Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96.347
Filtrar
1.
Commun Biol ; 7(1): 791, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951588

RESUMO

According to single-molecule localisation microscopy almost all plasma membrane proteins are clustered. We demonstrate that clusters can arise from variations in membrane topography where the local density of a randomly distributed membrane molecule to a degree matches the variations in the local amount of membrane. Further, we demonstrate that this false clustering can be differentiated from genuine clustering by using a membrane marker to report on local variations in the amount of membrane. In dual colour live cell single molecule localisation microscopy using the membrane probe DiI alongside either the transferrin receptor or the GPI-anchored protein CD59, we found that pair correlation analysis reported both proteins and DiI as being clustered, as did its derivative pair correlation-photoactivation localisation microscopy and nearest neighbour analyses. After converting the localisations into images and using the DiI image to factor out topography variations, no CD59 clusters were visible, suggesting that the clustering reported by the other methods is an artefact. However, the TfR clusters persisted after topography variations were factored out. We demonstrate that membrane topography variations can make membrane molecules appear clustered and present a straightforward remedy suitable as the first step in the cluster analysis pipeline.


Assuntos
Antígenos CD59 , Membrana Celular , Receptores da Transferrina , Imagem Individual de Molécula , Imagem Individual de Molécula/métodos , Membrana Celular/metabolismo , Antígenos CD59/metabolismo , Receptores da Transferrina/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Análise por Conglomerados , Microscopia de Fluorescência/métodos
2.
Methods Enzymol ; 700: 1-32, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38971596

RESUMO

Biophysical coupling between the inner and outer leaflets, known as inter-leaflet or transbilayer coupling, is a fundamental organizational principle in the plasma membranes of live mammalian cells. Lipid-based interactions between the two leaflets are proposed to be a primary mechanism underlying transbilayer coupling. However, there are only a few experimental evidence supporting the existence of such interactions in live cells. This is seemingly due to the lack of experimental strategies to perturb the lipid composition in one leaflet and quantitative techniques to evaluate the biophysical properties of the opposite leaflet. The existing strategies often dependent on immobilization and clustering a component in one of the leaflets and technically demanding biophysical tools to evaluate the effects on the opposing leaflet. In the recent years, the London group developed a simple but elegant method, namely methyl-alpha-cyclodextrin catalyzed lipid exchange (LEX), to efficiently exchange outer leaflet lipids with an exogenous lipid of choice. Here, we adopted this method to perturb outer leaflet lipid composition. The corresponding changes in the inner leaflet is evaluated by comparing the diffusion of lipid probes localized in this leaflet in unperturbed and perturbed conditions. We employed highly multiplexed imaging fluorescence correlation spectroscopy (ImFCS), realized in a commercially available or home-built total internal reflection fluorescence microsocope equipped with a fast and sensitive camera, to determine diffusion coefficient of the lipid probes. Using the combination of LEX and ImFCS, we directly demonstrate lipid-based transbilayer coupling that does not require immobilization of membrane components in live mast cells in resting conditions. Overall, we present a relatively straightforward experimental strategy to evaluate transbilayer coupling quantitively in live cells.


Assuntos
Espectrometria de Fluorescência , Espectrometria de Fluorescência/métodos , Animais , Bicamadas Lipídicas/metabolismo , Bicamadas Lipídicas/química , Membrana Celular/metabolismo , Membrana Celular/química , Mastócitos/metabolismo , Humanos
3.
Methods Enzymol ; 700: 385-411, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38971608

RESUMO

Plasma membranes are flexible and can exhibit numerous shapes below the optical diffraction limit. The shape of cell periphery can either induce or be a product of local protein density changes, encoding numerous cellular functions. However, quantifying membrane curvature and the ensuing sorting of proteins in live cells remains technically demanding. Here, we demonstrate the use of simple widefield fluorescence microscopy to study the geometrical properties (i.e., radius, length, and number) of thin membrane protrusions. Importantly, the quantification of protrusion radius establishes a platform for studying the curvature preferences of membrane proteins.


