PSD-95), and phosphorylation levels of extracellular signal-regulated kinase (ERK), Ca2+/calmodulin-dependent protein kinase Ⅱ (CaMKⅡ), and cAMP response element-binding protein (CREB) were significantly increased in LPC20K-administered group compared to those in the memory impairment group. Moreover, the expression levels of BDNF were temporally increased especially 6 or 9 h after administration of LPC20K compared with the control group. These results suggest that LPC20K could ameliorate memory impairment caused by hypocholinergic state by enhancing the expression levels of PKCζ and PSD-95, and phosphorylation levels of ERK, CaMKⅡ and CREB and increasing BDNF expression levels. Therefore, LPC20K could be used as a dietary supplement against cognitive impairment observed in diseases such as AD with a hypocholinergic state.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Euphausiacea , Humanos , Animais , Idoso , Escopolamina/farmacologia , Euphausiacea/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Aprendizagem em Labirinto , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Colinérgicos/farmacologia , Hipocampo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo
16.
Chem Biodivers ; 21(2): e202301422, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38156745

RESUMO

The extracellular signal-regulated kinase (ERK) - mitogen-activated protein kinase (MAPK) pathway regulates cell proliferation, differentiation, and apoptosis. Heat Shock Protein 90 (HSP90) is required to activate proto-oncogenic protein kinases and promotes tumor growth through anti-apoptotic effects on A549-non-small cell lung cancer (NSCLC). Therefore, deregulation of the ERK-MAPK pathway and abnormal expression of HSP90 are reasonably frequent events in NSCLC. In this study, novel perimidine-pyrazole compounds employed to block ERK-MAPK deregulation through inhibiting HSP dependent cancer cell survival mechanisms. A set of perimidine-pyrazole derivatives effects was monitored on NSCLC cell line. Array experiments performed to understand the effect of the compounds on signaling pathways and results were analyzed by gene enrichment analysis. Further, senescence and apoptosis experiments were performed to support the enrichment results along with in silico methods to determine perimidine-pyrazole/HSP interactions. Treatment of NSCLC cells with perimidine-pyrazole derivatives displayed cancer-inhibitory, pro-senescent and pro-apoptotic effects on NSCLC cells through ERK/MAPK pathway and these compounds are promising templates for designing anticancer drugs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Sistema de Sinalização das MAP Quinases , Linhagem Celular Tumoral , Transdução de Sinais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proliferação de Células , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Apoptose
17.
Biochem J ; 480(23): 1887-1907, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38038974

RESUMO

Extracellular signal-regulated kinase (ERK) has long been studied as a key driver of both essential cellular processes and disease. A persistent question has been how this single pathway is able to direct multiple cell behaviors, including growth, proliferation, and death. Modern biosensor studies have revealed that the temporal pattern of ERK activity is highly variable and heterogeneous, and critically, that these dynamic differences modulate cell fate. This two-part review discusses the current understanding of dynamic activity in the ERK pathway, how it regulates cellular decisions, and how these cell fates lead to tissue regulation and pathology. In part 1, we cover the optogenetic and live-cell imaging technologies that first revealed the dynamic nature of ERK, as well as current challenges in biosensor data analysis. We also discuss advances in mathematical models for the mechanisms of ERK dynamics, including receptor-level regulation, negative feedback, cooperativity, and paracrine signaling. While hurdles still remain, it is clear that higher temporal and spatial resolution provide mechanistic insights into pathway circuitry. Exciting new algorithms and advanced computational tools enable quantitative measurements of single-cell ERK activation, which in turn inform better models of pathway behavior. However, the fact that current models still cannot fully recapitulate the diversity of ERK responses calls for a deeper understanding of network structure and signal transduction in general.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Transdução de Sinais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fosforilação , Sistema de Sinalização das MAP Quinases , Diferenciação Celular
18.
Biochem J ; 480(23): 1909-1928, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38038975

RESUMO

Signaling by the extracellular signal-regulated kinase (ERK) pathway controls many cellular processes, including cell division, death, and differentiation. In this second installment of a two-part review, we address the question of how the ERK pathway exerts distinct and context-specific effects on multiple processes. We discuss how the dynamics of ERK activity induce selective changes in gene expression programs, with insights from both experiments and computational models. With a focus on single-cell biosensor-based studies, we summarize four major functional modes for ERK signaling in tissues: adjusting the size of cell populations, gradient-based patterning, wave propagation of morphological changes, and diversification of cellular gene expression states. These modes of operation are disrupted in cancer and other related diseases and represent potential targets for therapeutic intervention. By understanding the dynamic mechanisms involved in ERK signaling, there is potential for pharmacological strategies that not only simply inhibit ERK, but also restore functional activity patterns and improve disease outcomes.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Neoplasias , Humanos , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Transdução de Sinais , Fosforilação , Sistema de Sinalização das MAP Quinases
19.
PLoS One ; 18(12): e0295903, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38109303

RESUMO

Traumatic brain injury (TBI) occurs worldwide and is associated with high mortality and disability rate. Apoptosis induced by TBI is one of the important causes of secondary injury after TBI. Notoginsenoside R1 (NGR1) is the main phytoestrogen extracted from Panax notoginseng. Many studies have shown that NGR1 has potent neuroprotective, anti-inflammatory, and anti-apoptotic properties and is effective in ischemia-reperfusion injury. Therefore, we investigated the potential neuroprotective effects of NGR1 after TBI and explored its molecular mechanism of action. A rat model of TBI was established using the controlled cortical impact (CCI) method. The expression levels of Bcl-2, Bax, caspase 3, and ERK1/2-related molecules in the downstream pathway were also detected by western blotting. The expression levels of pro-inflammatory cytokines were detected by real-time quantitative PCR. Nissl staining was used to clarify the morphological changes around the injury foci in rats after TBI. Fluoro-Jade B (FJB) and terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) fluorescence staining were used to detect the apoptosis of neural cells in each group of rats. The results showed that NGR1 administration reduced neurological deficits after TBI, as well as brain edema and brain tissue apoptosis. It also significantly inhibited the expression of pro-inflammatory cytokines. Furthermore, NGR1 decreased the expression levels of extracellular signal-regulated kinase (ERK) and p-RSK1, which are phosphorylated after trauma. This study suggests that NGR1 can improve neuronal apoptosis in brain injury by inhibiting the ERK signaling pathway. NGR1 is a potential novel neuroprotective agent for the treatment of secondary brain injury after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Fármacos Neuroprotetores , Ratos , Animais , Sistema de Sinalização das MAP Quinases , Ratos Sprague-Dawley , Transdução de Sinais , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Apoptose , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Citocinas/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
20.
Signal Transduct Target Ther ; 8(1): 455, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38105263

RESUMO

Metastatic dissemination of solid tumors, a leading cause of cancer-related mortality, underscores the urgent need for enhanced insights into the molecular and cellular mechanisms underlying metastasis, chemoresistance, and the mechanistic backgrounds of individuals whose cancers are prone to migration. The most prevalent signaling cascade governed by multi-kinase inhibitors is the mitogen-activated protein kinase (MAPK) pathway, encompassing the RAS-RAF-MAPK kinase (MEK)-extracellular signal-related kinase (ERK) pathway. RAF kinase is a primary mediator of the MAPK pathway, responsible for the sequential activation of downstream targets, such as MEK and the transcription factor ERK, which control numerous cellular and physiological processes, including organism development, cell cycle control, cell proliferation and differentiation, cell survival, and death. Defects in this signaling cascade are associated with diseases such as cancer. RAF inhibitors (RAFi) combined with MEK blockers represent an FDA-approved therapeutic strategy for numerous RAF-mutant cancers, including melanoma, non-small cell lung carcinoma, and thyroid cancer. However, the development of therapy resistance by cancer cells remains an important barrier. Autophagy, an intracellular lysosome-dependent catabolic recycling process, plays a critical role in the development of RAFi resistance in cancer. Thus, targeting RAF and autophagy could be novel treatment strategies for RAF-mutant cancers. In this review, we delve deeper into the mechanistic insights surrounding RAF kinase signaling in tumorigenesis and RAFi-resistance. Furthermore, we explore and discuss the ongoing development of next-generation RAF inhibitors with enhanced therapeutic profiles. Additionally, this review sheds light on the functional interplay between RAF-targeted therapies and autophagy in cancer.


Assuntos
Neoplasias Pulmonares , Melanoma , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinases raf/genética , Quinases raf/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...