Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.027
Filtrar
1.
Plant Sci ; 325: 111490, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36216297

RESUMO

5-Aminolevulinic acid (ALA) is a new natural plant growth regulator that inhibits abscisic acid (ABA)-induced stomatal closure. Studies have shown that protein phosphatase 2 A (PP2A) is involved in ALA-ABA antagonistically regulating stomatal movement; however, the molecular mechanisms underlying remain unclear. Here, we report that ALA promoted MdPP2A activity and the MdPP2AC expression in the epidermis of apple (Malus × domestica Borkh. cv. Fuji) leaves. Y2H (Yeast two hybrid), BiFC (Bimolecular fluorescence complement), and FLC (Firefly luciferase complementation imaging assay) analysis showed that MdPP2AC interacted with MdPTPA, a phosphortyrosyl phosphatase activator. Furthermore, the transient overexpression or interference-expression of MdPTPA transgenic apple leaves were developed. The results showed that overexpression of MdPTPA promoted stomatal opening by reducing Ca2+ and H2O2 but increasing flavonols in guard cells. Conversely, when the MdPTPA was silenced in transient transgenic apple leaves, the Ca2+, H2O2 and flavonols in guard cells and stomatal movement were completely conversed. In the transgenic apple leaves, exogenous ALA stimulated PP2A but repressed SnRK2.6 activity, while the responses are the same as that in the wild type. Therefore, we propose that MdPTPA, which increases the PP2A activity, mediates ALA signaling to promote stomatal opening in apple leaves.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Malus , Proteínas de Arabidopsis/metabolismo , Estômatos de Plantas/fisiologia , Malus/genética , Malus/metabolismo , Arabidopsis/metabolismo , Peróxido de Hidrogênio/metabolismo , Ácido Aminolevulínico/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Folhas de Planta/metabolismo , Flavonóis/metabolismo
2.
Plant Sci ; 325: 111496, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36240910

RESUMO

The dominant Co locus controls the columnar growth phenotype of apple (Malus × domestica) trees. Candidate gene MdCo31, encoding 2-oxoglutarate-dependent dioxygenase, causes dwarf growth with short internodes in transgenic plants by reducing the abundance of biologically active gibberellin. However, the pathway regulating MdCo31 in the dwarfism of apple trees remains unclear. In this study, expression of MdCo31 was proved to be negatively correlated with internode length in F1 populations created by crossing columnar parents, and with dwarfism in transgenic apple plantlets. Yeast (Saccharomyces cerevisiae) two-hybrid screening identified the RNA polymerase II transcription subunit MdMED32 as putative interactor of MdCo31. Bimolecular fluorescence complementation, co-immunoprecipitation, and dual-luciferase reporter assays confirmed this interaction both in vivo and in vitro. Ectopic expression of MdMED32 in Nicotiana tabacum led to a dwarf phenotype, similar to that of MdCo31 transgenic apple plants. Expression of GA2ox1 and GA20ox1, encoding key enzymes of gibberellin metabolism, was upregulated in transgenic plants. Transient transcriptional activity demonstrated that MdMED32 functioned as an activator, promoting expression of MdGA2ox1 and MdGA20ox1. These findings indicate that the interaction between MdCo31 and MdMED32 functions in the regulation of internode length in columnar apple.


Assuntos
Nanismo , Malus , Malus/metabolismo , Giberelinas/metabolismo , Regulação da Expressão Gênica de Plantas , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36293472

RESUMO

The photoprotective role of anthocyanin remains controversial. In this study, we explored the effects of anthocyanin on photosynthesis and photoprotection using transgenic 'Galaxy Gala' apple plants overexpressing MdMYB10 under high light stress. The overexpression of MdMYB10 dramatically enhanced leaf anthocyanin accumulation, allowing more visible light to be absorbed, particularly in the green region. However, through post-transcriptional regulation, anthocyanin accumulation lowered leaf photosynthesis in both photochemical reaction and CO2 fixation capacities. Anthocyanin accumulation also led to a decreased de-epoxidation state of the xanthophyll cycle and antioxidant capacities, but this is most likely a response to the light-shielding effect of anthocyanin, as indicated by a higher chlorophyll concentration and lower chlorophyll a/b ratio. Under laboratory conditions when detached leaves lost carbon fixation capacity due to the limitation of CO2 supply, the photoinhibition of detached transgenic red leaves was less severe under strong white, green, or blue light, but it became more severe in response to strong red light compared with that of the wild type. In field conditions when photosynthesis was performed normally in both green and transgenic red leaves, the degree of photoinhibition was comparable between transgenic red leaves and wild type leaves, but it was less severe in transgenic young shoot bark compared with the wild type. Taken together, these data show that anthocyanin protects plants from high light stress by absorbing excessive visible light despite reducing photosynthesis.


Assuntos
Fabaceae , Malus , Antocianinas/metabolismo , Clorofila A , Malus/genética , Malus/metabolismo , Antioxidantes/metabolismo , Dióxido de Carbono , Fotossíntese/fisiologia , Clorofila , Folhas de Planta/metabolismo , Luz , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Fabaceae/metabolismo , Xantofilas/metabolismo
4.
Int J Mol Sci ; 23(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36232500

RESUMO

Drought resistance in plants is influenced by multiple signaling pathways that involve various transcription factors, many target genes, and multiple types of epigenetic modifications. Studies on epigenetic modifications of drought focus on DNA methylation and histone modifications, with fewer on chromatin remodeling. Changes in chromatin accessibility can play an important role in abiotic stress in plants by affecting RNA polymerase binding and various regulatory factors. However, the changes in chromatin accessibility during drought in apples are not well understood. In this study, the landscape of chromatin accessibility associated with the gene expression of apple (GL3) under drought conditions was analyzed by Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq) and RNA-seq. Differential analysis between drought treatment and control identified 23,466 peaks of upregulated chromatin accessibility and 2447 peaks of downregulated accessibility. The drought-induced chromatin accessibility changed genes were mainly enriched in metabolism, stimulus, and binding pathways. By combining results from differential analysis of RNA-seq and ATAC-seq, we identified 240 genes with higher chromatin accessibility and increased gene expression under drought conditions that may play important functions in the drought response process. Among them, a total of nine transcription factor genes were identified, including ATHB7, HAT5, and WRKY26. These transcription factor genes are differentially expressed with different chromatin accessibility motif binding loci that may participate in apple response to drought by regulating downstream genes. Our study provides a reference for chromatin accessibility under drought stress in apples and the results will facilitate subsequent studies on chromatin remodelers and transcription factors.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Malus , Cromatina/genética , RNA Polimerases Dirigidas por DNA/genética , Secas , Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Malus/genética , Malus/metabolismo , RNA-Seq , Fatores de Transcrição/genética , Transposases/genética
5.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36232948

RESUMO

Patulin (PAT) is a common mycotoxin in the food industry, and is found in apple products in particular. Consumption of food or feed contaminated with PAT can cause acute or chronic toxicity in humans and animals. Lactiplantibacillus plantarum CCFM1287 is a probiotic strain that effectively degrades PAT in PBS and food systems. In this study, it was found that the concentration of PAT (50 mg/L) in MRS medium decreased by 85.09% during the first stages of CCFM1287 growth, and this change was consistent with the first-order degradation kinetic model. Meanwhile, the regulation of oxidative stress by L. plantarum CCFM1287 in response to PAT exposure and metabolic changes that occur during PAT degradation were investigated. The degree of intracellular damage was attenuated after 16 h of exposure compared to 8 h. Meanwhile, metabolomic data showed that 30 and 29 significantly different metabolites were screened intracellularly in the strain after 8 h and 16 h of PAT stress at 50 mg/L, respectively. The results of pathway enrichment analysis suggested that the purine metabolic pathway was significantly enriched at both 8 h and 16 h. However, as is consistent with the performance of the antioxidant system, the changes in Lactiplantibacillus diminished with increasing time of PAT exposure. Therefore, this study helps to further explain the mechanism of PAT degradation by L. plantarum CCFM1287.


Assuntos
Malus , Patulina , Probióticos , Animais , Antioxidantes , Humanos , Malus/metabolismo , Patulina/metabolismo , Patulina/toxicidade , Purinas
6.
J Plant Physiol ; 279: 153822, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36244263

RESUMO

Nitrogen is one of the macroelements required for plant growth and development and the identification of candidate genes involved in nitrogen deficiency stress is of great importance to the sustainable development of agriculture. Here, we found that the color of apple leaves changed from dark green to yellow-green, the malondialdehyde (MDA) content, soluble protein content, and proline content significantly increased, the chlorophyll content significantly decreased in response to nitrate deficiency stress. According to the physiological and biochemical changes of apple leaves during nitrate deficiency stress, nitrogen deficiency stress was divided into two stages: early nitrogen deficiency stage (ES) and late nitrogen deficiency stage (LS). Transcriptome sequencing was performed in these two stress stages. 5773 differential expression genes (DEGs) were identified in the early nitrogen deficiency stress stage and 6130 DEGs were identified in the late nitrogen deficiency stress stage. Functional analysis of these DEGs revealed that a large number of DEGs were enriched in 'porphyrin and chlorophyll metabolic' pathways, the 'photosynthesis' pathway, the 'photosynthesis-antenna protein' pathway, and the 'ABA', 'ETH', and 'JA' signal transduction pathways, and the metabolic networks of these pathways were constructed. In addition, overexpression of MdNAC4 weakened the tolerance of apple calli to nitrogen deficiency stress. Taken together, our results reveal possible pathways for apple adaptation to nitrogen deficiency stress and identify the function of MdNAC4, a key transcription factor regulating nitrogen deficiency stress, which enriches the molecular mechanism of apple adapting to a nitrogen deficiency environment.


Assuntos
Malus , Malus/genética , Malus/metabolismo , Nitrogênio/metabolismo , Regulação da Expressão Gênica de Plantas , Nitratos/metabolismo , Perfilação da Expressão Gênica/métodos , Clorofila/metabolismo , Transcriptoma , Folhas de Planta/genética , Folhas de Planta/metabolismo
7.
Food Res Int ; 161: 111884, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36192997

RESUMO

This work focuses on understanding the action of a novel seaweed extract with anti-browning functionality in fresh-cut apples. Organic fresh-cut apples were coated by immersion in an aqueous Codium tomentosum seaweed extract (0.5 % w/v), packaged under ambient atmospheric conditions in plastic bags, and stored at 4 ˚C for 15 days. Browning-related enzymatic activities, as well as targeted gene expression related to superficial browning, were monitored immediately after coating and followed at five-day intervals, until a final storage period of 15 days. Gene expression was particularly affected one hour after coating application (day 0), with no expression registered for peroxidase (mdPOD) and phenylalanine ammonia-lyase (mdPAL) genes in the coated samples. A reduction in polyphenol oxidase expression levels was also observed. After 15 days of storage, the coated samples developed lower browning levels and presented distinctly lower activities of polyphenol oxidase and peroxidase - the oxidative enzymes predominantly involved in enzymatic browning. The observed post-coating suppression of mdPAL and mdPOD expression, and reduction in mdPPO expression, suggest that the seaweed C. tomentosum extract delays the activation of these genes, and decreases enzymatic activity, which in turn accounts for the coating's anti-browning effect.


Assuntos
Malus , Catecol Oxidase/genética , Catecol Oxidase/metabolismo , Malus/metabolismo , Peroxidase/metabolismo , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Extratos Vegetais/farmacologia , Plásticos
8.
Sheng Wu Gong Cheng Xue Bao ; 38(10): 3728-3739, 2022 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-36305406

RESUMO

The PEPC family proteins are ubiquitous in various plants and play an important role in the process of photosynthetic carbon assimilation and have many non-photosynthetic biological functions. However, PEPC genes have not been reported in apple. In this study, the members of apple MdPEPC family were identified based on the new apple genome data by bioinformatics analysis, and their expression patterns in different tissues and the apple axillary bud transcriptome treated by decapitation and TDZ (cytokinin) were analyzed in order to explore the role of MdPEPC genes in apple axillary bud outgrowth. The results showed that 6 MdPEPC family members were identified in apple, which distributed on 6 different chromosomes, and had similar physicochemical characteristics. Phylogenetic tree and sequence alignment analysis showed that the MdPEPC could be divided into two subgroups (Group Ⅰ and Group Ⅱ), in which four members in MdPEPC family were clustered into Group Ⅰ, belonging to plant-type PEPCs. However, MdPEPC4 and MdPEPC5 were clustered into Group Ⅱ with AtPPC4, belonging to bacterial-type PEPCs. There were 7 pairs of fragments repeats among MdPEPC members, but no tandem repeats existed. The promoter cis-acting element analysis showed that MdPEPC genes were not only affected by light and stress, but also regulated by multiple hormones. The expression profiles showed that all MdPEPCs except MdPEPC4 and MdPEPC5 were expressed in different apple tissues. Transcriptome data analysis showed that the expression levels of MdPEPC1 and MdPEPC3 were up-regulated after decapitation and TDZ treatment, whereas MdPEPC2 was significantly down-regulated at 48 h after treatments. In conclusion, MdPEPC1, MdPEPC2 and MdPEPC3 were selected as the candidate genes involved in axillary bud outgrowth regulation for further study.


Assuntos
Decapitação , Malus , Malus/genética , Malus/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Família , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Sci Rep ; 12(1): 15830, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138114

RESUMO

Pectin is one of the main structural components in fruits and an indigestible fiber made of D-galacturonic acid units with α (1-4) linkage. This study investigates the microbial degradation of pectin in apple waste and the production of bioactive compounds. Firstly, pectin-degrading bacteria were isolated and identified, then pectinolytic activity was assessed by DNS. The products were evaluated by TLC and LC-MS-ESI. The antioxidative effects were investigated using DPPH and anti-cancer effects and cytotoxicity were analyzed by MTT and flow cytometry. In this study two new bacterial isolates, Alcaligenes faecalis AGS3 and Paenibacillus polymyxa S4 with the pectinolytic enzyme were introduced. Structure analysis showed that the products of enzymatic degradation include unsaturated mono, di, tri, and penta galacturonic acids with 74% and 69% RSA at 40 mg/mL for A. faecalis and P. polymyxa S4, respectively. The results of anti-tumor properties on MCF-7 cells by MTT assay, for products of AGS3 and S4 at 40 mg/mL after 48 h, showed 7% and 9% survival, respectively. In the flow cytometric assessment, the compounds of AGS3 at 40 mg/mL were 100% lethal in 48 h and regarding S4 isolate caused 98% death. Cytotoxicity evaluation on L-929 cells showed no significant toxicity on living cells.


Assuntos
Alcaligenes faecalis , Malus , Paenibacillus polymyxa , Paenibacillus , Alcaligenes faecalis/metabolismo , Ácidos Hexurônicos , Malus/metabolismo , Paenibacillus/metabolismo , Paenibacillus polymyxa/metabolismo , Pectinas/metabolismo , Poligalacturonase/metabolismo
10.
Int J Mol Sci ; 23(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36077267

RESUMO

Nutrient stress harms plant growth and yield. Melatonin is a biologically active, multifunctional hormone that relieves abiotic stress in plants. Although previous studies have shown that melatonin plays an important role in improving nutrient-use efficiency, the mechanism of its regulation of nutrient stress remains unclear. In this study, melatonin was applied to apple plants under nutrient stress, and morphological indices, physiological and biochemical indices, and stomatal morphology were evaluated. The response of apple plants to nutrient deficiency and the melatonin mechanism to alleviate nutrient stress were analyzed by combining ionome, transcriptome, and metabolome. The results showed that exogenous melatonin significantly alleviated the inhibitory effect of nutritional stress on the growth of apple plants by regulating stomatal morphology, improving antioxidant enzyme activity, promoting ion absorption, and utilizing and changing the absorption and distribution of minerals throughout the plant. The transcriptome results showed that melatonin alleviated nutrient stress and promoted nutrient absorption and utilization by regulating glutathione metabolism and upregulating some metal ion transport genes. The metabolome results indicated that levels of oxalic acid, L-ascorbic acid, anthocyanins (cyanidin-3-O-galactoside), lignans (lirioresinol A and syringaresinol), and melatonin significantly increased after exogenous melatonin was applied to plants under nutrient stress. These differentially expressed genes and the increase in beneficial metabolites may explain how melatonin alleviates nutrient stress in plants.


Assuntos
Malus , Melatonina , Antocianinas/metabolismo , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Malus/genética , Malus/metabolismo , Melatonina/metabolismo , Melatonina/farmacologia , Nutrientes , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Transcriptoma
11.
Plant Physiol Biochem ; 189: 94-103, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36063740

RESUMO

Iron (Fe) deficiency affects plant growth and development. The proton pump interactor (PPI) in plants responds to multiple abiotic stresses, although it has not been well characterized under Fe deficiency stress. In this study, we systematically identified and analyzed the PPI gene family in apple. Three PPI candidate genes were found, and they contained 318-1349 amino acids and 3-7 introns. Under Fe deficiency stress, we analyzed the expression of all the PPI genes in roots of apple rootstock Malus xiaojinensis. Expression of the gene MD11G1247800, designated PPI1, is obviously induced by Fe deficiency treatment in M. xiaojinensis. We first cloned MxPPI1 from M. xiaojinensis and determined its subcellular localization, which indicated that it is localized in the cell membrane and nucleus in tobacco. We found that the level of expression of the MxPPI1 protein increased significantly under Fe deficiency stress in apple calli. Moreover, overexpressing MxPPI1 in apple calli enhanced the activities of ferric chelate reductase and H+-ATPase, H+ secretion, MxHA2 gene expression and total Fe content when compared with the wild type calli. We further found that MxPPI1 interacted with MxHA2 using bimolecular fluorescence complementation and luciferase complementation assays. Overall, we demonstrated that MxPPI1 interacts with MxHA2 to enhance the activity of H+-ATPase to regulate Fe absorption in M. xiaojinensis.


Assuntos
Malus , Aminoácidos/metabolismo , Regulação da Expressão Gênica de Plantas , Ferro/metabolismo , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Bombas de Próton/metabolismo
12.
Plant Physiol Biochem ; 189: 115-125, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36084527

RESUMO

Epidermal waxes are part of the outermost hydrophobic structures of apples and play a significant role in enhancing apple resistance and improving fruit quality. The biosynthetic precursors of epidermal waxes are very long-chain fatty acids (VLCFAs), which are made into different wax components through various wax synthesis pathways. In Arabidopsis thaliana, the AtLACS1 protein can activate the alkane synthesis pathway to produce very long-chain acyl CoAs (VLC-acyl-CoAs), which provide substrates for wax synthesis, from VLCFAs. The apple protein MdLACS1, encoded by the MdLACS1 gene, belongs to the AMP-binding superfamily and has long-chain acyl coenzyme A synthase activity, but its function in apple remains unclear. Here, we identified MdLACS1 in apple (Malus × domestica) and analyzed its function. Our results suggest that MdLACS1 promotes wax synthesis and improves biotic and abiotic stress tolerance, which were directly or indirectly dependent on wax. Our study further refines the molecular mechanism of wax biosynthesis in apples and elucidates the physiological function of wax in resistance to external stresses. These findings provide candidate genes for the synergistic enhancement of apple fruit quality and stress tolerance.


Assuntos
Arabidopsis , Malus , Acil Coenzima A/metabolismo , Monofosfato de Adenosina/metabolismo , Alcanos/metabolismo , Arabidopsis/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Malus/genética , Malus/metabolismo , Epiderme Vegetal/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Ceras/metabolismo
13.
Food Res Int ; 160: 111741, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36076423

RESUMO

Apples (cv. Golden Delicious) were used as the materials to investigate methyl jasmonate (MeJA) dipping on quality parameters, organic acids metabolism and GABA shunt during storage at 21 ± 1 °C and 75 ± 5 % relative humidity. Results demonstrated that MeJA treatment reduced mass loss, respiratory intensity and ethylene release, and maintained higher flesh firmness and soluble solid content of apples. MeJA also decreased malic acid content, increased succinic and tartaric acids contents, and inhibited cytoplasmic aconitase (Cyt-ACO), NADP-malate (NADP-ME), phosphoenolpyruvate dehydrogenase (PEPC), mitochondrial citrate synthase (Mit-CS), glutamate dehydrogenase (GAD), and GABA transferase (GABA-T) activities in apples. NADP-isocitrate dehydrogenase (NADP-IDH), mitochondrial cis-aconitase (Mit-ACO), and cytoplasmic NAD-malate dehydrogenase (CytNAD-MDH) activities in apples were also enhanced by MeJA dipping. Moreover, MeJA dipping enhanced MdCytNAD-MDH and MdNADP-IDH expressions, and down-regulated MdGAD, MdGABA-T, MdNADP-ME, MdPEPC, MdCyt-ACO and MdMit-CS expressions in apples. These results suggest that MeJA dipping can maintain storage quality of "Golden Delicious" apples by regulating organic acids metabolism and GABA shunt.


Assuntos
Malus , Acetatos , Aconitato Hidratase/metabolismo , Ciclopentanos , Frutas/metabolismo , Malus/metabolismo , NADP/metabolismo , Oxilipinas , Ácido gama-Aminobutírico
14.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142387

RESUMO

The study aimed to evaluate the effect of dried apple pomace (DAP) as a feed additive on the enzymatic activity and non-enzymatic compounds belonging to the antioxidant system in cattle rumen fluid. The experiment included 4 Polish Holstein-Friesian cannulated dairy cows and lasted 52 days. The control group was fed with the standard diet, while in the experimental group, 6% of the feedstuff was replaced by dried apple pomace. After the feeding period, ruminal fluid was collected. The spectrophotometric technique for the activity of lysosomal enzymes, the content of vitamin C, polyphenols, and the potential to scavenge the free DPPH radical was used. The enzyme immunoassay tests (ELISA) were used to establish the activity of antioxidants enzymes and MDA. Among the rumen aminopeptidases, a significant reduction (p < 0.01) from 164.00 to 142.00 was observed for leucyl-aminopeptidase. The activity of glycosidases was decreased for HEX (from 231.00 to 194.00) and ß-Glu (from 1294.00 to 1136.00), while a significant statistically increase was noticed for BGRD (from 31.10 to 42.40), α-Glu (from 245.00 to 327.00), and MAN (from 29.70 to 36.70). Furthermore, the activity of catalase and GSH (p < 0.01) was inhibited. In turn, the level of vitamin C (from 22.90 to 24.10) and MDA (from 0.36 to 0.45) was statistically higher (p < 0.01). The most positive correlations were observed between AlaAP and LeuAP (r = 0.897) in the aminopeptidases group and between ß-Gal and MAN (r = 0.880) in the glycosidases group. Furthermore, one of the most significant correlations were perceived between SOD and AlaAP (r = 0.505) and AcP (r = 0.450). The most negative correlation was noticed between α-Gal and DPPH (r = -0.533) based on these observations. Apple pomace as a feed additive has an influence on lysosomal degradation processes and modifies oxidation-reduction potential in the rumen fluid. Polyphenols and other low-weight antioxidant compounds are sufficient to maintain redox balance in the rumen.


Assuntos
Malus , Rúmen , Aminopeptidases/metabolismo , Ração Animal/análise , Animais , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Catalase/metabolismo , Bovinos , Dieta/veterinária , Feminino , Fermentação , Glicosídeo Hidrolases/metabolismo , Humanos , Lactação , Malus/metabolismo , Leite/química , Polifenóis/farmacologia , Rúmen/química , Superóxido Dismutase/metabolismo
15.
Int J Mol Sci ; 23(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36142696

RESUMO

Columnar apple was an important germplasm resource to develop compact cultivars for labor-saving cultivation and to study fruit tree architecture. MdCoL is a strong candidate gene for controlling the columnar phenotype in apple. In this study, a 2000 bp upstream region of MdCoL was cloned as a full-length promoter, named MdCoLp1. To gain a better understanding of the characterization of the MdCoL promoter, cis-acting elements and the binding sites of transcription factors were predicted and analyzed, and four binary expression vectors consisting of the GUS reporter gene under the control of the MdCoL promoter was transformed into Arabidopsis thaliana to analyze the response to abscisic acid (ABA), brassinosteroid (BR) and gibberellic acid (GA3) of MdCoL promoters. Multiple transcription factors involving TCP, BEL1 and BES1/BZR1 and other transcription factor (TF) binding sites were predicted on the promoter of MdCoL. Histochemical staining showed that both full-length and 5' truncated promoters could initiate GUS expression. The GUS activity was the most in leaf and stem, and mainly concentrated in the fibrovascular tissue, followed by root, and the least activity was observed in silique and flower. In addition, MdCoL expression was mainly localized in the quiescent center (QC) and lateral root growing point of root tip and the vascular tissue of stem and leaf by in situ hybridization. The results of exogenous hormones treatment showed that ABA and BR could activate the activity of the MdCoL promoter, while GA3 had opposite effects. In columnar apple seedlings, ABA treatment could upregulate the expression of MdCoL, but GA3 and BR restrained the transcription level of MdCoL. These results provide the foundation for deciphering the regulatory network of hormones affecting MdCoL transcription.


Assuntos
Arabidopsis , Malus , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/genética , Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas , Hormônios/metabolismo , Malus/genética , Malus/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
J Plant Physiol ; 277: 153808, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36088781

RESUMO

Manganese (Mn) toxicity in soil is a widely observed phenomenon, which seriously restricts growth, quality, and yield of various crops and fruits including apples. However, mechanisms underlying the regulation of polyamines (PAs) by brassinosteroids (BRs) to improve tolerance to Mn stress are still unclear. In this study, we investigated the effects of 2,4-epibrassinolide (EBL; a BR) on the expression of genes involved in BR signaling pathway, Mn accumulation, PAs-mediated responses (PA precursor levels, metabolic enzymes, and genes), and growth parameters in Mn-stressed Malus robusta Rehd. EBL application significantly modulated the expressions of genes related to BR signaling (MdBRI, MdBSK, etc.) and reduced Mn accumulation, along with improving the rate of increase in root length and plant height, relative water content, chlorophyll content, maximum photochemical efficiency of PSII (Fv/Fm), and actual photochemical efficiency (ΦPSII) and decreasing electrical conductivity. Furthermore, EBL application significantly reduced putrescine (Put) accumulation and increased spermine (Spm) content and (Spd + Spm)/Put ratio. EBL weakened ornithine (Orn) pathway, decreased ornithine decarboxylase (ODC) activity, and increased biosynthesis of Spm from Put via elevating the PA oxidase (PAO) activity and expression of MdSPDS, MdSPMS, and MdPAO. The trends for free, PS-conjugated, and PIS-bound PAs were similar to that of total PAs, except that no significant change was observed in free Spm, PS-conjugated Spd, and Spm, as well as PIS-bound Spd. This study revealed that BR-regulated PAs help in mitigating Mn toxicity and clarified the mechanisms of regulation of PAs by BRs in apple trees.


Assuntos
Brassinosteroides , Malus , Clorofila , Malus/metabolismo , Manganês/toxicidade , Ornitina , Ornitina Descarboxilase , Oxirredutases , Poliaminas/metabolismo , Putrescina , Solo , Espermina/metabolismo , Água
17.
Carbohydr Polym ; 296: 119994, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36088015

RESUMO

Apple xyloglucan (XyG) structural features (molecular weight and building motifs) were studied in relation with the hemicellulose interaction with cellulose nanofiber (CNF) through adsorption isotherm, high performance size exclusion chromatography and high-performance anion exchange chromatography analyses. Up to 75.6 µg of apple XyG adsorbed/mg of CNF. XyG adsorption depended on both Mw and XyG/CNF ratio. The adsorption capacity increased with Mw irrespectively of XyG/CNF ratio. At XyG/CNF ratio > 0.05, the adsorption of high Mw populations (2.0 × 105, 7.9 × 104 g mol-1) gradually ceased, while it kept increasing for low Mw populations (2.6 × 104, 1.2 × 104 g mol-1). The unbranched glucan segments and the galactosylated XLLG motif showed the highest binding affinity to CNF. Most of the XLLG motif was found in "loops and tails", whereas most of the XyG unbranched glucan segments interact directly with CNF.


Assuntos
Malus , Nanofibras , Adsorção , Celulose/química , Glucanos/química , Malus/metabolismo , Peso Molecular , Xilanos
18.
Plant Cell Environ ; 45(11): 3233-3248, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36043225

RESUMO

TEOSINTE BRANCHED 1/CYCLOIDEA/PCF (TCP) transcription factors play crucial roles in plant abiotic stresses. However, little is known about the role of TCP genes in the drought stress tolerance of apple. Here, we found that abscisic acid (ABA) and drought treatment reduced the expression of MdTCP46, and overexpression of MdTCP46 reduced ABA sensitivity and drought stress resistance. MdTCP46 was found to interact with MdABI5 both in vitro and in vivo, and this interaction was essential for drought resistance via the ABA-dependent pathway. Overexpression of MdABI5 enhanced ABA sensitivity and drought stress resistance by directly activating the expression of MdEM6 and MdRD29A. MdTCP46 significantly suppressed the transcriptional activity of MdABI5, thereby negatively regulating MdABI5-mediated ABA signalling and drought response. Overall, our results demonstrate that the MdTCP46-MdABI5-MdEM6/MdRD29A regulatory module plays a key role in the modulation of ABA signalling and the drought stress response. These findings provide new insight into the role of MdTCP46 in ABA signalling and abiotic stress responses.


Assuntos
Arabidopsis , Malus , Ácido Abscísico/metabolismo , Arabidopsis/genética , Secas , Regulação da Expressão Gênica de Plantas , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Tree Physiol ; 42(11): 2306-2318, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-35951430

RESUMO

In polycarpic plants, meristem fate varies within individuals in a given year. In perennials, the proportion of floral induction (FI) in meristems also varies between consecutive years and among genotypes of a given species. Previous studies have suggested that FI of meristems could be determined by the within-plant competition for carbohydrates and by hormone signaling as key components of the flowering pathway. At the genotypic level, variability in FI was also associated with variability in architectural traits. However, the part of genotype-dependent variability in FI that can be explained by either tree architecture or tree physiology is still not fully understood. This study aimed at deciphering the respective effect of architectural and physiological traits on FI variability within apple trees by comparing six genotypes with contrasted architectures. Shoot type demography as well as the flowering and fruit production patterns were followed over 6 years and characterized by different indexes. Architectural morphotypes were then defined based on architectural traits using a clustering approach. For two successive years, non-structural starch content in leaf, stem and meristems, and hormonal contents (gibberellins, cytokinins, auxin and abscisic acid) in meristems were quantified and correlated to FI within-tree proportions. Based on a multi-step regression analysis, cytokinins and gibberellins content in meristem, starch content in leaves and the proportion of long shoots in tree annual growth were shown to contribute to FI. Although the predictive linear model of FI was common to all genotypes, each of the explicative variables had a different weight in FI determination, depending on the genotype. Our results therefore suggest both a common determination model and a genotype-specific architectural and physiological profile linked to its flowering behavior.


Assuntos
Malus , Malus/metabolismo , Giberelinas/metabolismo , Citocininas/metabolismo , Árvores , Genótipo , Amido/metabolismo , Flores
20.
Plant Sci ; 324: 111433, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36029897

RESUMO

In the apple tree, insufficient flower bud production is an intractable challenge, and very little information is available in this field due to the fact that research done in this sector is very rare owing to its extended life cycles and low rate of genetic transformation. Here we display novel changes and events in spur buds of Malus × domestica trees after they were exposed to salicylic acid (SA) treatment during the flower induction period. We found a significant increase in morphological indexes, followed by a wider and well-defined shoot apical meristem in SA-treated spur buds. Additionally, we observed increased oxidative stress markers and enzymatic antioxidants in control-treated buds during the flower induction period, while non-enzymatic antioxidants were recorded higher in SA-treated buds. Maximum flowering was observed in SA-treated trees in the next year. Furthermore, ultra-high-performance liquid chromatography (u-HPLC) analysis displays that SA treatment enhances SA and indole acetic acid (IAA), while having an antagonistic effect on gibberellin (GA). At different time points, transcriptome analysis was conducted to analyze the transcriptional response of CK and SA treated buds. Pathway enrichment was detected in differentially expressed genes (DEGs). Agamous (AGL) and SQUAMOSA-promoter binding protein-like (SPL) family related flowering genes display a positive signal for the increased flowering in SA-treated trees, which confirms our findings. As far as we know, there is no report available on the response of spur buds to SA treatment during the flower induction period. This data provides a new theoretical reference for the management of apple tree flowering and also provides an essential basis for future analysis of the regulation and control of flowering in M. domestica.


Assuntos
Malus , Flores/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Malus/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Transdução de Sinais/genética , Transcriptoma , Árvores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...