Assuntos
Proteínas de Membrana , Microscopia de Fluorescência , Transporte Proteico , Microscopia de Fluorescência/métodos , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/análise , Membrana Celular/metabolismo , Membrana Celular/química , Extensões da Superfície Celular/metabolismo , Extensões da Superfície Celular/ultraestrutura , Animais
4.
Methods Enzymol ; 700: 105-126, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38971597

RESUMO

Hyperspectral imaging is a technique that captures a three-dimensional array of spectral information at each spatial location within a sample, enabling precise characterization and discrimination of biological structures, materials, and chemicals, based on their unique spectral features. Nowadays most commercially available confocal microscopes allow hyperspectral imaging measurements, providing a valuable source of spatially resolved spectroscopic data. Spectral phasor analysis quantitatively and graphically transforms the fluorescence spectra at each pixel of a hyperspectral image into points in a polar plot, offering a visual representation of the spectral characteristics of fluorophores within the sample. Combining the use of environmentally sensitive dyes with phasor analysis of hyperspectral images provides a powerful tool for measuring small changes in lateral membrane heterogeneity. Here, we focus on applications of spectral phasor analysis for the probe LAURDAN on model membranes to resolve packing and hydration. The method is broadly applicable to other dyes and to complex systems such as cell membranes.


Assuntos
Corantes Fluorescentes , Espectrometria de Fluorescência , Corantes Fluorescentes/química , Espectrometria de Fluorescência/métodos , Microscopia Confocal/métodos , Lauratos/química , Membrana Celular/química , Membrana Celular/metabolismo , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Bicamadas Lipídicas/química
5.
Methods Enzymol ; 700: 217-234, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38971601

RESUMO

Sphingomyelin is postulated to form clusters with glycosphingolipids, cholesterol and other sphingomyelin molecules in biomembranes through hydrophobic interaction and hydrogen bonds. These clusters form submicron size lipid domains. Proteins that selectively binds sphingomyelin and/or cholesterol are useful to visualize the lipid domains. Due to their small size, visualization of lipid domains requires advanced microscopy techniques in addition to lipid binding proteins. This Chapter describes the method to characterize plasma membrane sphingomyelin-rich and cholesterol-rich lipid domains by quantitative microscopy. This Chapter also compares different permeabilization methods to visualize intracellular lipid domains.


Assuntos
Colesterol , Esfingomielinas , Esfingomielinas/química , Esfingomielinas/metabolismo , Colesterol/química , Colesterol/metabolismo , Humanos , Animais , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/química , Microscopia/métodos , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Membrana Celular/química
7.
Methods Enzymol ; 700: 485-507, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38971611

RESUMO

Signaling receptors on the plasma membrane, such as insulin receptor, can have their activity modulated to some extent by their surrounding lipids. Studying the contribution of membrane lipid properties such as presence of ordered lipid domains or bilayer thickness on the activity of receptors has been a challenging objective in living cells. Using methyl-alpha cyclodextrin-mediated lipid exchange, we are able to alter the lipids of the outer leaflet plasma membrane of mammalian cells to investigate the effect of the properties of the exchanged lipid upon receptor function in live cells. In this article, we describe the technique of lipid exchange in detail and how it can be applied to better understand lipid-mediated regulation of insulin receptor activity in cells.


Assuntos
Membrana Celular , Lipídeos de Membrana , Receptor de Insulina , Receptor de Insulina/metabolismo , Membrana Celular/metabolismo , Humanos , Animais , Lipídeos de Membrana/metabolismo , Lipídeos de Membrana/química
8.
Methods Enzymol ; 700: 77-104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38971613

