Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84.834
Filtrar
1.
Zhonghua Er Ke Za Zhi ; 62(7): 676-680, 2024 Jul 02.
Artigo em Chinês | MEDLINE | ID: mdl-38955687

RESUMO

Objective: To summarize the clinical manifestations, diagnosis, treatment and prognosis of acute flaccid myelitis (AFM) in children. Methods: Clinical characteristics of 4 AFM cases from Department of Neurology, Children's Hospital Affiliated to Capital Institute of Pediatrics, from September 2018 to November 2022, were analyzed retrospectively. Results: The age of 4 children with AFM was 7 years, 4 years and 3 months, 7 years and 1 month, 6 years and 5 months, respectively. There were 2 boys and 2 girls. Prodromal infection status showed 3 children of respiratory tract infection and 1 child of digestive tract infection. The main manifestation was asymmetrical limb weakness after infection, and the affected limb range was from monoplegia to quadriplegia. Cranial nerve injury was involved in 1 child, no encephalopathy. Magnetic resonance imaging in the spinal cord of all 4 children showed long T1 and T2 signals, mainly involving gray matter. Cerebrospinal fluid cell-protein separation was observed in 2 children. Pathogen detected in 1 child pharyngeal swab was enterovirus D68. Antibody IgM to adenovirus was positive in the blood of 1 child. Antibody IgG against Echo and Coxsackie B virus were positive in the blood of another child. After glucocorticoid, human immunoglobulin or simple symptomatic treatment and at the same time under later rehabilitation training, muscle strength recovered to different degrees, but there were disabilities left in 3 children. Conclusions: AFM should be considered in children with acute and asymmetrical flaccid paralysis accompanied by abnormal magnetic resonance imaging signal in the central region of spinal cord, especially post-infection. The effective treatment is limited and the prognosis is poor.


Assuntos
Viroses do Sistema Nervoso Central , Imageamento por Ressonância Magnética , Mielite , Doenças Neuromusculares , Humanos , Mielite/diagnóstico , Mielite/virologia , Masculino , Feminino , Criança , Pré-Escolar , Estudos Retrospectivos , Viroses do Sistema Nervoso Central/diagnóstico , Doenças Neuromusculares/diagnóstico , Enterovirus Humano D/isolamento & purificação , Prognóstico , Medula Espinal/patologia , Infecções por Enterovirus/diagnóstico , Quadriplegia/etiologia , Quadriplegia/diagnóstico , Infecções Respiratórias/diagnóstico
2.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(3): 466-470, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-38953273

RESUMO

Primary central nervous system vasculitis (PACNS) is a vasculitic disorder affecting small to medium-sized blood vessels primarily in the central nervous system,involving the brain,spinal cord,and meninges.Tumor-like PNCAS,a rare subtype of PACNS,is often misdiagnosed as intracranial malignancy,and that with spinal cord involvement is even more uncommon.The lack of specific clinical symptoms and imaging manifestations poses a challenge to the diagnosis of PACNS.This report presents a case of tumor-like PACNS with spinal cord involvement based on the pathological evidence,aiming to enrich the knowledge about this condition.


Assuntos
Vasculite do Sistema Nervoso Central , Humanos , Vasculite do Sistema Nervoso Central/diagnóstico , Vasculite do Sistema Nervoso Central/diagnóstico por imagem , Feminino , Masculino , Medula Espinal/diagnóstico por imagem , Medula Espinal/patologia , Medula Espinal/irrigação sanguínea , Pessoa de Meia-Idade
3.
BMC Neurol ; 24(1): 226, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951761

RESUMO

BACKGROUND: Idiopathic acute transverse myelitis (IATM) is a focal inflammatory disorder of the spinal cord that results in motor, sensory, and autonomic dysfunction. However, the comparative analysis of MRI-negative and MRI-positive in IATM patients were rarely reported. OBJECTIVES: The purpose of this study was to compare MRI-negative with MRI-positive groups in IATM patients, analyze the predictors for a poor prognosis, thus explore the relationship between MRI-negative and prognosis. METHODS: We selected 132 patients with first-attack IATM at the First Affiliated Hospital of Nanchang University from May 2018 to May 2022. Patients were divided into MRI-positive and MRI-negative group according to whether there were responsible spinal MRI lesions, and good prognosis and poor prognosis based on whether the EDSS score ≥ 4 at follow-up. The predictive factors of poor prognosis in IATM patients was analyzed by logistic regression models. RESULTS: Of the 132 patients, 107 first-attack patients who fulfilled the criteria for IATM were included in the study. We showed that 43 (40%) patients had a negative spinal cord MRI, while 27 (25%) patients were identified as having a poor prognosis (EDSS score at follow-up ≥ 4). Compared with MRI-negative patients, the MRI-positive group was more likely to have back/neck pain, spinal cord shock and poor prognosis, and the EDSS score at follow-up was higher. We also identified three risk factors for a poor outcome: absence of second-line therapies, high EDSS score at nadir and a positive MRI result. CONCLUSIONS: Compared with MRI-negative group, MRI-positive patients were more likely to have back/neck pain, spinal cord shock and poor prognosis, with a higher EDSS score at follow-up. The absence of second-line therapies, high EDSS score at nadir, and a positive MRI were risk factors for poor outcomes in patients with first-attack IATM. MRI-negative patients may have better prognosis, an active second-line immunotherapy for IATM patients may improve clinical outcome.


Assuntos
Imageamento por Ressonância Magnética , Mielite Transversa , Humanos , Mielite Transversa/diagnóstico por imagem , Mielite Transversa/diagnóstico , Masculino , Feminino , Imageamento por Ressonância Magnética/métodos , Prognóstico , Adulto , Pessoa de Meia-Idade , Medula Espinal/diagnóstico por imagem , Medula Espinal/patologia , Estudos Retrospectivos
4.
Sci Adv ; 10(27): eado9120, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38959311

RESUMO

A bioinspired hydrogel composed of hyaluronic acid-graft-dopamine (HADA) and a designer peptide HGF-(RADA)4-DGDRGDS (HRR) was presented to enhance tissue integration following spinal cord injury (SCI). The HADA/HRR hydrogel manipulated the infiltration of PDGFRß+ cells in a parallel pattern, transforming dense scars into an aligned fibrous substrate that guided axonal regrowth. Further incorporation of NT3 and curcumin promoted axonal regrowth and survival of interneurons at lesion borders, which served as relays for establishing heterogeneous axon connections in a target-specific manner. Notable improvements in motor, sensory, and bladder functions resulted in rats with complete spinal cord transection. The HADA/HRR + NT3/Cur hydrogel promoted V2a neuron accumulation in ventral spinal cord, facilitating the recovery of locomotor function. Meanwhile, the establishment of heterogeneous neural connections across the hemisected lesion of canines was documented in a target-specific manner via neuronal relays, significantly improving motor functions. Therefore, biomaterials can inspire beneficial biological activities for SCI repair.


Assuntos
Matriz Extracelular , Hidrogéis , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Animais , Hidrogéis/química , Ratos , Matriz Extracelular/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Cães , Axônios/metabolismo , Axônios/efeitos dos fármacos , Regeneração Nervosa/efeitos dos fármacos , Ácido Hialurônico/química , Ácido Hialurônico/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Dopamina/metabolismo , Feminino , Modelos Animais de Doenças , Ratos Sprague-Dawley , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Medula Espinal/metabolismo
5.
Commun Biol ; 7(1): 811, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965360

RESUMO

Experimental autoimmune encephalomyelitis (EAE) is a demyelinating disease affecting the central nervous system (CNS) in animals that parallels several clinical and molecular traits of multiple sclerosis in humans. Herpes simplex virus type 1 (HSV-1) infection mainly causes cold sores and eye diseases, yet eventually, it can also reach the CNS, leading to acute encephalitis. Notably, a significant proportion of healthy individuals are likely to have asymptomatic HSV-1 brain infection with chronic brain inflammation due to persistent latent infection in neurons. Because cellular senescence is suggested as a potential factor contributing to the development of various neurodegenerative disorders, including multiple sclerosis, and viral infections may induce a premature senescence state in the CNS, potentially increasing susceptibility to such disorders, here we examine the presence of senescence-related markers in the brains and spinal cords of mice with asymptomatic HSV-1 brain infection, EAE, and both conditions. Across all scenarios, we find a significant increases of senescence biomarkers in the CNS with some differences depending on the analyzed group. Notably, some senescence biomarkers are exclusively observed in mice with the combined conditions. These results indicate that asymptomatic HSV-1 brain infection and EAE associate with a significant expression of senescence biomarkers in the CNS.


Assuntos
Encéfalo , Senescência Celular , Herpes Simples , Herpesvirus Humano 1 , Esclerose Múltipla , Animais , Camundongos , Encéfalo/virologia , Encéfalo/patologia , Encéfalo/metabolismo , Esclerose Múltipla/virologia , Esclerose Múltipla/patologia , Esclerose Múltipla/metabolismo , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 1/patogenicidade , Herpes Simples/virologia , Herpes Simples/patologia , Feminino , Camundongos Endogâmicos C57BL , Encefalomielite Autoimune Experimental/virologia , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/metabolismo , Fenótipo , Sistema Nervoso Central/virologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Medula Espinal/virologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Biomarcadores/metabolismo , Encefalite por Herpes Simples/virologia , Encefalite por Herpes Simples/patologia , Encefalite por Herpes Simples/metabolismo
6.
Cell Mol Life Sci ; 81(1): 286, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970652

RESUMO

Paralog factors are considered to ensure the robustness of biological processes by providing redundant activity in cells where they are co-expressed. However, the specific contribution of each factor is frequently underestimated. In the developing spinal cord, multiple families of transcription factors successively contribute to differentiate an initially homogenous population of neural progenitors into a myriad of neuronal subsets with distinct molecular, morphological, and functional characteristics. The LIM-homeodomain transcription factors Lhx3, Lhx4, Isl1 and Isl2 promote the segregation and differentiation of spinal motor neurons and V2 interneurons. Based on their high sequence identity and their similar distribution, the Lhx3 and Lhx4 paralogs are considered to contribute similarly to these processes. However, the specific contribution of Lhx4 has never been studied. Here, we provide evidence that Lhx3 and Lhx4 are present in the same cell populations during spinal cord development. Similarly to Lhx3, Lhx4 can form multiproteic complexes with Isl1 or Isl2 and the nuclear LIM interactor NLI. Lhx4 can stimulate a V2-specific enhancer more efficiently than Lhx3 and surpasses Lhx3 in promoting the differentiation of V2a interneurons in chicken embryo electroporation experiments. Finally, Lhx4 inactivation in mice results in alterations of differentiation of the V2a subpopulation, but not of motor neuron production, suggesting that Lhx4 plays unique roles in V2a differentiation that are not compensated by the presence of Lhx3. Thus, Lhx4 could be the major LIM-HD factor involved in V2a interneuron differentiation during spinal cord development and should be considered for in vitro differentiation of spinal neuronal populations.


Assuntos
Diferenciação Celular , Interneurônios , Proteínas com Homeodomínio LIM , Medula Espinal , Fatores de Transcrição , Animais , Proteínas com Homeodomínio LIM/metabolismo , Proteínas com Homeodomínio LIM/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Interneurônios/metabolismo , Interneurônios/citologia , Medula Espinal/citologia , Medula Espinal/metabolismo , Medula Espinal/embriologia , Embrião de Galinha , Camundongos , Neurônios Motores/metabolismo , Neurônios Motores/citologia , Humanos , Regulação da Expressão Gênica no Desenvolvimento
7.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000303

RESUMO

Two cases of complicated pain exist: posterior screw fixation and myofascial pain. Intramuscular pulsed radiofrequency (PRF) may be an alternative treatment for such patients. This is a two-stage animal study. In the first stage, two muscle groups and two nerve groups were subdivided into a high-temperature group with PRF at 58 °C and a regular temperature with PRF at 42 °C in rats. In the second stage, two nerve injury groups were subdivided into nerve injury with PRF 42 °C on the sciatic nerve and muscle. Blood and spinal cord samples were collected. In the first stage, the immunohistochemical analysis showed that PRF upregulated brain-derived neurotrophic factor (BDNF) in the spinal cord in both groups of rats. In the second stage, the immunohistochemical analysis showed significant BDNF and tropomyosin receptor kinase B (TrkB) expression within the spinal cord after PRF in muscles and nerves after nerve injury. The blood biomarkers showed a significant increase in BDNF levels. PRF in the muscle in rats could upregulate BDNF-TrkB in the spinal cord, similar to PRF on the sciatica nerve for pain relief in rats. PRF could be considered clinically for patients with complicated pain and this study also demonstrated the role of BDNF in pain modulation. The optimal temperature for PRF was 42 °C.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Tratamento por Radiofrequência Pulsada , Receptor trkB , Medula Espinal , Regulação para Cima , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptor trkB/metabolismo , Ratos , Medula Espinal/metabolismo , Tratamento por Radiofrequência Pulsada/métodos , Masculino , Ratos Sprague-Dawley , Manejo da Dor/métodos , Nervo Isquiático/metabolismo , Nervo Isquiático/lesões , Dor/metabolismo , Dor/etiologia
8.
Int J Mol Sci ; 25(13)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39000569

RESUMO

Regulation of neuroinflammation is critical for maintaining central nervous system (CNS) homeostasis and holds therapeutic promise in autoimmune diseases such as multiple sclerosis (MS). Previous studies have highlighted the significance of selective innate signaling in triggering anti-inflammatory mechanisms, which play a protective role in an MS-like disease, experimental autoimmune encephalomyelitis (EAE). However, the individual intra-CNS administration of specific innate receptor ligands or agonists, such as for toll-like receptor 7 (TLR7) and nucleotide-binding oligomerization-domain-containing protein 2 (NOD2), failed to elicit the desired anti-inflammatory response in EAE. In this study, we investigated the potential synergistic effect of targeting both TLR7 and NOD2 simultaneously to prevent EAE progression. Our findings demonstrate that simultaneous intrathecal administration of NOD2- and TLR7-agonists led to synergistic induction of Type I IFN (IFN I) and effectively suppressed EAE in an IFN I-dependent manner. Suppression of EAE was correlated with a significant decrease in the infiltration of monocytes, granulocytes, and natural killer cells, reduced demyelination, and downregulation of IL-1ß, CCL2, and IFNγ gene expression in the spinal cord. These results underscore the therapeutic promise of concurrently targeting the TLR7 and NOD2 pathways in alleviating neuroinflammation associated with MS, paving the way for novel and more efficacious treatment strategies.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Proteína Adaptadora de Sinalização NOD2 , Receptor 7 Toll-Like , Animais , Receptor 7 Toll-Like/metabolismo , Receptor 7 Toll-Like/agonistas , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteína Adaptadora de Sinalização NOD2/genética , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Imunidade Inata/efeitos dos fármacos , Feminino , Medula Espinal/metabolismo , Medula Espinal/patologia , Medula Espinal/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Interferon Tipo I/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Cell Biol Toxicol ; 40(1): 54, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995476

RESUMO

BACKGROUND: The neuropathic pain with complex networks of neuroinflammatory activation severely limits clinical therapeutic research. TNF receptor-associated factor 6 (TRAF6) is associated with multiple inflammatory diseases. However, there remains confusion about the effects and mechanisms of TRAF6 in neuropathic pain. METHODS: A chronic constriction injury (CCI) model was developed to simulate neuralgia in vivo. We overexpressed or knocked down TRAF6 in CCI mice, respectively. Activation of microglia by TRAF6, the inflammatory response, and disease progression were inspected using WB, qRT-PCR, immunofluorescence, flow cytometry, and ELISA assays. Moreover, the mechanism of M1/M2 polarization activation of microglia by TRAF6 was elaborated in BV-2 cells. RESULTS: TRAF6 was enhanced in the spinal neurons and microglia of the CCI mice model compared with the sham operation group.. Down-regulation of TRAF6 rescued the expression of Iba-1. In response to mechanical and thermal stimulation, PWT and PWL were improved after the knockdown of TRAF6. Decreased levels of pro-inflammatory factors were observed in TRAF6 knockdown groups. Meanwhile, increased microglial M1 markers induced by CCI were limited in mice with TRAF6 knockdown. In addition, TRAF6 overexpression has the precise opposite effect on CCI mice or microglia polarization. We also identifed that TRAF6 activated the c-JUN/NF-kB pathway signaling; the inhibitor of c-JUN/NF-kB could effectively alleviate the neuropathic pain induced by upregulated TRAF6 in the CCI mice model. CONCLUSION: In summary, this study indicated that TRAF6 was concerned with neuropathic pain, and targeting the TRAF6/c-JUN/NF-kB pathway may be a prospective target for treating neuropathic pain.


Assuntos
Microglia , NF-kappa B , Neuralgia , Transdução de Sinais , Fator 6 Associado a Receptor de TNF , Animais , Masculino , Camundongos , Linhagem Celular , Polaridade Celular , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Neuralgia/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Fator 6 Associado a Receptor de TNF/metabolismo
10.
Nucl Med Rev Cent East Eur ; 27(0): 24-27, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39046220

RESUMO

A 61-year-old woman with diffuse large B-cell lymphoma received a fluorine-18-deoxyglucose positron emission tomography/computed tomography ([¹8F]FDG PET/CT) for staging. Because of the obvious uptake of [¹8F]FDG in the spinal cord and brain, a positron emission tomography/magnetic resonance imaging (PET/MRI) was performed after the positron emission tomography/computed tomography (PET/CT). The images showed diffuse [¹8F]FDG uptake of the spinal cord and increased T2 signal intensity on MRI, which was suspected to be lymphoma involvement. The patient was diagnosed with diffuse large B-cell lymphoma involving the right maxillofacial region, right cervical lymph nodes, cervix, brain and spinal cord (stage IV of non-germinal center B-cell origin). After chemotherapy, the spinal [¹8F]FDG uptake level decreased significantly, which was considered to be a partial metabolic response. Our case was different from prior, which indicated the pattern of spinal cord involvement by lymphoma was focal.


Assuntos
Fluordesoxiglucose F18 , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Medula Espinal , Humanos , Feminino , Pessoa de Meia-Idade , Medula Espinal/diagnóstico por imagem , Medula Espinal/metabolismo , Linfoma Difuso de Grandes Células B/diagnóstico por imagem , Linfoma Difuso de Grandes Células B/patologia , Imagem Multimodal , Neoplasias da Medula Espinal/diagnóstico por imagem
11.
Pharm Res ; 41(7): 1401-1411, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38981901

RESUMO

PURPOSE: Serotonin (5-HT3) receptor antagonists are promising agents for treatment of neuropathic pain. However, insufficient drug exposure at the central nervous system (CNS) might result in lack of efficacy. The goal of this study was to evaluate the impact of administration of a Pgp inhibitor (tariquidar) on ondansetron exposure in the brain, spinal cord, and cerebrospinal fluid in a wild-type rat model. METHODS: Ondansetron (10 mg/kg) and tariquidar (7.5 mg/kg) were administered intravenously, plasma and tissue samples were collected and analyzed by HPLC. A mathematical model with brain, spinal cord, cerebrospinal fluid and two systemic disposition compartments was developed to describe the data. RESULTS: The results demonstrate that tariquidar at 7.5 mg/kg resulted in a complete inhibition of Pgp efflux of ondansetron in the brain and spinal cord. The compartmental model successfully captured pharmacokinetics of ondansetron in wild type and Pgp knockout (KO) animals receiving the drug alone or in wild type animals receiving the ondansetron and tariquidar combination. CONCLUSIONS: The study provided important quantitative information on enhancement of CNS exposure to ondansetron using co-administration of Pgp Inhibitor in a rat model, which will be further utilized in conducting a clinical study. Tariquidar co-administration resulted in ondansetron CNS exposure comparable to observed in Pgp KO rats. Results also highlighted the effect of tariquidar on plasma disposition of ondansetron, which may not be dependent on Pgp inhibition, and should be evaluated in future studies.


Assuntos
Ondansetron , Quinolinas , Medula Espinal , Animais , Ondansetron/farmacocinética , Ratos , Masculino , Medula Espinal/metabolismo , Medula Espinal/efeitos dos fármacos , Quinolinas/farmacocinética , Quinolinas/administração & dosagem , Ratos Sprague-Dawley , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Modelos Biológicos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/efeitos dos fármacos , Antagonistas do Receptor 5-HT3 de Serotonina/farmacocinética , Antagonistas do Receptor 5-HT3 de Serotonina/farmacologia
13.
Spinal Cord Ser Cases ; 10(1): 44, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977671

RESUMO

STUDY DESIGN: prospective case series of Yucatan miniature pig spinal cord contusion injury model with comparison to human cases of spinal cord injury (SCI). OBJECTIVES: to describe magnetic resonance imaging (MRI) measures of spinal cord lesion severity along with estimates of lateral corticospinal tracts spared neural tissue in both a less severe and more severe contusion SCI model, as well as to describe their corresponding behavioral outcome changes. SETTING: University laboratory setting. METHODS: Following a more severe and less severe SCI, each pig underwent spinal cord MRI to measure lesion characteristics, along with locomotor and urodynamics outcomes testing. RESULTS: In the pig with more severe SCI, locomotor and urodynamic outcomes were poor, and both the spinal cord lesion volume and damage estimates to the lateral corticospinal tracts were large. Conversely, in the pig with less severe SCI, locomotor and urodynamic outcomes were favorable, with the spinal cord lesion volume and damage estimates to the lateral corticospinal tracts being less pronounced. For two human cases matched on estimates of damage to the lateral corticospinal tract regions, the clinical presentations were similar to the pig outcomes, with more limited mobility and more limited bladder functional independence in the more severe case. CONCLUSIONS: Our initial findings contribute valuable insights to the emergent field of MRI-based evaluation of spinal cord lesions in pig models, offering a promising avenue for understanding and potentially improving outcomes in spinal cord injuries.


Assuntos
Modelos Animais de Doenças , Imageamento por Ressonância Magnética , Traumatismos da Medula Espinal , Porco Miniatura , Animais , Traumatismos da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/patologia , Suínos , Imageamento por Ressonância Magnética/métodos , Humanos , Feminino , Tratos Piramidais/diagnóstico por imagem , Tratos Piramidais/patologia , Masculino , Comportamento Animal/fisiologia , Medula Espinal/diagnóstico por imagem , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Recuperação de Função Fisiológica/fisiologia , Estudos Prospectivos , Locomoção/fisiologia
14.
PLoS Comput Biol ; 20(7): e1012237, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38950067

RESUMO

AIM: After spinal cord injuries (SCIs), patients may develop either detrusor-sphincter dyssynergia (DSD) or urinary incontinence, depending on the level of the spinal injury. DSD and incontinence reflect the loss of coordinated neural control among the detrusor muscle, which increases bladder pressure to facilitate urination, and urethral sphincters and pelvic floor muscles, which control the bladder outlet to restrict or permit bladder emptying. Transcutaneous magnetic stimulation (TMS) applied to the spinal cord after SCI reduced DSD and incontinence. We defined, within a mathematical model, the minimum neuronal elements necessary to replicate neurogenic dysfunction of the bladder after a SCI and incorporated into this model the minimum additional neurophysiological features sufficient to replicate the improvements in bladder function associated with lumbar TMS of the spine in patients with SCI. METHODS: We created a computational model of the neural circuit of micturition based on Hodgkin-Huxley equations that replicated normal bladder function. We added interneurons and increased network complexity to reproduce dysfunctional micturition after SCI, and we increased the density and complexity of interactions of both inhibitory and excitatory lumbar spinal interneurons responsive to TMS to provide a more diverse set of spinal responses to intrinsic and extrinsic activation of spinal interneurons that remains after SCI. RESULTS: The model reproduced the re-emergence of a spinal voiding reflex after SCI. When we investigated the effect of monophasic and biphasic TMS at two frequencies applied at or below T10, the model replicated the improved coordination between detrusor and external urethral sphincter activity that has been observed clinically: low-frequency TMS (1 Hz) within the model normalized control of voiding after SCI, whereas high-frequency TMS (30 Hz) enhanced urine storage. CONCLUSION: Neuroplasticity and increased complexity of interactions among lumbar interneurons, beyond what is necessary to simulate normal bladder function, must be present in order to replicate the effects of SCI on control of micturition, and both neuronal and network modifications of lumbar interneurons are essential to understand the mechanisms whereby TMS reduced bladder dysfunction after SCI.


Assuntos
Traumatismos da Medula Espinal , Micção , Traumatismos da Medula Espinal/fisiopatologia , Humanos , Micção/fisiologia , Modelos Neurológicos , Estimulação da Medula Espinal/métodos , Bexiga Urinária/fisiopatologia , Bexiga Urinária/inervação , Simulação por Computador , Biologia Computacional , Medula Espinal/fisiopatologia
15.
Function (Oxf) ; 5(4)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38985004

RESUMO

A neurological dogma is that the contralateral effects of brain injury are set through crossed descending neural tracts. We have recently identified a novel topographic neuroendocrine system (T-NES) that operates via a humoral pathway and mediates the left-right side-specific effects of unilateral brain lesions. In rats with completely transected thoracic spinal cords, unilateral injury to the sensorimotor cortex produced contralateral hindlimb flexion, a proxy for neurological deficit. Here, we investigated in acute experiments whether T-NES consists of left and right counterparts and whether they differ in neural and molecular mechanisms. We demonstrated that left- and right-sided hormonal signaling is differentially blocked by the δ-, κ- and µ-opioid antagonists. Left and right neurohormonal signaling differed in targeting the afferent spinal mechanisms. Bilateral deafferentation of the lumbar spinal cord abolished the hormone-mediated effects of the left-brain injury but not the right-sided lesion. The sympathetic nervous system was ruled out as a brain-to-spinal cord-signaling pathway since hindlimb responses were induced in rats with cervical spinal cord transections that were rostral to the preganglionic sympathetic neurons. Analysis of gene-gene co-expression patterns identified the left- and right-side-specific gene co-expression networks that were coordinated via the humoral pathway across the hypothalamus and lumbar spinal cord. The coordination was ipsilateral and disrupted by brain injury. These findings suggest that T-NES is bipartite and that its left and right counterparts contribute to contralateral neurological deficits through distinct neural mechanisms, and may enable ipsilateral regulation of molecular and neural processes across distant neural areas along the neuraxis.


Assuntos
Transdução de Sinais , Animais , Ratos , Sistemas Neurossecretores/metabolismo , Lesões Encefálicas/metabolismo , Lesões Encefálicas/fisiopatologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Masculino , Medula Espinal/metabolismo , Lateralidade Funcional/fisiologia , Membro Posterior/inervação
16.
J Med Case Rep ; 18(1): 334, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38987800

RESUMO

BACKGROUND: Cerebrotendinous xanthomatosis (CTX, OMIM #213700) is a rare inherited metabolic disease caused by the mutation in the CYP27A1 gene. Spinal CTX is a rare clinical subgroup of CTX which lacks typical symptoms seen in classical CTX. Here we report a spinal CTX case revealed double mutation of CYP27A1 gene. CASE PRESENTATION: A 42-year-old Asian man visited our hospital with spastic gait started at 35. Physical examination showed bilateral masses on his Achilles tendons and were identified as xanthoma on ankle magnetic resonance imaging (MRI). Brain and spinal cord MRI revealed high signal lesions in bilateral cerebellar dentate nuclei and long tract lesions involving lateral corticospinal and gracile tracts. Gene analysis revealed double heterozygous mutation, c.223C > T (p. Gln75Ter) and c.1214G > A (p. Arg405Gln). CONCLUSIONS: We believe that novel mutation detected in our case might have a role in the pathomechanism in CTX. Moreover, spinal CTX should be considered in the patients only presenting with pyramidal symptoms, as CTX shows good prognosis in early treatment with chenodeoxycholic acid.


Assuntos
Colestanotriol 26-Mono-Oxigenase , Imageamento por Ressonância Magnética , Mutação , Xantomatose Cerebrotendinosa , Humanos , Masculino , Xantomatose Cerebrotendinosa/genética , Xantomatose Cerebrotendinosa/tratamento farmacológico , Xantomatose Cerebrotendinosa/diagnóstico , Xantomatose Cerebrotendinosa/fisiopatologia , Xantomatose Cerebrotendinosa/complicações , Colestanotriol 26-Mono-Oxigenase/genética , Adulto , Tendão do Calcâneo/diagnóstico por imagem , Tendão do Calcâneo/patologia , Medula Espinal/patologia , Medula Espinal/diagnóstico por imagem , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/genética
17.
Neural Dev ; 19(1): 12, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970093

RESUMO

BACKGROUND: A key step in nervous system development involves the coordinated control of neural progenitor specification and positioning. A long-standing model for the vertebrate CNS postulates that transient anatomical compartments - known as neuromeres - function to position neural progenitors along the embryonic anteroposterior neuraxis. Such neuromeres are apparent in the embryonic hindbrain - that contains six rhombomeres with morphologically apparent boundaries - but other neuromeres lack clear morphological boundaries and have instead been defined by different criteria, such as differences in gene expression patterns and the outcomes of transplantation experiments. Accordingly, the caudal hindbrain (CHB) posterior to rhombomere (r) 6 has been variably proposed to contain from two to five 'pseudo-rhombomeres', but the lack of comprehensive molecular data has precluded a detailed definition of such structures. METHODS: We used single-cell Multiome analysis, which allows simultaneous characterization of gene expression and chromatin state of individual cell nuclei, to identify and characterize CHB progenitors in the developing zebrafish CNS. RESULTS: We identified CHB progenitors as a transcriptionally distinct population, that also possesses a unique profile of accessible transcription factor binding motifs, relative to both r6 and the spinal cord. This CHB population can be subdivided along its dorsoventral axis based on molecular characteristics, but we do not find any molecular evidence that it contains multiple pseudo-rhombomeres. We further observe that the CHB is closely related to r6 at the earliest embryonic stages, but becomes more divergent over time, and that it is defined by a unique gene regulatory network. CONCLUSIONS: We conclude that the early CHB represents a single neuromere compartment that cannot be molecularly subdivided into pseudo-rhombomeres and that it may share an embryonic origin with r6.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Rombencéfalo , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Rombencéfalo/embriologia , Medula Espinal/embriologia , Análise de Célula Única , Neurogênese/fisiologia
18.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000275

RESUMO

In tumor cells, interleukin-6 (IL-6) signaling can lead to activation of the epidermal growth factor receptor (EGFR), which prolongs Stat3 activation. In the present experiments, we tested the hypothesis that IL-6 signaling activates EGFR signaling in peripheral and spinal nociception and examined whether EGFR localization and activation coincide with pain-related behaviors in arthritis. In vivo in anesthetized rats, spinal application of the EGFR receptor blocker gefitinib reduced the responses of spinal cord neurons to noxious joint stimulation, but only after spinal pretreatment with IL-6 and soluble IL-6 receptor. Using Western blots, we found that IL-6-induced Stat3 activation was reduced by gefitinib in microglial cells of the BV2 cell line, but not in cultured DRG neurons. Immunohistochemistry showed EGFR localization in most DRG neurons from normal rats, but significant downregulation in the acute and most painful arthritis phase. In the spinal cord of mice, EGFR was highly activated mainly in the chronic phase of inflammation, with localization in neurons. These data suggest that spinal IL-6 signaling may activate spinal EGFR signaling. Downregulation of EGFR in DRG neurons in acute arthritis may limit nociception, but pronounced delayed activation of EGFR in the spinal cord may be involved in chronic inflammatory pain.


Assuntos
Receptores ErbB , Interleucina-6 , Células Receptoras Sensoriais , Medula Espinal , Animais , Feminino , Camundongos , Ratos , Artrite/metabolismo , Artrite Experimental/metabolismo , Linhagem Celular , Receptores ErbB/metabolismo , Gânglios Espinais/metabolismo , Gefitinibe/farmacologia , Interleucina-6/metabolismo , Receptores de Interleucina-6/metabolismo , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Transdução de Sinais , Medula Espinal/metabolismo , Fator de Transcrição STAT3/metabolismo
19.
J Comp Neurol ; 532(7): e25658, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987904

RESUMO

Spinal cord injury (SCI) disrupts coordination between the bladder and the external urinary sphincter (EUS), leading to transient or permanent voiding impairment, which is more severe in males. Male versus female differences in spinal circuits related to the EUS as well as post-SCI rewiring are essential for understanding of sex-/gender-specific impairments and possible recovery mechanisms. To quantitatively assess differences between EUS circuits in males versus females and in spinal intact (SI) versus SCI animals, we retrogradely traced and counted EUS-related neurons. In transgenic ChAT-GFP mice, motoneurons (MNs), interneurons (INs), and propriospinal neurons (PPNs) were retrogradely trans-synaptically traced with PRV614-red fluorescent protein (RFP) injected into EUS. EUS-MNs in dorsolateral nucleus (DLN) were separated from other GFP+ MNs by tracing them with FluoroGold (FG). We found two morphologically distinct cell types in DLN: FG+ spindle-shaped bipolar (SB-MNs) and FG- rounded multipolar (RM-MNs) cholinergic cells. Number of MNs of both types in males was twice as large as in females. SCI caused a partial loss of MNs in all spinal nuclei. After SCI, males showed a fourfold rise in the number of RFP-labeled cells in retro-DLN (RDLN) innervating hind limbs. This suggests (a) an existence of direct synaptic interactions between spinal nuclei and (b) a post-SCI increase of non-specific inputs to EUS-MNs from other motor nuclei. Number of INs and PPNs deferred between males and females: In SI males, the numbers of INs and PPNs were ∼10 times larger than in SI females. SCI caused a twofold decrease of INs and PPNs in males but not in females.


Assuntos
Camundongos Transgênicos , Caracteres Sexuais , Traumatismos da Medula Espinal , Uretra , Animais , Feminino , Masculino , Camundongos , Uretra/inervação , Uretra/fisiologia , Medula Espinal , Neurônios Motores/fisiologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Vias Neurais/fisiologia
20.
Sci Rep ; 14(1): 15871, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982137

RESUMO

Although epidural spinal cord and muscle stimulation have each been separately used for restoration of movement after spinal cord injury, their combined use has not been widely explored. Using both approaches in combination could provide more flexible control compared to using either approach alone, but whether responses evoked from such combined stimulation can be easily predicted is unknown. We evaluate whether responses evoked by combined spinal and muscle stimulation can be predicted simply, as the linear summation of responses produced by each type of stimulation individually. Should this be true, it would simplify the prediction of co-stimulation responses and the development of control schemes for spinal cord injury rehabilitation. In healthy anesthetized rats, we measured hindlimb isometric forces in response to spinal and muscle stimulation. Force prediction errors were calculated as the difference between predicted and observed co-stimulation forces. We found that spinal and muscle co-stimulation could be closely predicted as the linear summation of the individual spinal and muscle responses and that the errors were relatively low. We discuss the implications of these results to the use of combined muscle and spinal stimulation for the restoration of movement following spinal cord injury.


Assuntos
Contração Isométrica , Músculo Esquelético , Traumatismos da Medula Espinal , Medula Espinal , Animais , Ratos , Medula Espinal/fisiologia , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/reabilitação , Músculo Esquelético/fisiologia , Músculo Esquelético/fisiopatologia , Extremidade Inferior/fisiopatologia , Estimulação Elétrica/métodos , Membro Posterior , Espaço Epidural , Ratos Sprague-Dawley , Estimulação da Medula Espinal/métodos , Feminino , Terapia por Estimulação Elétrica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA