Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.805
Filtrar
2.
Braz. j. biol ; 84: e251883, 2024. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1350313

RESUMO

Abstract The lower lignin content in plants species with energy potential results in easier cellulose breakdown, making glucose available for ethanol generation. However, higher lignin levels can increase resistance to insect attack. The objective of this work was to evaluate the susceptibility of a bmr-6 biomass sorghum (a mutant genotype with a lower concentration of lignin) to important pests of energy sorghum, Diatraea saccharalis and Spodoptera frugiperda. Experiments were performed in the laboratory and greenhouse to evaluate the development of these pests on the biomass sorghum bmr hybrids BR007, BR008, and TX635 and their respective conventional near-isogenic genotypes (without the bmr gene). The lignin content was higher in non-bmr hybrids, but the evaluated insect variables varied between treatments, not being consistent in just one hybrid or because it is bmr or not. The lowest survival of S. frugiperda was observed in the BR008 hybrid, both bmr and non-bmr. The S. frugiperda injury scores on plants in the greenhouse were high (>7) in all treatments. For D. saccharalis, there was no difference in larval survival in the laboratory, but in the greenhouse, the BR007 hybrid, both bmr and non-bmr, provided greater survival. Due the need to diversify the energy matrix and the fact that greater susceptibility of the bmr hybrids to either pests was not found in this study, these results hold promise for cultivation of these biomass sorghum hybrids for the production of biofuels.


Resumo O menor teor de lignina em espécies de plantas com potencial energético resulta na maior facilidade de quebra da celulose, disponibilizando glicose para geração de etanol. Porém, maiores teores de lignina representa um fator de resistência ao ataque de insetos. O objetivo deste trabalho foi avaliar como importantes pragas do sorgo energia, Diatraea saccharalis e Spodoptera frugiperda, se comportam quanto à alimentação e desempenho em sorgo bmr-6, um genótipo mutante com menor concentração de lignina. Foram realizados experimentos em laboratório e casa de vegetação, avaliando o desenvolvimento destas pragas nos híbridos de sorgo biomassa bmr 007, 008, TX635 e seus respectivos genótipos isogênicos convencionais (sem o gene bmr). O teor de lignina foi maior nos híbridos não bmr, mas nos parâmetros avaliados nos insetos, houve variação entre os tratamentos, não sendo consistente em apenas um híbrido e nem por ser ou não bmr. A menor sobrevivência de S. frugiperda foi verificada no híbrido BR008 tanto bmr quanto não bmr. As notas de injúria por S. frugiperda no sorgo em casa de vegetação foram altas (>7) em todos os tratamentos. Para D. saccharalis, não houve diferença significativa para a sobrevivência larval em laboratório, mas em casa de vegetação o híbrido BR007 tanto bmr quanto não bmr proporcionaram maior sobrevivência. Diante da necessidade de diversificar a matriz energética e o fato de que não foi comprovada neste estudo maior suscetibilidade dos híbridos bmr a ambas as pragas, estes resultados são promissores para o cultivo desses híbridos de sorgo biomassa para produção de biocombustíveis.


Assuntos
Animais , Saccharum/genética , Sorghum/genética , Mariposas , Spodoptera , Larva
3.
Braz. j. biol ; 84: e254479, 2024. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1355910

RESUMO

Abstract Earias vittellaFabricius, 1794 (Noctuidae: Lepidoptera) is deliberated to be one of the most destructive pests of cotton and okra vegetation in the world including Asia. The pest has established resistance to various synthetic insecticides. The use of bio-pesticide is one of the unconventional approaches to develop a vigorous ecosystem without harming non- target pests and beneficial natural insect fauna. In the present study, the toxicity levels of Citrullus colocynthis seed extract have been evaluated against the populations of E. vittellaunder standardized laboratory conditions. The toxic effects of C. colocynthis on development periods, protein contents and esterase activity of the life stages of E. vittella were also evaluated. The toxicity levels of methanol, ethanol, hexane, water and profenofos were evaluated on the 1st instar larvae of E. vittella. LC30 and LC80 concentrations exhibited the effectiveness of methanol-based C. colocynthis seed extract against 1st instar larvae of E. vitella. The enhanced larval and pupal periods were revealed in treated samples during the comparison with untreated samples. The intrinsic rate of increase, net reproductive rate in the LC30 and LC80 concentrations exposed larvae remained less than the control treatment. Fecundity, the esterase activity and protein contents were declined in LC30 and LC80 treated samples as compared to the control. The present findings suggest that C. colosynthis extracts based botanical insecticides are beneficial, ecosystem sustainable and can be integrated with insect management programs from environment safety perspective.


Resumo Earias vittella Fabricius, 1794 (Noctuidae: Lepidoptera) é considerada uma das pragas mais destrutivas de algodão e quiabo no mundo, incluindo a Ásia. Essa praga estabeleceu resistência a vários inseticidas sintéticos. O uso de biopesticidas é uma das abordagens não convencionais para desenvolver um ecossistema saudável sem prejudicar as pragas não alvo e a fauna natural benéfica de insetos. No presente estudo, os níveis de toxicidade do extrato de semente de Citrullus colocynthis foram avaliados nas populações de E. vittella em condições de laboratório padronizadas. Os efeitos tóxicos de C. colocynthis nos períodos de desenvolvimento, conteúdo de proteína e atividade esterase das fases de vida de E. vittella também foram avaliados. Os níveis de toxicidade de metanol, etanol, hexano, água e profenofós foram avaliados em larvas de 1º instar de E. vittella. As concentrações de LC30 e LC80 apresentaram eficácia do extrato de sementes de C. colocynthis à base de metanol contra larvas de 1º instar de E. vittella. Os períodos larval e pupal aumentados foram revelados nas amostras tratadas durante a comparação com as amostras não tratadas. A taxa intrínseca de aumento e a taxa reprodutiva líquida nas concentrações de larvas expostas LC30 e LC80 permaneceram menores do que o tratamento controle. A fecundidade, a atividade da esterase e o conteúdo de proteína diminuíram nas amostras tratadas com LC30 e LC80 em comparação com o controle. As presentes descobertas sugerem que os extratos de C. colocynthis à base de inseticidas botânicos são benéficos, sustentáveis ​​para o ecossistema e podem ser integrados com programas de manejo de insetos do ponto de vista da segurança ambiental.


Assuntos
Animais , Citrullus colocynthis , Inseticidas , Mariposas , Extratos Vegetais/farmacologia , Ecossistema , Larva
4.
Pestic Biochem Physiol ; 195: 105560, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37666596

RESUMO

Fructose 1, 6-diphosphate (FDP) is an endogenous intermediate in the glycolytic pathway, as well as an allosteric activator of phosphofructokinase (PFK). Based on the role in promoting glycolysis, FDP has been widely used as a therapeutic agent for mitigating the damage of endotoxemia and ischemia/reperfusion in clinical practice. However, the effect of exogenous FDP-induced glycolysis activation on insect carbohydrate metabolism and chitin synthesis remains largely unclear. Here, we investigated for the first time the effects of FDP-Na, an allosteric activator of PFK, on the growth and development of Hyphantria cunea larvae, a serious defoliator in agriculture and forestry, especially on glycolysis and chitin synthesis. The results showed that FDP-Na significantly restrained the growth and development of H. cunea larvae and resulted in larval lethality. After treatment with FDP-Na, hexokinase (HK), phosphofructokinase (PFK) and pyruvate kinase (PK) were significantly activated, and HcHK2, HcPFK, HcPK were dramatically upregulated, which suggested that FDP-Na enhanced glycolysis in H. cunea larvae. Meanwhile, FDP-Na also distinctly impacted chitin biosynthesis by disturbing transcriptions of genes in the chitin synthesis pathway, resulting in changes of chitin contents in the midgut and epidermis of H. cunea larvae. Therefore, we considered that FDP-Na caused the growth and development arrest, and impacted chitin biosynthesis, probably by disturbing in vivo glycolysis and carbohydrate metabolism in H. cunea larvae. The findings provide a new perspective on the mechanism by which glycolysis regulates insect growth and development, and lay the foundation for exploring the potential application of glycolysis activators in pest control as well.


Assuntos
Difosfatos , Mariposas , Animais , Larva , Glicólise , Fosfofrutoquinases , Quitina/farmacologia
5.
Pestic Biochem Physiol ; 195: 105542, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37666613

RESUMO

The cotton bollworm (Helicoverpa armigera) is a worldwide agricultural pest that infests many important crops. Pyrethroids targeting the voltage-gated sodium channel (VGSC) have been long used in the control of the cotton bollworm. Two amino acid substitutions (D1561V and E1565G) in H. armigera VGSC (HaVGSC) and the presence of a chimeric P450 gene (CYP337B3) have been documented to be associated with pyrethroid resistance. To understand the current occurrence of kdr mutations and the CYP337B3 gene in Chinese H. armigera populations, high-throughput amplicon sequencing was adopted to detect potential nucleotide variations in three fragments of the VGSC gene that cover 10 reported knockdown resistance (kdr) sites in insects, and gene-specific PCR was performed to examine the presence of CYP337B3 gene in H. armigera samples collected across China. The nucleotide variation analysis revealed a wealth of nucleotide variations in not only exons but also introns in the VGSC gene in Chinese H. armigera populations. However, neither previously reported kdr-conferring amino acid replacements nor other non-synonymous mutations were observed in a total of 1439 examined individuals. Population genetic analysis suggested that the H. armigera population in Nanchang, Jiangxi Province (JNC) had a moderate genetic differentiation from other populations, while no significant divergence was observed in other populations in northern and northwestern China. The CYP337B3 was present in all the examined individuals, indicating that CYP337B3 is extensively fixed in H. armigera populations across China. These results support that point mutations in VGSC are not a major factor involved in the current pyrethroid resistance in H. armigera. Instead, CYP337B3 plays a prevalent role in the development of resistance to pyrethroids in H. armigera.


Assuntos
Mariposas , Mutação Puntual , Animais , Mutação , China , Gossypium , Nucleotídeos , Mariposas/genética
6.
Pestic Biochem Physiol ; 195: 105541, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37666612

RESUMO

The CncC pathway regulates the expression of multiple detoxification genes and contributes to the detoxification and antioxidation in insects. Many studies have focused on the impacts of plant allelochemicals on the CncC pathway, whereas studies on the effects of pesticides on key genes involved in this pathway are very limited. In this study, the effects of different types of commonly used insecticides on the transcripts of CncC, Keap1, and Maf and multiple detoxification genes of Helicoverpa armigera were evaluated using real-time quantitative polymerase chain reaction. The results showed that 8 insecticides (bifenthrin, λ-cyhalothrin, chlorantraniliprole, cyantraniliprole, spinosad, indoxacarb, chlorfenapyr, tolfenpyrad, and thiacloprid) significantly induced the expression of CncC and 4 insecticides (cypermethrin, acetamiprid, thiacloprid, and indoxacarb) suppressed the expression of Keap1 both at 24 h and 48 h; meanwhile, the expression levels of Maf were induced by 5 insecticides (fenvalerate, chlorantraniliprole, cyantraniliprole, lufenuron, and tolfenpyrad) at 24 h or 48 h. Multiple detoxification genes, especially cytochrome P450s genes, showed different up-regulation after bifenthrin, λ-cyhalothrin, chlorantraniliprole, cyantraniliprole, indoxacarb, and spinosad treatment for 48 h. Our results suggest that the CncC pathway and detoxification genes can be activated by different insecticides in H. armigera. These results establish a foundation for further studies on the relationship between the CncC pathway and the detoxification genes in H. armigera.


Assuntos
Inseticidas , Mariposas , Animais , Inseticidas/toxicidade , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Mariposas/genética
7.
Pestic Biochem Physiol ; 195: 105565, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37666620

RESUMO

Insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) have been applied in sprayable formulations and expressed in transgenic crops for the control of pests in the field. When exposed to Bt proteins insect larvae display feeding cessation, yet the mechanism for this phenomenon remains unknown. In this study, we investigated the feeding behavior and underlying mechanisms of cotton bollworm (Helicoverpa armigera) larvae after exposure to the Cry1Ac protein from Bt. Three H. armigera strains were studied: the susceptible SCD strain, the C2/3-KO strain with HaABCC2 and HaABCC3 knocked out and high-level resistance to Cry1Ac (>15,000-fold), and the SCD-KI strain with a T92C point mutation in tetraspanin (HaTSPAN1) and medium-level resistance to Cry1Ac (125-fold). When determining the percentage of insects that continued feeding after various exposure times to Cry1Ac, we observed quick cessation of feeding in larvae from the susceptible SCD strain, whereas larvae from the C2/3-KO strain did not display feeding cessation. In contrast, larvae from the SCD-KI strain rapidly recovered from the initial feeding cessation. Histopathological analyses and qRT-PCR in midguts of SCD larvae after Cry1Ac exposure detected serious epithelial damage and significantly reduced expression of the neuropeptide F gene (NPF) and its potential receptor gene NPFR, which are reported to promote insect feeding. Neither epithelial damage nor altered NPF and NPFR expression appeared in midguts of C2/3-KO larvae after Cry1Ac treatment. The same treatment in SCD-KI larvae resulted in milder epithelial damage and subsequent repair, and a decrease followed by an initial increase in NPF and NPFR expression. These results demonstrate that the feeding cessation response to Cry1Ac in cotton bollworm larvae is closely associated with midgut epithelial damage and downregulation of NPF and NPFR expression. This information provides clues to the mechanism of feeding cessation in response to Bt intoxication and contributes to the mode of action of the Cry1Ac toxin in target pests.


Assuntos
Bacillus thuringiensis , Inseticidas , Mariposas , Animais , Larva , Bacillus thuringiensis/genética , Inseticidas/toxicidade , Animais Geneticamente Modificados , Gossypium , Mariposas/genética
8.
Pestic Biochem Physiol ; 195: 105557, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37666618

RESUMO

The diamondback moth (Plutella xylostella) is one of the most destructive lepidopteran pests of cruciferous vegetables. However, DBM has developed resistance to current chemical and biological insecticides used for its control, indicating the necessity for finding new insecticides against it. Bio-insecticides derived from plant extracts are eco-friendly alternatives to synthetic pesticides. The aims of this study were to evaluate the insecticidal activity of Consolida ajacis seed extracts against DBM, the underlying mechanism of the control effect of promising extracts, and the identification of the main insecticidal compounds of these extracts. The results showed that ethyl acetate extract of C. ajacis seed exhibited strong contact toxicity (LC50: 5.05 mg/mL), ingestion toxicity, antifeedant, and oviposition deterrent activities against DBM, among the extracts evaluated. At 72 h, glutathiase, acetylcholinesterase, carboxylesterase, peroxidase, and superoxide dismutase activities were inhibited, but catalase activity was activated. The main compound identified from the extract was ethyl linoleate, which had the most significant insecticidal activity on the diamondback moths. This study's findings provide a better understanding of the insecticidal activity of ethyl acetate extract obtained from C. ajacis and its main component (ethyl linoleate). This will help in the development of new insecticides to control DBM.


Assuntos
Inseticidas , Mariposas , Ranunculaceae , Feminino , Animais , Inseticidas/farmacologia , Acetilcolinesterase
9.
Molecules ; 28(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37687140

RESUMO

Floral scent is crucial for attracting pollinators, especially in plants that bloom at night. However, chemical profiles of flowers from nocturnal plants with varied floral morphs are poorly documented, limiting our understanding of their pollination ecology. We investigated the floral scent in Guettarda scabra (L.) Vent. (Rubiaceae), a night-blooming species with short- and long-styled floral morphs, found in the threatened pine rocklands in south Florida, US. By using dynamic headspace sampling and GC-MS analysis, we characterized the chemical profiles of the floral scent in both morphs. Neutral red staining was also employed to determine the specific floral regions responsible for scent emission in G. scabra. The results revealed that G. scabra's fragrance consists entirely of benzenoid and terpenoid compounds, with benzeneacetaldehyde and (E)-ß-ocimene as dominant components. There were no differences in the chemical profiles between the long- and short-styled flowers. Staining assays indicated that the corolla lobes, anthers, and stigma were the primary sources of the scent. These findings indicate that G. scabra's floral scent is consistent with that of night-blooming plants pollinated by nocturnal hawkmoths, providing important insights into its chemical ecology and pollinator attraction. This study demonstrates how floral scent chemistry can validate predictions based on flower morphology in hawkmoth-pollinated plants.


Assuntos
Mariposas , Perfumes , Rubiaceae , Animais , Odorantes , Polinização , Flores , Feromônios
10.
Turkiye Parazitol Derg ; 47(3): 151-155, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37724363

RESUMO

OBJECTIVE: Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) originating from South America is one of the important insect pests that damages storage products and is found on every continent. There is a new interest in using enthomopathogens for microbial control of P. interpunctella as well as other stored product pests. Coccidia as a group of protistan entomopathogens are host specific and their pathogenic effects on the hosts are more pronounced. Although this pathogenic effect results in increased host mortality or higher susceptibility to insecticides, the suppressive potential of coccidia in natural populations has not been adequately studied. In this study, characterization, distribution and occurrence of a coccidian entomopathogen was aim to show its natural suppressing potential in P. interpunctella populations. METHODS: During the three years (from 2019 to 2021), a total of 3.432 P. interpunctella samples (2.047 dead and 413 living larvae, 932 adults and 40 pupae) were collected from fourteen populations. After macroscopic examination, suspected samples were dissected in Ringer's solution and then prepared wet smears including host fat body were examined for presence of coccidian pathogens under a light microscope at a magnification of 400-1000X. The oocysts of the coccidian were measured and photographed using a microscope with a digital camera and soft imaging system. RESULTS: The pathogen was observed in the fat bodies of the larvae, pupae and adults. Oocysts measured as 29.52±3.32 (25.27- 35.08) µm in diameter and they include 8 sporocysts. Sporocysts measured as 9.11±0.61 (8.90-9.85) µm. Forty-five of 3.432 P. interpunctella larvae, pupae and adults were found to be infected. Coccidian infections have also reached to the levels that can be considered high in some populations, as significant as 29.2%. The infection was observed in the three (21.4%) of the examined fourteen populations. CONCLUSION: The coccidian entomopathogen presented in this study is the first Adeleid coccidian record from P. interpunctella populations in Türkiye. The detection of Adelina mesnili Perez (Coccidia: Adeleidae) in at least three populations and the infection rate reaching 29.2 percent, confirms that this pathogen has a considerable effect P. interpunctella populations that cannot be underestimated. Our results confirm that the coccidian pathogen is very effective in the larval stage.


Assuntos
Coccídios , Inseticidas , Mariposas , Animais , Larva , América do Sul
11.
J Exp Biol ; 226(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37655585

RESUMO

Echolocating bats use ultrasound for orientation and prey capture in darkness. Ultrasound is strongly attenuated in air. Consequently, aerial-hawking bats generally emit very intense echolocation calls to maximize detection range. However, call levels vary more than tenfold (>20 dB) between species and are tightly linked to the foraging strategy. The brown long-eared bat (Plecotus auritus) is a primarily gleaning, low-amplitude species that may occasionally hawk airborne prey. We used state-of-the-art calibrated acoustic 3D-localization and automated call analysis to measure P. auritus' source levels. Plecotus auritus emits echolocation calls of low amplitude (92 dB rmsSPL re. 20 µPa at 10 cm) even while flying in open-space. While P. auritus thus probably benefits from delayed evasive manoeuvres of eared insects, we propose that low-amplitude echolocation did not evolve as an adaptive countermeasure, but is limited by morphological constraints.


Assuntos
Quirópteros , Ecolocação , Mariposas , Animais , Comportamento Predatório , Acústica
12.
Arch Insect Biochem Physiol ; 114(2): 1-16, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37533191

RESUMO

The Asian corn borer (Ostrinia furnacalis) is an important agricultural pest causing serious damage to economic crops, such as corn and sorghum. The gut is the first line of defense against pathogens that enter through the mouth. Staphylococcus aureus was used to infect the O. furnacalis midgut to understand the midgut immune mechanism against exogenous pathogens to provide new ideas and methods for the prevention and control of O. furnacalis. A sequencing platform was used for genome assembly and gene expression. The unigene sequences were annotated and functionally classified by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Significant differences were found in the induced expression profiles before and after infection. Some differentially expressed genes have important relations with lipid metabolism and immune mechanism, suggesting that they play an important role in the innate immune response of O. furnacalis. Furthermore, quantitative real-time polymerase chain reaction assay was used to identify the key genes involved in the signaling pathway, and the expression patterns of these key genes were confirmed. The results could help study the innate immune system of lepidopteran insects and provide theoretical support for the control of related pests and the protection of beneficial insects.


Assuntos
Infecções Bacterianas , Mariposas , Animais , Zea mays , Mariposas/genética , Perfilação da Expressão Gênica/métodos , Insetos
13.
Curr Biol ; 33(16): 3529-3535.e4, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37531958

RESUMO

Insects rely on olfaction to guide a wide range of adaptive behaviors, including mate and food localization, mate choice, oviposition site selection, kin recognition, and predator avoidance.1 In nocturnal insects, such as moths2 and cockroaches,3 mate finding is stimulated predominantly by long-range species-specific sex pheromones, typically emitted by females. During courtship, at close range, males in most moth species emit a blend of pheromone compounds from an everted, often large, pheromone gland. While long-distance communication with sex pheromones has been remarkably well characterized in thousands of moth species,2,4 close-range chemosensory sexual communication remains poorly understood. We reveal that in the moth Chloridea virescens, the male pheromone consists of three distinct classes of compounds: de novo biosynthesized alcohols, aldehydes, acetates, and carboxylic acids that resemble the female's emissions; newly identified compounds that are unique to the male pheromone, such as aliphatic polyunsaturated hydrocarbons; and sequestered plant secondary compounds and hormone derivatives, including methyl salicylate (MeSA). Thus, males employ a mosaic pheromone blend of disparate origins that may serve multiple functions during courtship. We show that two olfactory receptors in female antennae are tuned to MeSA, which facilitates female acceptance of the male. Because MeSA is emitted by plants attacked by pathogens and herbivores,5 the chemosensory system of female moths was likely already tuned to this plant volatile, and males appear to exploit the female's preadapted sensory bias. Interestingly, while female moths (largely nocturnal) and butterflies (diurnal) diverged in their use of sensory modalities in sexual communication,6 MeSA is used by males of both lineages.


Assuntos
Borboletas , Mariposas , Atrativos Sexuais , Animais , Feminino , Masculino , Corte , Feromônios , Comportamento Sexual Animal
14.
Plant Physiol Biochem ; 202: 107915, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37536218

RESUMO

Kunitz-like protease inhibitors (KTIs) have been identified to play critical roles in insect defense, but evidence for their involvement in drought stress is sparse. The aim of this study was to identify and functionally characterize a Kunitz-like protease inhibitor, GsKTI, from the wild soybean (Glycine soja) variety ED059. Expression patterns suggest that drought stress and insect herbivory may induce GsKTI transcript levels. Transgenic Arabidopsis lines overexpressing GsKTI have been shown to exhibit enhanced drought tolerance by regulating the ABA signaling pathway and increasing xylem cell number. Transgenic Arabidopsis leaves overexpressing GsKTI interfered with insect digestion and thus had a negative effect on the growth of Helicoverpa armigera. It is concluded that GsKTI increases resistance to drought stress and insect attack in transgenic Arabidopsis lines.


Assuntos
Arabidopsis , Fabaceae , Mariposas , Animais , Arabidopsis/metabolismo , Soja/metabolismo , Inibidores de Proteases/farmacologia , Inibidores de Proteases/metabolismo , Secas , Proteínas de Plantas/genética , Fabaceae/metabolismo , Mariposas/metabolismo , Glicina/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
15.
Insect Biochem Mol Biol ; 160: 103991, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37536576

RESUMO

The molecular mechanisms of sex determination in moths and butterflies (Lepidoptera) with female heterogamety (WZ/ZZ) are poorly understood, except in the silkworm Bombyx mori. However, the Masculinizer (Masc) gene that controls male development and dosage compensation in B. mori, appears to be conserved in Lepidoptera, as its masculinizing function was recently confirmed in several moth species. In this work, we investigated the role of the Masc gene in sex determination of the codling moth Cydia pomonella (Tortricidae), a globally important pest of pome fruits and walnuts. The gene structure of the C. pomonella Masc ortholog, CpMasc, is similar to B. mori Masc. However, unlike B. mori, we identified 14 splice variants of CpMasc in the available transcriptomes. Subsequent screening for sex specificity and genetic variation using publicly available data and RT-PCR revealed three male-specific splice variants. Then qPCR analysis of these variants revealed sex-biased expression showing a peak only in early male embryos. Knockdown of CpMasc by RNAi during early embryogenesis resulted in a shift from male-to female-specific splicing of the C. pomonella doublesex (Cpdsx) gene, its downstream effector, in ZZ embryos, leading to a strongly female-biased sex ratio. These data clearly demonstrate that CpMasc functions as a masculinizing gene in the sex-determining cascade of C. pomonella. Our study also showed that CpMasc transcripts are provided maternally, as they were detected in unfertilized eggs after oviposition and in mature eggs dissected from virgin females. This finding is unique, as maternal provision of mRNA has rarely been studied in Lepidoptera.


Assuntos
Bombyx , Borboletas , Mariposas , Masculino , Feminino , Animais , Mariposas/genética , Mariposas/metabolismo , Borboletas/genética , Bombyx/genética , Compensação de Dosagem (Genética) , RNA Mensageiro/genética
16.
J Insect Physiol ; 149: 104553, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37567362

RESUMO

Parasitoid wasps are haplodiploid, meaning that sperm stored by egg laying females are only used to produce daughters. Thus, the sex ratio of the offspring depends on the availability of sperm after mating. In these insects, males are sensitive to temperature at the pupal stage. This stress leads to subfertility due to a drastic reduction in the number of sperm produced and transferred to females. Experiments were conducted under controlled conditions on the parasitoid wasp Cotesia typhae (Hymenoptera, Braconidae), a natural enemy of the invading pest Sesamia nonagrioides (Lepidoptera, Noctuidae). At 25-27 °C, sperm production was measured for 7 days, and found to reach a plateau at the third day of adult life. It leads to a final amount around 25,000 sperm per male. A male can successfully inseminate at least 10 females, producing predominantly female offspring. Sperm production decreased significantly after 1 day of pupal exposure to heat at 34 or 36 °C and 7 days of cold at 0, 5 or 10 °C. This highlights that both cold and heat are stressful. After mating with one male treated at 10 or 34 °C, females store fewer sperm than the control, and produce fewer daughters. The sex ratio of the offspring is male biased when males experienced temperature stresses during development, like other parasitoid wasps. In the field, C. typhae populations would be affected by heat and cold, at least at the pupal stage. This lowers overwintering risk in case this biological agent was introduced in Europe. This risk is both economical, as companies seek to establish costly continuous production to sell beneficial insects, and ecological as the introduced population would not settle in the ecosystem. Lastly, the transport and storage of this insect of agronomic interest would need to consider temperature variations to ensure successful application.


Assuntos
Himenópteros , Mariposas , Vespas , Masculino , Feminino , Animais , Razão de Masculinidade , Ecossistema , Sêmen , Espermatozoides , Pupa
17.
Proc Biol Sci ; 290(2005): 20230414, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37608720

RESUMO

Climate change can severely impact species that depend on temporary resources by inducing phenological mismatches between consumer and resource seasonal timing. In the winter moth, warmer winters caused eggs to hatch before their food source, young oak leaves, became available. This phenological mismatch changed the selection on the temperature sensitivity of egg development rate. However, we know little about the fine-scale fitness consequences of phenological mismatch at the individual level and how this mismatch affects population dynamics in the winter moth. To determine the fitness consequences of mistimed egg hatching relative to timing of oak budburst, we quantified survival and pupation weight in a feeding experiment. We found that mismatch greatly increased mortality rates of freshly hatched caterpillars, as well as affecting caterpillar growth and development time. We then investigated whether these individual fitness consequences have population-level impacts by estimating the effect of phenological mismatch on population dynamics, using our long-term data (1994-2021) on relative winter moth population densities at four locations in The Netherlands. We found a significant effect of mismatch on population density with higher population growth rates in years with a smaller phenological mismatch. Our results indicate that climate change-induced phenological mismatch can incur severe individual fitness consequences that can impact population density in the wild.


Assuntos
Mariposas , Crescimento Demográfico , Animais , Estações do Ano , Dinâmica Populacional , Mudança Climática
18.
Int J Mol Sci ; 24(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37569697

RESUMO

Piwi proteins play a significant role in germ cell development and the silencing of transposons in animals by associating with small non-coding RNAs known as Piwi-interacting RNAs (piRNAs). While the Piwi gene has been well characterized in various insect species, the role of the Piwi (PxPiwi) gene in the diamondback moth (Plutella xylostella), a globally distributed pest of cruciferous crops, remains unclear. Expression analysis demonstrated the upregulation of PxPiwi in pupae and testes. Furthermore, we generated a PxPiwi-knockout mutant using CRISPR/Cas9 technology, which resulted in a significantly prolonged pupal stage and the failure of pupae to develop into adults. Additionally, the knockdown of PxPiwi, through RNA interference (RNAi), led to a substantial decrease in the oviposition and hatchability of P. xylostella. These findings indicate that PxPiwi is specifically expressed and essential for the development and reproduction of P. xylostella. This is the first report indicating the involvement of the Piwi gene in the development of lepidopteran insects, except for reproduction and germ cell development, which provides a foundation for future investigations into the functions of PxPiwi.


Assuntos
Mariposas , Animais , Feminino , Mariposas/fisiologia , Reprodução/genética , Oviposição , Larva/metabolismo
19.
PLoS One ; 18(8): e0289205, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37531339

RESUMO

Insect herbivores frequently encounter plant defense molecules, but the physiological and ecological consequences for their immune systems are not fully understood. The majority of studies attempting to relate levels of plant defensive chemistry to herbivore immune responses have used natural population or species-level variation in plant defensive chemistry. Yet, this potentially confounds the effects of plant defense chemistry with other potential plant trait differences that may affect the expression of herbivore immunity. We used an artificial diet containing known quantities of a plant toxin (4-methylsulfinylbutyl isothiocyanate; 4MSOB-ITC or ITC, a breakdown product of the glucosinolate glucoraphanin upon herbivory) to explicitly explore the effects of a plant toxin on the cellular and humoral immune responses of the generalist herbivore Trichoplusia ni (Lepidoptera: Noctuidae) that frequently feeds on glucosinolate-containing plants. Caterpillars feeding on diets with high concentrations of ITC experienced reduced survivorship and growth rates. High concentrations of ITC suppressed the appearance of several types of hemocytes and melanization activity, which are critical defenses against parasitic Hymenoptera and microbial pathogens. In terms of T. ni humoral immunity, only the antimicrobial peptide (AMP) genes lebocin and gallerimycin were significantly upregulated in caterpillars fed on diets containing high levels of ITC relative to caterpillars that were provided with ITC-free diet. Surprisingly, challenging caterpillars with a non-pathogenic strain of Escherichia coli resulted in the upregulation of the AMP gene cecropin. Feeding on high concentrations of plant toxins hindered caterpillar development, decreased cellular immunity, but conferred mixed effects on humoral immunity. Our findings provide novel insights into the effects of herbivore diet composition on insect performance demonstrating the role of specific plant defense toxins that shape herbivore immunity and trophic interactions.


Assuntos
Alcaloides , Mariposas , Animais , Herbivoria , Larva/fisiologia , Glucosinolatos , Imunidade Humoral , Mariposas/fisiologia , Plantas , Alcaloides/farmacologia , Isotiocianatos/farmacologia
20.
Pestic Biochem Physiol ; 194: 105503, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532323

RESUMO

Glyphodes pyloalis Walker (G. pyloalis) is a common destructive mulberry pest. Due to the long-term and frequent use of insecticides, it has developed tolerance to commonly used insecticides. Tolfenpyrad (TFP) is a novel pyrazole heterocyclic insecticide. In order to understand the TFP detoxification mechanism of G. pyloalis larvae, we first estimated the LC30 dose of TFP for 3rd instar G. pyloalis larvae. Next, we identified genes that were differentially expressed in 3rd instar G. pyloalis larvae treated with TFP compared to the control group by transcriptome sequencing. In total, 86,949,569 and 67,442,028 clean reads were obtained from TFP-treated and control G. pyloalis larvae, respectively. A total of 5588 differentially expressed genes (DEGs) were identified in TFP-treated and control G. pyloalis larvae, of which 3084 genes were upregulated and 2504 genes were downregulated. We analyzed the expression of 43 candidate detoxification enzyme genes associated with insecticide tolerance using qPCR. According to the spatiotemporal expression pattern of DEGs, we found that CYP6ABE1, CYP333A36 and GST-epsilon8 were highly expressed in the midgut, while CarEs14 was strongly expressed in haemolymph. Furthermore, we successfully knocked down these genes by RNA interference. After silencing CYP6ABE1 and CYP333A36, bioassay showed that the mortality rate of TFP-treated G. pyloalis larvae was significantly higher compared to the control group. This study provides a theoretical foundation for understanding the sensitivity of G. pyloalis to TFP and establish the basis for the effective and green management of this pest.


Assuntos
Inseticidas , Mariposas , Animais , Inseticidas/farmacologia , Inseticidas/metabolismo , Mariposas/metabolismo , Larva/genética , Pirazóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...