RESUMO

The biophysical drivers of membrane lateral heterogeneity, often termed lipid rafts, have been largely explored using synthetic liposomes or mammalian plasma membrane-derived giant vesicles. Yeast vacuoles, an organelle comparable to mammalian lysosomes, is the only in vivo system that shows stable micrometer scale phase separation in unperturbed cells. The ease of manipulating lipid metabolism in yeast makes this a powerful system for identifying lipids involved in the onset of vacuole membrane heterogeneity. Vacuole domains are induced by stationary stage growth and nutritional starvation, during which they serve as a docking and internalization site for lipid droplet energy stores. Here we describe methods for characterizing vacuole phase separation, its physiological function, and its lipidic drivers. First, we detail methodologies for robustly inducing vacuole domain formation and quantitatively characterizing during live cell imaging experiments. Second, we detail a new protocol for biochemical isolation of stationary stage vacuoles, which allows for lipidomic dissection of membrane phase separation. Third, we describe biochemical techniques for analyzing lipid droplet internalization in vacuole domains. When combined with genetic or chemical perturbations to lipid metabolism, these methods allow for systematic dissection of lipid composition in the structure and function of ordered membrane domains in living cells.


Assuntos
Metabolismo dos Lipídeos , Saccharomyces cerevisiae , Vacúolos , Vacúolos/metabolismo , Saccharomyces cerevisiae/metabolismo , Microdomínios da Membrana/metabolismo , Gotículas Lipídicas/metabolismo , Membrana Celular/metabolismo , Lipidômica/métodos
9.
Nat Commun ; 15(1): 5689, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38971796

RESUMO

Leukemia is a kind of hematological malignancy originating from bone marrow, which provides essential signals for initiation, progression, and recurrence of leukemia. However, how to specifically deliver drugs to the bone marrow remains elusive. Here, we develop biomimetic vesicles by infusing hematopoietic stem and progenitor cell (HSPC) membrane with liposomes (HSPC liposomes), which migrate to the bone marrow of leukemic mice via hyaluronic acid-CD44 axis. Moreover, the biomimetic vesicles exhibit superior binding affinity to leukemia cells through intercellular cell adhesion molecule-1 (ICAM-1)/integrin ß2 (ITGB2) interaction. Further experiments validate that the vesicles carrying chemotherapy drug cytarabine (Ara-C@HSPC-Lipo) markedly inhibit proliferation, induce apoptosis and differentiation of leukemia cells, and decrease number of leukemia stem cells. Mechanically, RNA-seq reveals that Ara-C@HSPC-Lipo treatment induces apoptosis and differentiation and inhibits the oncogenic pathways. Finally, we verify that HSPC liposomes are safe in mice. This study provides a method for targeting bone marrow and treating leukemia.


Assuntos
Apoptose , Medula Óssea , Citarabina , Sistemas de Liberação de Medicamentos , Células-Tronco Hematopoéticas , Leucemia , Lipossomos , Animais , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Citarabina/farmacologia , Medula Óssea/efeitos dos fármacos , Medula Óssea/patologia , Medula Óssea/metabolismo , Apoptose/efeitos dos fármacos , Leucemia/tratamento farmacológico , Leucemia/patologia , Humanos , Diferenciação Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Antígenos CD18/metabolismo , Proliferação de Células/efeitos dos fármacos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo
10.
Cells ; 13(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38994953

RESUMO

The retinal pigment epithelium (RPE) is an essential component of the retina that plays multiple roles required to support visual function. These include light onset- and circadian rhythm-dependent tasks, such as daily phagocytosis of photoreceptor outer segments. Mitochondria provide energy to the highly specialized and energy-dependent RPE. In this study, we examined the positioning of mitochondria and how this is influenced by the onset of light. We identified a population of mitochondria that are tethered to the basal plasma membrane pre- and post-light onset. Following light onset, mitochondria redistributed apically and interacted with melanosomes and phagosomes. In a choroideremia mouse model that has regions of the RPE with disrupted or lost infolding of the plasma membrane, the positionings of only the non-tethered mitochondria were affected. This provides evidence that the tethering of mitochondria to the plasma membrane plays an important role that is maintained under these disease conditions. Our work shows that there are subpopulations of RPE mitochondria based on their positioning after light onset. It is likely they play distinct roles in the RPE that are needed to fulfil the changing cellular demands throughout the day.


Assuntos
Membrana Celular , Luz , Mitocôndrias , Epitélio Pigmentado da Retina , Epitélio Pigmentado da Retina/metabolismo , Animais , Mitocôndrias/metabolismo , Camundongos , Membrana Celular/metabolismo , Camundongos Endogâmicos C57BL , Melanossomas/metabolismo , Ritmo Circadiano/fisiologia , Fagossomos/metabolismo
13.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39000353

RESUMO

Connexins (Cxs) are transmembrane proteins that assemble into gap junction channels (GJCs) and hemichannels (HCs). Previous researches support the involvement of Rho GTPases and actin microfilaments in the trafficking of Cxs, formation of GJCs plaques, and regulation of channel activity. Nonetheless, it remains uncertain whether distinct types of Cxs HCs and GJCs respond differently to Rho GTPases or changes in actin polymerization/depolymerization dynamics. Our investigation revealed that inhibiting RhoA, a small GTPase that controls actin polymerization, or disrupting actin microfilaments with cytochalasin B (Cyto-B), resulted in reduced GJCs plaque size at appositional membranes and increased transport of HCs to non-appositional plasma membrane regions. Notably, these effects were consistent across different Cx types, since Cx26 and Cx43 exhibited similar responses, despite having distinct trafficking routes to the plasma membrane. Functional assessments showed that RhoA inhibition and actin depolymerization decreased the activity of Cx43 GJCs while significantly increasing HC activity. However, the functional status of GJCs and HCs composed of Cx26 remained unaffected. These results support the hypothesis that RhoA, through its control of the actin cytoskeleton, facilitates the transport of HCs to appositional cell membranes for GJCs formation while simultaneously limiting the positioning of free HCs at non-appositional cell membranes, independently of Cx type. This dynamic regulation promotes intercellular communications and reduces non-selective plasma membrane permeability through a Cx-type dependent mechanism, whereby the activity of Cx43 HCs and GJCs are differentially affected but Cx26 channels remain unchanged.


Assuntos
Citoesqueleto de Actina , Conexina 26 , Conexina 43 , Junções Comunicantes , Proteína rhoA de Ligação ao GTP , Citoesqueleto de Actina/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Junções Comunicantes/metabolismo , Conexina 43/metabolismo , Conexina 26/metabolismo , Humanos , Animais , Membrana Celular/metabolismo , Actinas/metabolismo
14.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39000442

RESUMO

Human defensins are cysteine-rich peptides (Cys-rich peptides) of the innate immune system. Defensins contain an ancestral structural motif (i.e., γ-core motif) associated with the antimicrobial activity of natural Cys-rich peptides. In this study, low concentrations of human α- and ß-defensins showed microbicidal activity that was not associated with cell membrane permeabilization. The cell death pathway was similar to that previously described for human lactoferrin, also an immunoprotein containing a γ-core motif. The common features were (1) cell death not related to plasma membrane (PM) disruption, (2) the inhibition of microbicidal activity via extracellular potassium, (3) the influence of cellular respiration on microbicidal activity, and (4) the influence of intracellular pH on bactericidal activity. In addition, in yeast, we also observed (1) partial K+-efflux mediated via Tok1p K+-channels, (2) the essential role of mitochondrial ATP synthase in cell death, (3) the increment of intracellular ATP, (4) plasma membrane depolarization, and (5) the inhibition of external acidification mediated via PM Pma1p H+-ATPase. Similar features were also observed with BM2, an antifungal peptide that inhibits Pma1p H+-ATPase, showing that the above coincident characteristics were a consequence of PM H+-ATPase inhibition. These findings suggest, for the first time, that human defensins inhibit PM H+-ATPases at physiological concentrations, and that the subsequent cytosolic acidification is responsible for the in vitro microbicidal activity. This mechanism of action is shared with human lactoferrin and probably other antimicrobial peptides containing γ-core motifs.


Assuntos
Membrana Celular , ATPases Translocadoras de Prótons , Humanos , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , ATPases Translocadoras de Prótons/metabolismo , ATPases Translocadoras de Prótons/antagonistas & inibidores , Permeabilidade da Membrana Celular/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Defensinas/farmacologia , Defensinas/metabolismo , Concentração de Íons de Hidrogênio , Saccharomyces cerevisiae/metabolismo , beta-Defensinas/metabolismo , beta-Defensinas/farmacologia , Lactoferrina/farmacologia , Lactoferrina/metabolismo , Potássio/metabolismo , Testes de Sensibilidade Microbiana , Candida albicans/efeitos dos fármacos
15.
J Chem Phys ; 161(3)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39007374

RESUMO

Voltage distribution in sub-cellular micro-domains such as neuronal synapses, small protrusions, or dendritic spines regulates the opening and closing of ionic channels, energy production, and thus, cellular homeostasis and excitability. Yet how voltage changes at such a small scale in vivo remains challenging due to the experimental diffraction limit, large signal fluctuations, and the still limited resolution of fast voltage indicators. Here, we study the voltage distribution in nano-compartments using a computational approach based on the Poisson-Nernst-Planck equations for the electro-diffusion motion of ions, where inward and outward fluxes are generated between channels. We report a current-voltage (I-V) logarithmic relationship generalizing Nernst law that reveals how the local membrane curvature modulates the voltage. We further find that an influx current penetrating a cellular electrolyte can lead to perturbations from tens to hundreds of nanometers deep, depending on the local channel organization. Finally, we show that the neck resistance of dendritic spines can be completely shunted by the transporters located on the head boundary, facilitating ionic flow. To conclude, we propose that voltage is regulated at a subcellular level by channel organization, membrane curvature, and narrow passages.


Assuntos
Membrana Celular , Difusão , Membrana Celular/química , Membrana Celular/metabolismo , Espinhas Dendríticas/metabolismo
16.
Commun Biol ; 7(1): 826, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972875

RESUMO

Classically, G protein-coupled receptors (GPCRs) promote signaling at the plasma membrane through activation of heterotrimeric Gαßγ proteins, followed by the recruitment of GPCR kinases and ßarrestin (ßarr) to initiate receptor desensitization and internalization. However, studies demonstrated that some GPCRs continue to signal from internalized compartments, with distinct cellular responses. Both ßarr and Gßγ contribute to such non-canonical endosomal G protein signaling, but their specific roles and contributions remain poorly understood. Here, we demonstrate that the vasopressin V2 receptor (V2R)-ßarr complex scaffolds Gßγ at the plasma membrane through a direct interaction with ßarr, enabling its transport to endosomes. Gßγ subsequently potentiates Gαs endosomal translocation, presumably to regenerate an endosomal pool of heterotrimeric Gs. This work shines light on the mechanism underlying G protein subunits translocation from the plasma membrane to the endosomes and provides a basis for understanding the role of ßarr in mediating sustained G protein signaling.


Assuntos
Endossomos , Subunidades beta da Proteína de Ligação ao GTP , Subunidades gama da Proteína de Ligação ao GTP , Transporte Proteico , Receptores de Vasopressinas , beta-Arrestinas , Humanos , beta-Arrestinas/metabolismo , Membrana Celular/metabolismo , Endossomos/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/genética , Células HEK293 , Receptores de Vasopressinas/metabolismo , Receptores de Vasopressinas/genética , Transdução de Sinais
17.
J Gen Physiol ; 156(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38990175

RESUMO

L-type CaV1.2 current (ICa,L) links electrical excitation to contraction in cardiac myocytes. ICa,L is tightly regulated to control cardiac output. Rad is a Ras-related, monomeric protein that binds to L-type calcium channel ß subunits (CaVß) to promote inhibition of ICa,L. In addition to CaVß interaction conferred by the Rad core motif, the highly conserved Rad C-terminus can direct membrane association in vitro and inhibition of ICa,L in immortalized cell lines. In this work, we test the hypothesis that in cardiomyocytes the polybasic C-terminus of Rad confers t-tubular localization, and that membrane targeting is required for Rad-dependent ICa,L regulation. We introduced a 3xFlag epitope to the N-terminus of the endogenous mouse Rrad gene to facilitate analysis of subcellular localization. Full-length 3xFlag-Rad (Flag-Rad) mice were compared with a second transgenic mouse model, in which the extended polybasic C-termini of 3xFlag-Rad was truncated at alanine 277 (Flag-RadΔCT). Ventricular cardiomyocytes were isolated for anti-Flag-Rad immunocytochemistry and ex vivo electrophysiology. Full-length Flag-Rad showed a repeating t-tubular pattern whereas Flag-RadΔCT failed to display membrane association. ICa,L in Flag-RadΔCT cardiomyocytes showed a hyperpolarized activation midpoint and an increase in maximal conductance. Additionally, current decay was faster in Flag-RadΔCT cells. Myocardial ICa,L in a Rad C-terminal deletion model phenocopies ICa,L modulated in response to ß-AR stimulation. Mechanistically, the polybasic Rad C-terminus confers CaV1.2 regulation via membrane association. Interfering with Rad membrane association constitutes a specific target for boosting heart function as a treatment for heart failure with reduced ejection fraction.


Assuntos
Canais de Cálcio Tipo L , Miócitos Cardíacos , Animais , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/genética , Camundongos , Miócitos Cardíacos/metabolismo , Membrana Celular/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Camundongos Transgênicos , Proteínas ras
18.
Methods Enzymol ; 701: 157-174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39025571

RESUMO

Molecular dynamics (MD) simulations are a useful tool when studying the properties of membranes as they allow for a molecular view of lipid interactions with proteins, nucleic acids, or small molecules. While model membranes are usually symmetric in their lipid composition between leaflets and include a small number of lipid components, physiological membranes are highly complex and vary in the level of asymmetry. Simulation studies have shown that changes in leaflet asymmetry can alter the properties of a membrane. It is therefore necessary to carefully build asymmetric membranes to accurately simulate membranes. This chapter carefully describes the different methods for building asymmetric membranes and the advantages/disadvantages of each method. The simplest methods involve building a membrane with either an equal number of lipids per leaflet or an equal initial surface area (SA) estimated by the area per lipid. More detailed methods include combining two symmetric membranes of equal SA or altering an asymmetric membrane and adjusting the number of lipids after equilibration to minimize an observable such as differential stress (0-DS). More complex methods that require specific simulation software are also briefly described. The challenges and assumptions are listed for each method which should help guide the researcher to choose the best method for their unique MD simulation of an asymmetric membrane.


Assuntos
Membrana Celular , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Membrana Celular/química , Membrana Celular/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Software
19.
Methods Enzymol ; 701: 237-285, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39025573

RESUMO

The Martini model is a popular force field for coarse-grained simulations. Membranes have always been at the center of its development, with the latest version, Martini 3, showing great promise in capturing more and more realistic behavior. In this chapter we provide a step-by-step tutorial on how to construct starting configurations, run initial simulations and perform dedicated analysis for membrane-based systems of increasing complexity, including leaflet asymmetry, curvature gradients and embedding of membrane proteins.


Assuntos
Bicamadas Lipídicas , Proteínas de Membrana , Simulação de Dinâmica Molecular , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Membrana Celular/química , Membrana Celular/metabolismo
20.
Methods Enzymol ; 701: 175-236, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39025572

RESUMO

Biomembranes and vesicles cover a wide range of length scales. Indeed, small nanovesicles have a diameter of a few tens of nanometers whereas giant vesicles can have diameters up to hundreds of micrometers. The remodeling of giant vesicles on the micron scale can be observed by light microscopy and understood by the theory of curvature elasticity, which represents a top-down approach. The theory predicts the formation of multispherical shapes as recently observed experimentally. On the nanometer scale, much insight has been obtained via coarse-grained molecular dynamics simulations of nanovesicles, which provides a bottom-up approach based on the lipid numbers assembled in the two bilayer leaflets and the resulting leaflet tensions. The remodeling processes discussed here include the shape transformations of vesicles, their morphological responses to the adhesion of condensate droplets, the instabilities of lipid bilayers and nanovesicles, as well as the topological transformations of vesicles by membrane fission and fusion. The latter processes determine the complex topology of the endoplasmic reticulum.


Assuntos
Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Bicamadas Lipídicas/química , Membrana Celular/química , Membrana Celular/metabolismo , Fusão de Membrana/fisiologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA