Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.621
Filtrar
1.
J Environ Sci (China) ; 147: 571-581, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003072

RESUMO

Mining and tailings deposition can cause serious heavy metal(loids) pollution to the surrounding soil environment. Soil microorganisms adapt their metabolism to such conditions, driving alterations in soil function. This study aims to elucidate the response patterns of nitrogen-cycling microorganisms under long-term heavy metal(loids) exposure. The results showed that the diversity and abundance of nitrogen-cycling microorganisms showed negative feedback to heavy metal(loids) concentrations. Denitrifying microorganisms were shown to be the dominant microorganisms with over 60% of relative abundance and a complex community structure including 27 phyla. Further, the key bacterial species in the denitrification process were calculated using a random forest model, where the top three key species (Pseudomonas stutzei, Sphingobium japonicum and Leifsonia rubra) were found to play a prominent role in nitrite reduction. Functional gene analysis and qPCR revealed that nirK, which is involved in nitrite reduction, significantly accumulated in the most metal-rich soil with the increase of absolute abundance of 63.86%. The experimental results confirmed that the activity of nitrite reductase (Nir) encoded by nirK in the soil was increased at high concentrations of heavy metal(loids). Partial least squares-path model identified three potential modes of nitrite reduction processes being stimulated by heavy metal(loids), the most prominent of which contributed to enhanced nirK abundance and soil Nir activity through positive stimulation of key species. The results provide new insights and preliminary evidence on the stimulation of nitrite reduction processes by heavy metal(loids).


Assuntos
Ouro , Metais Pesados , Mineração , Nitritos , Microbiologia do Solo , Poluentes do Solo , Metais Pesados/toxicidade , Ciclo do Nitrogênio , Desnitrificação , Nitrogênio , Solo/química
2.
Arh Hig Rada Toksikol ; 75(2): 102-109, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38963144

RESUMO

COVID-19 can cause a range of complications, including cardiovascular, renal, and/or respiratory insufficiencies, yet little is known of its potential effects in persons exposed to toxic metals. The aim of this study was to answer this question with in silico toxicogenomic methods that can provide molecular insights into COVID-19 complications owed to exposure to arsenic, cadmium, lead, mercury, nickel, and chromium. For this purpose we relied on the Comparative Toxicogenomic Database (CTD), GeneMANIA, and ToppGene Suite portal and identified a set of five common genes (IL1B, CXCL8, IL6, IL10, TNF) for the six metals and COVID-19, all of which code for pro-inflammatory and anti-inflammatory cytokines. The list was expanded with additional 20 related genes. Physical interactions are the most common between the genes affected by the six metals (77.64 %), while the dominant interaction between the genes affected by each metal separately is co-expression (As 56.35 %, Cd 64.07 %, Pb 71.5 %, Hg 81.91 %, Ni 64.28 %, Cr 88.51 %). Biological processes, molecular functions, and pathways in which these 25 genes participate are closely related to cytokines and cytokine storm implicated in the development of COVID-19 complications. In other words, our findings confirm that exposure to toxic metals, alone or in combinations, might escalate COVID-19 severity.


Assuntos
COVID-19 , Cádmio , Mercúrio , Humanos , Cádmio/toxicidade , Mercúrio/toxicidade , Chumbo/toxicidade , Simulação por Computador , SARS-CoV-2 , Arsênio/toxicidade , Níquel/toxicidade , Metais Pesados/toxicidade , Cromo/toxicidade , Citocinas , Interleucina-1beta/genética , Interleucina-8/genética , Toxicogenética , Interleucina-6/genética , Interleucina-10/genética , Fator de Necrose Tumoral alfa/genética
3.
Cells ; 13(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38994995

RESUMO

Huntington's disease (HD) is a rare but progressive and devastating neurodegenerative disease characterized by involuntary movements, cognitive decline, executive dysfunction, and neuropsychiatric conditions such as anxiety and depression. It follows an autosomal dominant inheritance pattern. Thus, a child who has a parent with the mutated huntingtin (mHTT) gene has a 50% chance of developing the disease. Since the HTT protein is involved in many critical cellular processes, including neurogenesis, brain development, energy metabolism, transcriptional regulation, synaptic activity, vesicle trafficking, cell signaling, and autophagy, its aberrant aggregates lead to the disruption of numerous cellular pathways and neurodegeneration. Essential heavy metals are vital at low concentrations; however, at higher concentrations, they can exacerbate HD by disrupting glial-neuronal communication and/or causing dysbiosis (disturbance in the gut microbiota, GM), both of which can lead to neuroinflammation and further neurodegeneration. Here, we discuss in detail the interactions of iron, manganese, and copper with glial-neuron communication and GM and indicate how this knowledge may pave the way for the development of a new generation of disease-modifying therapies in HD.


Assuntos
Microbioma Gastrointestinal , Doença de Huntington , Metais Pesados , Neuroglia , Doença de Huntington/microbiologia , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Humanos , Neuroglia/metabolismo , Neuroglia/patologia , Metais Pesados/metabolismo , Metais Pesados/toxicidade , Animais
4.
Environ Geochem Health ; 46(9): 312, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001963

RESUMO

The ground cracks resulting from coal mining activities induce alterations in the physical and chemical characteristics of soil. However, limited knowledge exists regarding the impact of subsidence caused by coal mining on the distribution of potentially toxic elements (PTEs) fractions in farmland soil. In this study, we collected 19 soil profiles at varying depths from the soil surface and at horizontal distances of 0, 1, 2, and 5 m from the vertical crack. Using BCR extraction fractionation, we determined the geochemical fractions and total concentrations of Chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd) and lead (Pb) to investigate their ecological risk, spatial fraction distribution, and main influencing factors. Results showed that the E r i values of Cd appearing in 68.7% of the samples were higher than 40 and less than 80, presented a moderate ecological risk. Chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), and lead (Pb) were mainly bound to residual fractions (> 60%) with lower mobility and Cd was dominated by F1 (acid-soluble fractions, 50%) and F2 (reducible fractions, 29%) in surface soil (0-20 cm). The geochemical fractionation revealed that the mobile fractions (F1-acid-soluble and F2-reducible) of PTEs were primarily located near the crack, influenced by available potassium. In contrast, the less mobile fractions (F3-oxidizable and F4-residual) exhibited higher concentrations at distances of 2 and 5 m from the crack, except for arsenic, influenced by the presence of clay particles and available phosphorus.


Assuntos
Minas de Carvão , Monitoramento Ambiental , Metais Pesados , Poluentes do Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Metais Pesados/análise , Metais Pesados/toxicidade , Solo/química , Fazendas , Medição de Risco
5.
Ecotoxicol Environ Saf ; 281: 116663, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964059

RESUMO

Biological characteristics of pregnant women during early pregnancy make them susceptible to both poor sleep quality and metal/metalloid exposure. However, the effects of metal(loid) exposure on sleep quality in pregnant women remain unknown and unexplored. We aimed to examine the relationship between exposure to a mixture of metal(loid)s and pregnant women's sleep quality during early pregnancy. We recruited 493 pregnant women in the first trimester from prenatal clinics in Jinan, Shandong Province, China, and collected their spot urine samples. All urine specimens were assessed for eight metal(loid)s: arsenic (As), cadmium (Cd), iron (Fe), zinc (Zn), molybdenum (Mo), lead (Pb), selenium (Se), and mercury (Hg). We used the Pittsburgh Sleep Quality Index (PSQI) to assess sleep quality. Linear regression, logistic regression, generalized additive models (GAMs), quantile g-computation, and Bayesian kernel machine regression (BKMR) were applied to investigate the relationships between metal(loid) exposure and sleep quality. The results from single metal(loid) models, quantile g-computation models, and BKMR models consistently suggested that Fe was positively related to women's sleep quality. Moreover, in the quantile g-computation models, As was the most critical contributor to the negative effects of the metal(loid) mixture on sleep quality. In addition, we found significant As by Fe interaction for scores of PSQI and habitual sleep efficiency, Pb by Fe interaction for PSQI and sleep latency, and Hg by Fe interaction for PSQI, suggesting the interactive effects of As and Fe, Pb and Fe, Hg and Fe on sleep quality and specific sleep components. Our study provided the first-hand evidence of the effects of metal(loid) exposure on pregnant women's sleep quality. The underlying mechanisms need to be explored in the future.


Assuntos
Qualidade do Sono , Humanos , Feminino , Gravidez , Estudos Transversais , Adulto , China , Poluentes Ambientais/urina , Poluentes Ambientais/toxicidade , Selênio/urina , Arsênio/urina , Arsênio/toxicidade , Metais/urina , Metais/toxicidade , Metais Pesados/urina , Metais Pesados/toxicidade , Mercúrio/urina , Mercúrio/toxicidade , Adulto Jovem , Chumbo/urina , Chumbo/toxicidade , Exposição Materna , Cádmio/urina , Cádmio/toxicidade , Primeiro Trimestre da Gravidez
6.
Ecotoxicol Environ Saf ; 281: 116659, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964060

RESUMO

Chronic Kidney Disease (CKD), closely linked to environmental factors, poses a significant public health challenge. This study, based on 529 triple-repeated measures from key national environmental pollution area and multiple gene-related public databases, employs various epidemiological and bioinformatics models to assess the impact of combined heavy metal exposure (Chromium [Cr], Cadmium [Cd], and Lead [Pb]) on early renal injury and CKD in the elderly. Introducing the novel Enviro-Target Mendelian Randomization method, our research explores the causal relationship between metals and CKD. The findings indicate a positive correlation between increased levels of metal and renal injury, with combined exposure caused renal damage more significantly than individual exposure. The study reveals that metals primarily influence CKD development through oxidative stress and metal ion resistance pathways, focusing on three related genes (SOD2, MPO, NQO1) and a transcription factor (NFE2L2). Metals were found to regulate oxidative stress levels in the body by increasing the expression of SOD2, MPO, NQO1, and decreasing NFE2L2, leading to CKD onset. Our research establishes a new causal inference framework linking environmental pollutants-pathways-genes-CKD, assessing the impact and mechanisms of metal exposure on CKD. Future studies with more extensive in vitro evidence and larger population are needed to validate.


Assuntos
Cádmio , Poluentes Ambientais , Análise da Randomização Mendeliana , Metais Pesados , Estresse Oxidativo , Insuficiência Renal Crônica , Humanos , Metais Pesados/toxicidade , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/epidemiologia , Estresse Oxidativo/efeitos dos fármacos , Idoso , Cádmio/toxicidade , Poluentes Ambientais/toxicidade , Chumbo/toxicidade , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , NAD(P)H Desidrogenase (Quinona)/genética , Fator 2 Relacionado a NF-E2/genética , Exposição Ambiental/efeitos adversos , Masculino , Feminino , Cromo/toxicidade , Rim/efeitos dos fármacos
7.
Sci Rep ; 14(1): 16940, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043676

RESUMO

Air pollution and heavy metal exposure are emerging public health concerns. Prenatal exposure to air pollutants and heavy metals has been implicated in the development of congenital heart disease (CHD). However, the relationship between exposure to airborne heavy metals and CHD has not yet been investigated. Therefore, in this large population-based study, we investigated the association between air pollutants, including airborne heavy metals, and the risk of CHD using national health insurance claims data from South Korea. Data regarding 1,129,442 newborns and their mothers were matched with air pollutant levels during the first 8 weeks of gestation. In the five-air pollutant model, we found significant positive correlations between prenatal exposure to sulfur dioxide (SO2; odds ratio [OR] 6.843, 95% confidence interval [CI] 5.746-8.149) and cadmium (Cd; OR 1.513, 95% CI 1.187-1.930) and the risk of ventricular septal defects in newborns. This study highlights the association between prenatal exposure to air pollutants, including airborne heavy metals, and an elevated CHD risk. Further research is essential to validate and expand these findings, with the ultimate goal of enhancing public health outcomes.


Assuntos
Poluentes Atmosféricos , Bases de Dados Factuais , Cardiopatias Congênitas , Efeitos Tardios da Exposição Pré-Natal , Humanos , Feminino , Gravidez , República da Coreia/epidemiologia , Cardiopatias Congênitas/epidemiologia , Cardiopatias Congênitas/etiologia , Cardiopatias Congênitas/induzido quimicamente , Recém-Nascido , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Adulto , Exposição Materna/efeitos adversos , Masculino , Dióxido de Enxofre/análise , Dióxido de Enxofre/efeitos adversos , Fatores de Risco , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Programas Nacionais de Saúde , Metais Pesados/efeitos adversos , Metais Pesados/análise , Metais Pesados/toxicidade
8.
Environ Geochem Health ; 46(8): 290, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976075

RESUMO

Heavy metal pollution is a significant environmental concern with detrimental effects on ecosystems and human health, and traditional remediation methods may be costly, energy-intensive, or have limited effectiveness. The current study aims were to investigate the impact of heavy metal toxicity in Eisenia fetida, the growth, reproductive outcomes, and their role in soil remediation. Various concentrations (ranging from 0 to 640 mg per kg of soil) of each heavy metal were incorporated into artificially prepared soil, and vermi-remediation was conducted over a period of 60 days. The study examined the effects of heavy metals on the growth and reproductive capabilities of E. fetida, as well as their impact on the organism through techniques such as FTIR, histology, and comet assay. Atomic absorption spectrometry demonstrated a significant (P < 0.000) reduction in heavy metal concentrations in the soil as a result of E. fetida activity. The order of heavy metal accumulation by E. fetida was found to be Cr > Cd > Pb. Histological analysis revealed a consistent decline in the organism's body condition with increasing concentrations of heavy metals. However, comet assay results indicated that the tested levels of heavy metals did not induce DNA damage in E. fetida. FTIR analysis revealed various functional group peaks, including N-H and O-H groups, CH2 asymmetric stretching, amide I and amide II, C-H bend, carboxylate group, C-H stretch, C-O stretching of sulfoxides, carbohydrates/polysaccharides, disulfide groups, and nitro compounds, with minor shifts indicating the binding or accumulation of heavy metals within E. fetida. Despite heavy metal exposure, no significant detrimental effects were observed, highlighting the potential of E. fetida for sustainable soil remediation. Vermi-remediation with E. fetida represents a novel, sustainable, and cutting-edge technology in environmental cleanup. This study found that E. fetida can serve as a natural and sustainable method for remediating heavy metal-contaminated soils, promising a healthier future for soil.


Assuntos
Recuperação e Remediação Ambiental , Metais Pesados , Oligoquetos , Reprodução , Poluentes do Solo , Oligoquetos/efeitos dos fármacos , Metais Pesados/toxicidade , Animais , Poluentes do Solo/toxicidade , Reprodução/efeitos dos fármacos , Recuperação e Remediação Ambiental/métodos , Ensaio Cometa , Espectroscopia de Infravermelho com Transformada de Fourier , Dano ao DNA , Solo/química
9.
BMC Plant Biol ; 24(1): 659, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38987675

RESUMO

BACKGROUND: The potential of phytoremediation using garlic monoculture (MC) and intercropping (IC) system with perennial ryegrass to enhance the uptake of cadmium (Cd), chromium (Cr), and lead (Pb) were investigated. RESULTS: Positive correlations were found between MC and IC systems, with varying biomass. Production of perennial ryegrass was affected differently depending on the type of toxic metal present in the soil. Root growth inhibition was more affected than shoot growth inhibition. The total biomass of shoot and root in IC was higher than MC, increasing approximately 3.7 and 2.9 fold compared to MC, attributed to advantages in root IC crop systems. Photosystem II efficiency showed less sensitivity to metal toxicity compared to the control, with a decrease between 10.07-12.03%. Among gas exchange parameters, only Cr significantly affected physiological responses by reducing transpiration by 69.24%, likely due to leaf chlorosis and necrosis. CONCLUSION: This study exhibited the potential of garlic MC and IC with perennial ryegrass in phytoremediation. Although the different metals affect plant growth differently, IC showed advantages over MC in term biomass production.


Assuntos
Biodegradação Ambiental , Alho , Lolium , Metais Pesados , Fotossíntese , Lolium/crescimento & desenvolvimento , Lolium/efeitos dos fármacos , Lolium/fisiologia , Lolium/metabolismo , Fotossíntese/efeitos dos fármacos , Metais Pesados/toxicidade , Alho/crescimento & desenvolvimento , Alho/fisiologia , Alho/metabolismo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Biomassa , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Cádmio/toxicidade , Cádmio/metabolismo
10.
Vitam Horm ; 126: 1-24, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39029969

RESUMO

Exposure to neurotoxic and heavy metals (Pb2+, As3+, Mn2+, Cd2+, etc) has increased over time and has shown to negatively affect brain health. Heavy metals can cross the blood brain barrier (BBB) in various ways including receptor or carrier-mediated transport, passive diffusion, or transport via gaps in the endothelial cells of the brain. In high concentrations, these metals have been shown to cause structural and functional impairment to the BBB, by inducing oxidative stress, ion dyshomeostasis, tight junction (TJ) loss, astrocyte/pericyte damage and interference of gap junctions. The structural and functional impairment of the BBB results in increased BBB permeability, which ultimately leads to accumulation of these heavy metals in the brain and their subsequent toxicity. As a result of these effects, heavy metals are correlated with various neurological disorders. The pathological effects of these heavy metals can be effectively mitigated via chelation. In addition, it is possible to treat the associated disorders by counteracting the molecular mechanisms associated with the brain and BBB impairment.


Assuntos
Barreira Hematoencefálica , Metais Pesados , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Humanos , Animais , Metais Pesados/toxicidade , Estresse Oxidativo/efeitos dos fármacos
11.
Artigo em Inglês | MEDLINE | ID: mdl-38929008

RESUMO

Liver diseases, including non-alcoholic fatty liver disease (NAFLD), are a growing global health issue. Environmental exposure to toxic metals can harm the liver, increasing the risk of NAFLD. Essential elements are vital for liver health, but imbalances or deficiencies can contribute to the development of NAFLD. Therefore, understanding the interplay between toxic metals and essential elements in liver disease is important. This study aims to assess the individual and combined effects of toxic metals (lead(Pb), cadmium (Cd), mercury (Hg)), and essential elements (manganese and selenium) on the risk of liver disease. Methods: We assessed the individual and combined effects of Pb, Cd, Hg, manganese (Mn), and selenium (Se) on liver disease risk using data from the National Health and Nutrition Examination Survey between 2017 and 2018. We performed descriptive statistics and linear regression analysis and then utilized Bayesian Kernel Machine Regression (BKMR) techniques such as univariate, bivariate, and overall effect analysis. BKMR enabled the assessment of non-linear exposure-response functions and interactions between metals and essential elements. Posterior Inclusion Probabilities (PIPs) were calculated to determine the importance of each metal and essential element in contributing to liver disease. Regarding our study results, the regression analysis of liver injury biomarkers ALT, AST, ALP, GGT, total bilirubin, and the FLI-an indicator of NAFLD-with toxic metals and essential elements, adjusting for covariates such as age, sex, BMI, alcohol consumption, ethnicity, income, and smoking status, demonstrated the differential effects of these contaminants on the markers of interest. Our BKMR analysis provided further insights. For instance, the PIP results underscored Pb's consistent importance in contributing to liver disease (PIP = 1.000), followed by Hg (PIP = 0.9512), Cd (PIP = 0.5796), Se (PIP = 0.5572), and Mn (PIP = 0.4248). Our univariate analysis showed a positive trend with Pb, while other exposures were relatively flat. Our analysis of the single-variable effects of toxic metals and essential elements on NAFLD also revealed that Pb significantly affected the risk of NAFLD. Our bivariate analysis found a positive (toxic) trend when Pb was combined with other metals and essential elements. For the overall exposure effect of exposure to all the contaminants together, the estimated risk of NAFLD showed a steady increase from the 60th to the 75th percentile. In conclusion, our study indicates that Pb exposure, when combined with other toxic metals and essential elements, plays a significant role in bringing about adverse liver disease outcomes.


Assuntos
Inquéritos Nutricionais , Humanos , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Hepatopatias/epidemiologia , Hepatopatias/etiologia , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/toxicidade , Metais Pesados/toxicidade , Selênio , Cádmio/toxicidade , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Idoso , Adulto Jovem , Oligoelementos , Mercúrio/toxicidade , Teorema de Bayes , Manganês/toxicidade , Chumbo/toxicidade , Estados Unidos/epidemiologia
12.
Sci Rep ; 14(1): 14741, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926601

RESUMO

Potentially toxic metal(loid) assessment of tea and tea garden soil is a vital guarantee of tea safety and is very necessary. This study analyzed the distribution of seven potentially toxic metal(loid)s in different organs of the tea plants and soil at various depths in the Yangai tea farm of Guiyang City, Guizhou Province, China. Although soil potentially toxic metal(loid) in the study area is safe, there should be attention to the health risks of Cu, Ni, As, and Pb in the later stages of tea garden management. Soil As and Pb are primarily from anthropogenic sources, soil Zn is mainly affected by natural sources and human activities, and soil with other potentially toxic metal(loid) is predominantly from natural sources. Tea plants might be the enrichment of Zn and the exclusion or tolerance of As, Cu, Ni, and Pb. The tea plant has a strong ability for absorbing Cd and preferentially storing it in its roots, stems, and mature leaves. Although the Cd and other potentially toxic metal(loid)s content of tea in Guizhou Province is generally within the range of edible safety, with the increase of tea planting years, it is essential to take corresponding measures to prevent the potential health risks of Cd and other potentially toxic metal(loid)s in tea.


Assuntos
Camellia sinensis , Poluentes do Solo , Solo , Camellia sinensis/química , Poluentes do Solo/análise , China , Solo/química , Metais Pesados/análise , Metais Pesados/toxicidade , Folhas de Planta/química , Folhas de Planta/metabolismo , Chá/química , Monitoramento Ambiental , Metais/análise
13.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928273

RESUMO

Age-related macular degeneration (AMD) is a chronic disease, which often develops in older people, but this is not the rule. AMD pathogenesis changes include the anatomical and functional complex. As a result of damage, it occurs, in the retina and macula, among other areas. These changes may lead to partial or total loss of vision. This disease can occur in two clinical forms, i.e., dry (progression is slowly and gradually) and exudative (wet, progression is acute and severe), which usually started as dry form. A coexistence of both forms is possible. AMD etiology is not fully understood. Extensive genetic studies have shown that this disease is multifactorial and that genetic determinants, along with environmental and metabolic-functional factors, are important risk factors. This article reviews the impact of heavy metals, macro- and microelements, and genetic factors on the development of AMD. We present the current state of knowledge about the influence of environmental factors and genetic determinants on the progression of AMD in the confrontation with our own research conducted on the Polish population from Kuyavian-Pomeranian and Lubusz Regions. Our research is concentrated on showing how polluted environments of large agglomerations affects the development of AMD. In addition to confirming heavy metal accumulation, the growth of risk of acute phase factors and polymorphism in the genetic material in AMD development, it will also help in the detection of new markers of this disease. This will lead to a better understanding of the etiology of AMD and will help to establish prevention and early treatment.


Assuntos
Degeneração Macular , Humanos , Degeneração Macular/genética , Degeneração Macular/etiologia , Fatores de Risco , Predisposição Genética para Doença , Metais Pesados/toxicidade , Metais Pesados/efeitos adversos , Exposição Ambiental/efeitos adversos , Imunogenética
14.
Ecotoxicol Environ Saf ; 280: 116542, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38850698

RESUMO

The use of disposable face masks (DFMs) increased during the COVID-19 pandemic and has become a threat to the environment due to the release of microplastics (MPs). Although many reports have characterized and explored the release of MPs from DFMs and their effects in aquatic ecosystems, there is a lack of investigation into the effects in terrestrial plants. This report aims to fill this research gap by characterizing whole mask leachates (WMLs) collected at different time points and examining their toxicity on Allium cepa, a terrestrial model plant. Various analytical techniques including FE-SEM, FT-IR, and Raman spectroscopy were used to identify MPs in WMLs. The MPs are composed of polypropylene mostly and the concentration of smaller-sized MPs increased with leachate release time. The WMLs showed a MP concentration-dependent cytogenotoxic effect (72 %, 50 %, and 31 %, on 1, 5, and 11-day WMLs, respectively) on A. cepa root cells due to elevated oxidative stress (19 %, 45 %, and 70 %, on 1, 5, and 11-day WMLs, respectively). Heavy metal content of the WMLs was negligible and, thus, not a significant contributor to toxicity in the plant. Overall, this report highlights the fate of DFMs in the environment and their biological impacts in a model plant.


Assuntos
Máscaras , Microplásticos , Cebolas , Cebolas/efeitos dos fármacos , Microplásticos/toxicidade , COVID-19 , Estresse Oxidativo/efeitos dos fármacos , Fatores de Tempo , Metais Pesados/análise , Metais Pesados/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Raízes de Plantas
15.
Sci Total Environ ; 944: 173985, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38876354

RESUMO

Contaminants such as heavy metals and polycyclic aromatic hydrocarbons (PAHs) can be released from asphalt pavement and transported through stormwater runoff to nearby water bodies, leading to water pollution and potential harm to living aquatic animals. This study characterizes the heavy metal and PAH leaching from various asphalt paving materials and their potential ecotoxicological effects on zebrafish Danio rerio. Artificial runoffs were prepared in the laboratory concerning the effects of water, temperature, and traffic. The concentrations of heavy metals and PAHs in the leachates were quantified, while the toxicity assessment encompassed mortality, metal stress, PAH toxicity, inflammation, carcinogenicity, and oxidative damage. Gene expressions of related proteins or transcription factors were assessed, including metallothionines, aryl hydrocarbon receptors, interleukin-1ß, interleukin-10, nuclear factor-κB, tumor necrosis factor-α, tumor suppressor p53, heat shock protein 70, and reactive oxygen species (ROS). The findings demonstrate that leachates from asphalt pavements containing waste bottom ash, crumb rubber, or specific chemicals could induce notable stress and inflammation responses in zebrafish. In addition, potential carcinogenic effects and the elevation of ROS were identified within certain treatment groups. This study represents the first attempt to assess the ecotoxicity of pavement leachates employing a live fish model, thereby improving the current understanding of the environmental impact of asphalt pavements.


Assuntos
Hidrocarbonetos , Metais Pesados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Peixe-Zebra , Animais , Poluentes Químicos da Água/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos/toxicidade , Metais Pesados/toxicidade , Ecotoxicologia , Materiais de Construção , Monitoramento Ambiental
16.
Sci Rep ; 14(1): 13616, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871988

RESUMO

Due to the high solubility of Cd in water, it is considered a potential toxin which can cause cancer in humans. In plants, it is associated with the development of oxidative stress due to the generation of reactive oxygen species. To overcome this issue, the roles of different plant hormones are vital. Strigolactones, one of such natural plant hormones, show promise in alleviating cadmium toxicity by mitigating its harmful effects. Acidified biochar (AB) can also effectively mitigate cadmium toxicity via ion adsorption and pH buffering. However, the combined effects of strigolactone and AB still need in-depth investigations in the context of existing literature. This study aimed to assess the individual and combined impacts of SLs (0 and 25 µM) and AB (0 and 0.75% w/w) on radish growth under Cd toxicity, i.e., 0 and 20 mg Cd/kg soil. Using a fully randomized design (CRD), each treatment was administered in four replicates. In comparison to the control under 20 mg Cd/kg soil contamination, the results showed that 25 µM strigolactone + 0.75% AB significantly improved the following: radish shoot length (~ 17%), root length (~ 47%), plant fresh weight (~ 28%), plant dry weight (~ 96%), chlorophyll a (~ 43%), chlorophyll b (~ 31%), and total chlorophyll (~ 37%). It was also noted that 0.75% AB was more pronounced in decreasing antioxidant activities than 25 µM strigolactone under 20 mg Cd/ kg soil toxicity. However, performing 25 µM strigolactone + 0.75% AB was far better than the sole application of 25 µM strigolactone and 0.75% AB in decreasing antioxidant activities in radish plants. In conclusion, by regulating antioxidant activities, 25 µM strigolactone + 0.75% AB can increase radish growth in cadmium-contaminated soils.


Assuntos
Carvão Vegetal , Lactonas , Raphanus , Poluentes do Solo , Raphanus/efeitos dos fármacos , Raphanus/crescimento & desenvolvimento , Raphanus/metabolismo , Lactonas/farmacologia , Lactonas/metabolismo , Poluentes do Solo/toxicidade , Carvão Vegetal/química , Cádmio/toxicidade , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Metais Pesados/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Clorofila/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Compostos Heterocíclicos com 3 Anéis
17.
Mar Pollut Bull ; 205: 116569, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38889664

RESUMO

Two saltmarsh locations within Lake Macquarie, NSW, Australia were selected to investigate the uptake and partitioning of metal(loid)s Cu, Zn, As, Se, Cd and Pb in the Australian saltmarsh halophyte, Sarcocornia quinqueflora and the associated sub-lethal effects of metal(loid)s on plant health, including photosynthetic performance, biomass, and productivity. Metal(loid)s primarily accumulated to roots (BCF > 1). Barriers to transport were observed at the root to non-photosynthetic stem transition (TF < 1) for all metal(loid)s, suggesting this species is suitable for phytostabilisation. Sediment and plant tissue metal(loid) concentrations were significantly correlated with photosynthetic performance and plant biomass. As such, the action of sediment and tissue metal(loid)s on photosynthetic performance and the subsequent effect on biomass of S.quinqueflora appear to be suitable targets for molecular analyses to further elucidate mechanisms responsible for the observed adverse effects and the development of adverse outcome pathways.


Assuntos
Biomassa , Fotossíntese , Plantas Tolerantes a Sal , Poluentes Químicos da Água , Fotossíntese/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Alismatales/fisiologia , Metais/toxicidade , Sedimentos Geológicos/química , Monitoramento Ambiental , Austrália , Metais Pesados/toxicidade
18.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38928368

RESUMO

Humans are continuously exposed to various heavy metals including copper, iron, cadmium, and arsenic, which were specifically selected for the current analysis because they are among the most frequently encountered environmental mankind and industrial pollutants potentially causing human health hazards and liver injury. So far, these issues were poorly assessed and remained a matter of debate, also due to inconsistent results. The aim of the actual report is to thoroughly analyze the positive as well as negative effects of these four heavy metals on human health. Copper and iron are correctly viewed as pollutant elements essential for maintaining human health because they are part of important enzymes and metabolic pathways. Healthy individuals are prepared through various genetically based mechanisms to maintain cellular copper and iron homeostasis, thereby circumventing or reducing hazardous liver and organ injury due to excessive amounts of these metals continuously entering the human body. In a few humans with gene aberration, however, liver and organ injury may develop because excessively accumulated copper can lead to Wilson disease and substantial iron deposition to hemochromatosis. At the molecular level, toxicities of some heavy metals are traced back to the Haber Weiss and Fenton reactions involving reactive oxygen species formed in the course of oxidative stress. On the other hand, cellular homeostasis for cadmium and arsenic cannot be provided, causing their life-long excessive deposition in the liver and other organs. Consequently, cadmium and arsenic represent health hazards leading to higher disability-adjusted life years and increased mortality rates due to cancer and non-cancer diseases. For unknown reasons, however, liver injury in humans exposed to cadmium and arsenic is rarely observed. In sum, copper and iron are good for the human health of most individuals except for those with Wilson disease or hemochromatosis at risk of liver injury through radical formation, while cadmium and arsenic lack any beneficial effects but rather are potentially hazardous to human health with a focus on increased disability potential and risk for cancer. Primary efforts should focus on reducing the industrial emission of hazardous heavy metals.


Assuntos
Arsênio , Cádmio , Cobre , Ferro , Humanos , Arsênio/toxicidade , Arsênio/efeitos adversos , Ferro/metabolismo , Cádmio/toxicidade , Cádmio/efeitos adversos , Cobre/toxicidade , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Metais Pesados/toxicidade , Estresse Oxidativo/efeitos dos fármacos
19.
Sci Rep ; 14(1): 12715, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830984

RESUMO

To assess the concentration characteristics and ecological risks of potential toxic elements (PTEs) in water and sediment, 17 water samples and 17 sediment samples were collected in the Xiyu River to analyze the content of Cr, Ni, As, Cu, Zn, Pb, Cd and Hg, and the environmental risks of PTEs was evaluated by single-factor pollution index, Nemerow comprehensive pollution index, potential ecological risk, and human health risk assessment. The results indicated that Hg in water and Pb, Cu, Cd in sediments exceeded the corresponding environmental quality standards. In the gold mining factories distribution river section (X8-X10), there was a significant increase in PTEs in water and sediments, indicating that the arbitrary discharge of tailings during gold mining flotation is the main cause of PTEs pollution. The increase in PTEs concentration at the end of the Xiyu River may be related to the increased sedimentation rate, caused by the slowing of the riverbed, and the active chemical reactions at the estuary. The single-factor pollution index and Nemerow pollution index indicated that the river water was severely polluted by Hg. Potential ecological risk index indicated that the risk of Hg in sediments was extremely high, the risk of Cd was high, and the risk of Pb and Cu was moderate. The human health risk assessment indicated that As in water at point X10 and Hg in water at point X9 may pose non-carcinogenic risk to children through ingestion, and As at X8-X10 and Cd at X14 may pose carcinogenic risk to adults through ingestion. The average HQingestion value of Pb in sediments was 1.96, indicating that the ingestion of the sediments may poses a non-carcinogenic risk to children, As in the sediments at X8-X10 and X15-X17 may pose non-carcinogenic risk to children through ingestion.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Ouro , Mineração , Rios , Poluentes Químicos da Água , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , China , Medição de Risco , Rios/química , Poluentes Químicos da Água/análise , Humanos , Monitoramento Ambiental/métodos , Metais Pesados/análise , Metais Pesados/toxicidade
20.
Arch Microbiol ; 206(7): 296, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856816

RESUMO

Environmental contamination from petroleum refinery operations has increased due to the rapid population growth and modernization of society, necessitating urgent repair. Microbial remediation of petroleum wastewater by prominent bacterial cultures holds promise in circumventing the issue of petroleum-related pollution. Herein, the bacterial culture was isolated from petroleum-contaminated sludge samples for the valorization of polyaromatic hydrocarbons and biodegradation of petroleum wastewater samples. The bacterial strain was screened and identified as Bacillus subtilis IH-1. After six days of incubation, the bacteria had degraded 25.9% of phenanthrene and 20.3% of naphthalene. The treatment of wastewater samples was assessed using physico-chemical and Fourier-transform infrared spectroscopy analysis, which revealed that the level of pollutants was elevated and above the allowed limits. Following bacterial degradation, the reduction in pollution parameters viz. EC (82.7%), BOD (87.0%), COD (80.0%), total phenols (96.3%), oil and grease (79.7%), TKN (68.8%), TOC (96.3%) and TPH (52.4%) were observed. The reduction in pH and heavy metals were also observed after bacterial treatment. V. mungo was used in the phytotoxicity test, which revealed at 50% wastewater concentration the reduction in biomass (30.3%), root length (87.7%), shoot length (93.9%), and seed germination (30.0%) was observed in comparison to control. When A. cepa root tips immersed in varying concentrations of wastewater samples, the mitotic index significantly decreased, suggesting the induction of cytotoxicity. However, following the bacterial treatment, there was a noticeable decrease in phytotoxicity and cytotoxicity. The bacterial culture produces lignin peroxidase enzyme and has the potential to degrade the toxic pollutants of petroleum wastewater. Therefore the bacterium may be immobilised or directly used at reactor scale or pilot scale study to benefit the industry and environmental safety.


Assuntos
Bacillus subtilis , Biodegradação Ambiental , Petróleo , Águas Residuárias , Bacillus subtilis/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Águas Residuárias/microbiologia , Águas Residuárias/química , Petróleo/metabolismo , Petróleo/toxicidade , Fenantrenos/metabolismo , Fenantrenos/análise , Fenantrenos/toxicidade , Naftalenos/metabolismo , Naftalenos/toxicidade , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Esgotos/microbiologia , Metais Pesados/metabolismo , Metais Pesados/toxicidade , Metais Pesados/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA