Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.136
Filtrar
1.
Sci Total Environ ; 865: 161305, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36592903

RESUMO

Two anaerobic reactors with and without Ca2+ were operated at 35 °C to investigate the effects of different H2/CO2 ratios on products and microbial communities. Through the investigation of various parameters, it was shown that the change of pH triggered by the variations of H2/CO2 is the decisive factor affecting the product selection in anaerobic fermentation system. During the biosynthesis of ATP for cell growth and reproduction, protons (H+) were pumped from extracellular to intracellular by proton pump, which caused an increase of intrinsic pH of fermentative system. When the pH below 9.5, the methanogenic pathway was more prevalent. While the pH above 10.0 was conducive to the homoacetogenesis. Microbial community analysis showed that with the changes of H2/CO2 ratio, a turnover had occurred. When the ratio of H2/CO2 was 4, the main methanogen was Methanobacterium with the dominant interspecies electron transfer bacteria (IETB) of Thermovirga and DMER64. The turnover of microbial community occurred when the H2/CO2 ratio was 4.5 and 4.25. The dominant acetogenic microorganisms were norank_o_Clostridia_UCG-014 (homoacetogen) and Natronincola (obligately alkaliphilic acetogen). When the H2/CO2 ratio returned to 4, the dominant methanogens were hydrotropic Methanobacterium and Methanobrevibacter with four interspecies electron transfer bacteria including DMER64, Thermovirga, Dechlorobacter and Achromobacter.


Assuntos
Reatores Biológicos , Microbiota , Fermentação , Reatores Biológicos/microbiologia , Dióxido de Carbono/metabolismo , Anaerobiose , Biocombustíveis , Bactérias/metabolismo , Prótons , Metano/metabolismo , Hidrogênio/metabolismo
2.
Sci Total Environ ; 865: 161306, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36592915

RESUMO

Ditches and ponds are the basic units of agroecosystems that serve irrigation and drainage and also perform the natural ecological function of reducing nitrogen (N) emissions. To better enhance the design and advance management strategies in the paddy field ecosystem to minimize N emission, the N cycling microorganism in the paddy field ecosystem including interconnected fields with rice-wheat rotation, ditches, and ponds in central China was investigated by metagenomic techniques. Our results showed that ditches and ponds may be N removal hotspots by microorganisms in the rice and wheat seasons respectively. Given seasonal variation, the abundance of N-related microorganisms was high during the rice season. However, the Shannon and Simpson indices were lower and the microbial co-occurrence network was destabilized, which could make microbes in the rice season fragile and sensitive. Phytoplankton as key environmental factors affecting the N cycling microbial could promote more stable microbial communities through maintaining a good mutualistic symbiosis. While high algae concentration significantly promotes the abundance of norB than nosZ (P < 0.05), which may result in more N2O production. To trade off N removal and N2O emission, the algae concentration needs to be controlled. Our findings provide a systematic profile of N-related microorganisms in the paddy field ecosystem, and it would benefit in developing effective strategies for limiting N pollution in agriculture.


Assuntos
Oryza , Solo , Nitrogênio/análise , Ecossistema , Óxido Nitroso/análise , Agricultura/métodos , China , Triticum , Metano/análise , Fertilizantes/análise
3.
Nat Commun ; 14(1): 42, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596795

RESUMO

Coastal ecosystems can efficiently remove carbon dioxide (CO2) from the atmosphere and are thus promoted for nature-based climate change mitigation. Natural methane (CH4) emissions from these ecosystems may counterbalance atmospheric CO2 uptake. Still, knowledge of mechanisms sustaining such CH4 emissions and their contribution to net radiative forcing remains scarce for globally prevalent macroalgae, mixed vegetation, and surrounding depositional sediment habitats. Here we show that these habitats emit CH4 in the range of 0.1 - 2.9 mg CH4 m-2 d-1 to the atmosphere, revealing in situ CH4 emissions from macroalgae that were sustained by divergent methanogenic archaea in anoxic microsites. Over an annual cycle, CO2-equivalent CH4 emissions offset 28 and 35% of the carbon sink capacity attributed to atmospheric CO2 uptake in the macroalgae and mixed vegetation habitats, respectively, and augment net CO2 release of unvegetated sediments by 57%. Accounting for CH4 alongside CO2 sea-air fluxes and identifying the mechanisms controlling these emissions is crucial to constrain the potential of coastal ecosystems as net atmospheric carbon sinks and develop informed climate mitigation strategies.


Assuntos
Dióxido de Carbono , Ecossistema , Metano , Mudança Climática , Sequestro de Carbono , Áreas Alagadas
4.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36592745

RESUMO

An experiment was conducted over 2 yr to measure performance and greenhouse gas (GHG) emissions of weaned calves from two cow-calf production systems. Crossbred steers and heifers (n = 270, initial body weight (BW) = 207 kg, SD = 35) were used in a randomized complete block design, with treatments applied to the cow-calf system. Treatments were: 1) a traditional system consisting of April to June calving with smooth bromegrass pasture and grazed corn residue as forage resources (TRAD); 2) an alternative system consisting of July to September calving utilizing partial-drylot feeding, summer-planted oats, and corn residue grazing (ALT). Calves from both production systems were weaned at the same age and grown (diet NEg = 1.05 Mcal kg-1) for approximately 117 d. The calves then transitioned to a high-grain finishing diet (year 1: NEg = 1.32 Mcal kg-1; year 2: NEg = 1.39 Mcal kg-1) and fed to a targeted 1.52 cm backfat. Growth performance in the grower phase resulted in greater (P < 0.01) average daily gain (1.39 vs. 1.22 ± 0.02 kg), greater gain:feed (P < 0.01; 0.157 vs. 0.137 ± 0.003) for ALT calves compared to TRAD calves, However, a lower initial BW (P < 0.01; 185 vs. 229 ± 4.9 kg) resulted in a lower ending BW (P < 0.01; 347 vs. 371 ± 2.9 kg) for ALT calves compared to TRAD calves in spite of improved growth performance. In the finisher phase, ALT calves gained less (1.52 vs. 1.81 ± 0.218 kg; P = 0.02), were less efficient (0.139 vs. 173 ± 0.0151; P = 0.01) but exhibited similar hot carcass weights (HCW) (388 vs. 381 ± 3.8 kg; P = 0.14) compared to TRAD calves. Each pen of calves was put into a large pen-scale chamber that continuously measured carbon dioxide (CO2) and methane (CH4) for 5 d during the grower and finisher phases. The average CH4 and CO2 production per unit of feed intake was used to calculate total GHG emissions over the entire grower and finisher phase. Overall, there were no differences (P ≥ 0.17) between treatments for CH4 per day and per kilogram dry matter intake (DMI). However, ALT calves tended to produce less (P ≤ 0.10) CO2 per day and per kilogram DMI than TRAD calves. Overall, methane emissions were greater in ALT calves (110.7 vs. 92.2 ± 8.3 g CH4 kg-1 HCW; P = 0.04) than TRAD calves. The ALT calves required 27 additional days on feed to market, which resulted in more total CH4 per animal across the entire feeding period (P = 0.02) than TRAD calves. Production systems that reduce days to market to achieve similar HCW may reduce GHG emissions.


There are many reasons (i.e. drought, limited perennial forage, calving) for using intensive or partially intensive production practices (e.g. drylotting or confinement) in a cow-calf enterprise. These practices may impact subsequent calf growth and feedlot performance. In addition, limited data are available comparing the environmental impacts (i.e., greenhouse gas (GHG) emissions) from different cow-calf production systems. This experiment evaluated the effects of a partial-intensive cow-calf production system on post-weaning calf growth performance, carcass characteristics, and GHG emissions. Calves from the partial-intensive cow-calf system had improved growth compared to calves from the extensive cow-calf system during the grower phase. During finishing, calves from the partial-intensive cow-calf system had poorer growth performance resulting in calves from the partial-intensive cow-calf system requiring an additional 27 d on feed to reach finish as calves from the traditional cow-calf system. These differences are likely due to compensation from lower gain periods resulting in better gain in the subsequent growth period. Cow-calf production system did not alter methane and carbon dioxide emissions per kilogram of intake. However, because calves in the partial-intensive cow-calf system required additional days on feed, absolute methane and carbon dioxide emissions were greater per animal for the partial-intensive cow-calf system compared to the extensive cow-calf system suggesting that reducing days to market may reduce emissions from beef systems.


Assuntos
Gases de Efeito Estufa , Metano , Bovinos , Animais , Feminino , Dióxido de Carbono , Poaceae , Ingestão de Alimentos , Dieta/veterinária , Ração Animal/análise
5.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36592753

RESUMO

To evaluate the effect of supplementing beef cattle with a ruminal probiotic consisting of native rumen microbes (NRM; Chordicoccus furentiruminis, Prevotella albensis, and Succinivibrio dextrinosolvens) on methane (CH4) emissions, growth performance, carcass characteristics, and plasma metabolites, Angus × SimAngus-crossbred steers (n = 32; 8 per pen) and heifers (n = 48; 12 per pen) with an initial body weight (BW) of 353 ± 64 kg were used in randomized complete block design. Cattle were blocked by sex and BW and randomly assigned to 1 of 2 treatments (2 pens per treatment). Treatments consisted of diets offered for ad libitum intake with (NRM) or without (CON) the inclusion of the ruminal probiotic. Cattle were fed a growing diet for 49 d followed by a ground corn-based diet for 124 ± 27 d until reaching the targeted final BW (635 kg for steers and 590 kg for heifers). Methane emissions were estimated using the GreenFeed system (n = 12 per treatment) prior to trial commencement (baseline; period 1), and on three (2, 3, and 4), and two (5 and 6) different sampling periods throughout the growing and finishing stage, respectively. All data were analyzed using the PROC MIXED procedure of SAS. For CH4 production (g/d), there was a tendency for an NRM supplementation × period interaction (P = 0.07) where cattle-fed diets with NRM had lower production of methane in periods 3 and 4. Including NRM in the diet decreased CH4 yield (g/kg of dry matter intake (DMI)) by 20%. For CH4 emission intensity (g/kg of average daily gain (ADG)), an interaction (P < 0.01) of NRM supplementation × period occurred. In periods 2 and 3, cattle-fed diets with NRM inclusion had lower CH4 emission intensity than CON cattle. During the 84-d period when all cattle were still on the finishing diet, feeding NRM increased (P = 0.02) ADG and tended to increase (P = 0.10) DMI. At the end of the 84-d period, cattle-fed NRM tended to be heavier (P = 0.06) than CON cattle. Cattle supplemented with NRM required less (P = 0.04) days on feed to reach the targeted final BW. No differences (P ≤ 0.11) were detected for gain-to-feed ratio and carcass characteristics. Cattle-fed NRM had greater abundance of uncultured rumen bacteria that may improve rumen digestion when fed a high grain diet and potentially promote the reduction of enteric CH4 production. Results from this study suggest that daily administration of NRM may be a strategy to mitigate methanogenesis and improve the growth performance of beef cattle.


Greenhouse gas emissions are a major concern in the beef industry. This study examined the effects of supplementation with ruminal probiotics consisting of three native ruminal microbes (NRM) for their influence on methane reduction and growth performance of beef cattle. Eighty Angus × SimAngus-crossbred cattle were grouped by sex and weight, randomly assigned to a treatment group, control or NRM supplementation, and subsequently fed commercially relevant diets for at least 134 d with or without NRM supplementation until they reached a target finishing weight. Methane emissions and growth performance metrics were recorded at regular intervals. Cattle-fed diets with NRM had a greater average daily gain during most part of the experimental period, required fewer days to reach the finishing weight, and emitted less methane than cattle in the control treatment. Supplementing NRM can be a viable method to reduce greenhouse gas emissions while improving the performance of beef cattle-fed concentrates-based diets.


Assuntos
Ração Animal , Probióticos , Bovinos , Animais , Feminino , Ração Animal/análise , Metano/metabolismo , Rúmen/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Probióticos/farmacologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-36613125

RESUMO

The objective of this study was to optimize the process parameters of the anaerobic co-digestion of pig manure and rice straw to maximize methane production and system stability. In this study, batch experiments were conducted with different mixing ratios of pig manure and rice straw (1:0, 1:1, 1:5, 1:10, and 0:1), total solid concentrations (6%, 8%, 10%, 12%, and 14%), and inoculum accounts (5%, 10%, 15%, 20%, and 25%). The results show that a 1:5 mixing ratio of pig manure to rice straw, a 12% total solid content, and a 15% inoculum account yielded biogas up to 553.79 mL/g VS, which was a result of co-digestion increasing the cooperative index (CPI > 1). Likewise, the evolution of the pH and VFAs indicated that the co-digestion system was well-buffered and not easily inhibited by acidification or ammonia nitrogen. Moreover, the results of the Gompertz model's fitting showed that the cumulative methane production, delay period, effective methane production time, and methane production rate under optimal conditions were significantly superior compared to the other groups employed.


Assuntos
Esterco , Oryza , Animais , Suínos , Anaerobiose , Biocombustíveis , Oryza/química , Metano , Digestão , Reatores Biológicos
7.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36614205

RESUMO

Landfill leachate (LFL) treatment is a severe challenge due to its highly viscous nature and various complex pollutants. Leachate comprises various toxic pollutants, including inorganic macro/nano components, xenobiotics, dissolved organic matter, heavy metals, and microorganisms responsible for severe environmental pollution. Various treatment procedures are available to achieve better effluent quality levels; however, most of these treatments are nondestructive, so pollutants are merely transported from one phase to another, resulting in secondary contamination. Anaerobic digestion is a promising bioconversion technology for treating leachate while producing renewable, cleaner energy. Because of its high toxicity and low biodegradability, biological approaches necessitate employing other techniques to complement and support the primary process. In this regard, pretreatment technologies have recently attracted researchers' interest in addressing leachate treatment concerns through anaerobic digestion. This review summarizes various LFL pretreatment methods, such as electrochemical, ultrasonic, alkaline, coagulation, nanofiltration, air stripping, adsorption, and photocatalysis, before the anaerobic digestion of leachate. The pretreatment could assist in converting biogas (carbon dioxide to methane) and residual volatile fatty acids to valuable chemicals and fuels and even straight to power generation. However, the selection of pretreatment is a vital step. The techno-economic analysis also suggested the high economic feasibility of integrated-anaerobic digestion. Therefore, with the incorporation of pretreatment and anaerobic digestion, the process could have high economic viability attributed to bioenergy production and cost savings through sustainable leachate management options.


Assuntos
Reatores Biológicos , Poluentes Ambientais , Anaerobiose , Biocombustíveis/análise , Estudos de Viabilidade , Poluentes Ambientais/análise , Metano/análise
8.
ChemistryOpen ; 12(1): e202200265, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36650736

RESUMO

The indole moiety is an important N-heterocycle found in natural products, and a key structural component of many value-added chemicals including pharmaceuticals. In particular, bis(3-indolyl)methanes (BIMs) are an important subgroup of indoles, composed of two indole units. Herein, we report the development of a simple method to access BIMs derivatives in yields of up to 77 % by exploiting a tBuOK-mediated coupling reaction of indoles and benzyl alcohols.


Assuntos
Butanóis , Metano , Metano/química , Indóis/química
9.
Microbiome ; 11(1): 14, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36694212

RESUMO

BACKGROUND: Permanently stratified lakes contain diverse microbial communities that vary with depth and so serve as useful models for studying the relationships between microbial community structure and geochemistry. Recent work has shown that these lakes can also harbor numerous bacteria and archaea from novel lineages, including those from the Candidate Phyla Radiation (CPR). However, the extent to which geochemical stratification differentially impacts carbon metabolism and overall genetic potential in CPR bacteria compared to other organisms is not well defined. RESULTS: Here, we determine the distribution of microbial lineages along an oxygen gradient in Lac Pavin, a deep, stratified lake in central France, and examine the influence of this gradient on their metabolism. Genome-based analyses revealed an enrichment of distinct C1 and CO2 fixation pathways in the oxic lake interface and anoxic zone/sediments, suggesting that oxygen likely plays a role in structuring metabolic strategies in non-CPR bacteria and archaea. Notably, we find that the oxidation of methane and its byproducts is largely spatially separated from methane production, which is mediated by diverse communities of sediment methanogens that vary on the centimeter scale. In contrast, we detected evidence for RuBisCO throughout the water column and sediments, including form II/III and form III-related enzymes encoded by CPR bacteria in the water column and DPANN archaea in the sediments. On the whole, though, CPR bacteria and phages did not show strong signals of gene content differentiation by depth, despite the fact that distinct species groups populate different lake and sediment compartments. CONCLUSIONS: Overall, our analyses suggest that environmental gradients in Lac Pavin select for capacities of CPR bacteria and phages to a lesser extent than for other bacteria and archaea. This may be due to the fact that selection in the former groups is indirect and depends primarily on host characteristics. Video Abstract.


Assuntos
Archaea , Bacteriófagos , Archaea/genética , Archaea/metabolismo , Bacteriófagos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Lagos/microbiologia , Oxigênio/metabolismo , Água , Metano/metabolismo , Filogenia , Sedimentos Geológicos/microbiologia
10.
Water Res ; 230: 119583, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36638729

RESUMO

Ammonia inhibition is a challenging issue in the anaerobic digestion (AD) of nitrogen-rich substrates and hinders the energy recovery from organic wastes. Bioaugmentation is promising strategy to stabilize AD systems with high ammonia concentration. The composition of microbial consortia often determines their effectiveness in bioaugmentation. Up to now, the effect of various microbial consortia as biological additives on the AD systems is not fully understood. In this study, two microbial consortia (syntrophic microbial consortium, MC, and hydrogenotrophic methanogen consortium, SS) were obtained through two domestication methods, and were applied in a nitrogen-rich AD system. The results showed that the MC and SS treatments could restore AD performance within 21 days and 83 days, respectively. The recovery of digestion performance depended on the methanogenic archaea Methanospirillum, Methanothermobacter, and Methanoculleus in the early and later stages. Analysis of the 13C isotope indicated that both MC and SS enhanced the hydrogenotrophic pathway. The KEGG analysis showed that the MC not only promoted the key enzyme genes in the hydrogenotrophic pathway but also had a positive effect on the related enzyme genes of propionate and butyrate degradation, which was affected by the abundant short-chain fatty acids degrading bacteria, such as Syntrophomonas, Syntrophobacter, and Tissierella in the MC. After recovery of digestion performance, there was no significant difference (p > 0.05) in methane yield between the MS and SS treatments. Therefore, the best intervention period for bioaugmentation is when the digestion performance of the AD system is unstable.


Assuntos
Euryarchaeota , Consórcios Microbianos , Reatores Biológicos/microbiologia , Anaerobiose , Amônia , Metano , Aclimatação , Nitrogênio
11.
Artigo em Inglês | MEDLINE | ID: mdl-36673724

RESUMO

Macroalgae can be a viable alternative to replace fossil fuels that have a negative impact on the environment. By mixing macroalgae with other substrates, higher quality biogas can be obtained. Such biogas is considered one of the most promising solutions for reducing climate change. In the work, new studies were conducted, during which biogas yield was investigated in a three-stage bioreactor (TSB) during the anaerobic digestion of Cladophora glomerata macroalgae with inoculants from cattle manure and sewage sludge at different organic loading rates (OLR). By choosing the optimal OLR in this way, the goal was to increase the energy potential of biomass. The research was performed at OLRs of 2.87, 4.06, and 8.13 Kg VS/m3 d. After conducting research, the highest biogas yield was determined when OLR was 2.87 Kg VS/m3 d. With this OLR, the average biogas yield was 439.0 ± 4.0 L/Kg VSadded, and the methane yield was 306.5 ± 9.2 L CH4/Kg VSadded. After increasing the OLR to 4.06 and 8.13 Kg VS/m3 d, the yield of biogas and methane decreased by 1.55 times. The higher yield was due to better decomposition of elements C, N, H, and S during the fermentation process when OLR was 2.87 Kg VS/m3 d. At different OLRs, the methane concentration remained high and varied from 68% to 80%. The highest biomass energy potential with a value of 3.05 kWh/Kg VSadded was determined when the OLR was 2.87 Kg VS/m3 d. This biomass energy potential was determined by the high yield of biogas and methane in TSB.


Assuntos
Biocombustíveis , Alga Marinha , Animais , Bovinos , Anaerobiose , Reatores Biológicos , Esgotos , Metano
12.
J Am Chem Soc ; 145(2): 1185-1193, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36592344

RESUMO

Direct functionalization of methane selectively to value-added chemicals is still one of the main challenges in modern science. Acetic acid is an important industrial chemical produced nowadays by expensive and environmentally unfriendly carbonylation of methanol using homogeneous catalysts. Here, we report a new photocatalytic reaction route to synthesize acetic acid from CH4 and CO at room temperature using water as the sole external oxygen source. The optimized photocatalyst consists of a TiO2 support and ammonium phosphotungstic polyoxometalate (NPW) clusters anchored with isolated Pt single atoms (Pt1). It enables a stable synthesis of 5.7 mmol·L-1 acetic acid solution in 60 h with the selectivity over 90% and 66% to acetic acid on liquid-phase and carbon basis, respectively, with the production of 99 mol of acetic acid per mol of Pt. Combined isotopic and in situ spectroscopy investigation suggests that synthesis of acetic acid proceeds via a photocatalytic oxidative carbonylation of methane over the Pt1 sites, with the methane activation facilitated by water-derived hydroxyl radicals.


Assuntos
Ácido Acético , Metano , Metano/química , Ácido Acético/química , Água , Oxidantes , Temperatura
13.
J Am Chem Soc ; 145(2): 769-773, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36594824

RESUMO

Oxidative methane (CH4) carbonylation promises a direct route to the synthesis of value-added oxygenates such as acetic acid (CH3COOH). Here, we report a strategy to realize oxidative CH4 carbonylation through immobilized Ir complexes on an oxide support. Our immobilization approach not only enables direct CH4 activation but also allows for easy separation and reutilization of the catalyst. Furthermore, we show that a key step, methyl migration, that forms a C-C bond, is sensitive to the electrophilicity of carbonyl, which can be tuned by a gentle reduction to the Ir centers. While the as-prepared catalyst that mainly featured Ir(IV) preferred CH3COOH production, a reduced catalyst featuring predominantly Ir(III) led to a significant increase of CH3OH production at the expense of the reduced yield of CH3COOH.


Assuntos
Irídio , Metano , Irídio/química , Metano/química , Oxirredução , Catálise , Óxidos
14.
BMC Plant Biol ; 23(1): 2, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36588160

RESUMO

BACKGROUND: Methane (CH4) and brassinosteroids (BRs) are important signaling molecules involved in a variety of biological processes in plants. RESULTS: Here, marigold (Tagetes erecta L. 'Marvel') was used to investigate the role and relationship between CH4 and BRs during adventitious root (AR) formation. The results showed a dose-dependent effect of CH4 and BRs on rooting, with the greatest biological effects of methane-rich water (MRW, CH4 donor) and 2,4-epibrassinolide (EBL) at 20% and 1 µmol L- 1, respectively. The positive effect of MRW on AR formation was blocked by brassinoazole (Brz, a synthetic inhibitor of EBL), indicating that BRs might be involved in MRW-regulated AR formation. MRW promoted EBL accumulation during rooting by up-regulating the content of campestanol (CN), cathasterone (CT), and castasterone (CS) and the activity of Steroid 5α-reductase (DET2), 22α-hydroxylase (DWF4), and BR-6-oxidase (BR6ox), indicating that CH4 could induce endogenous brassinolide (BR) production during rooting. Further results showed that MRW and EBL significantly down-regulated the content of cellulose, hemicellulose and lignin during rooting and significantly up-regulated the hydrolase activity, i.e. cmcase, xylanase and laccase. In addition, MRW and EBL also significantly promoted the activity of two major cell wall relaxing factors, xyloglucan endotransglucosylase/hydrolase (XTH) and peroxidase, which in turn promoted AR formation. While, Brz inhibited the role of MRW on these substances. CONCLUSIONS: BR might be involved in CH4-promoted AR formation by increasing cell wall relaxation.


Assuntos
Brassinosteroides , Celulose , Brassinosteroides/farmacologia , Metano/farmacologia , Hidrolases , Raízes de Plantas/fisiologia
15.
Org Lett ; 25(1): 220-225, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36594720

RESUMO

The enantioselective synthesis of functionalized pyrazoloquinolin-3-ones via N-heterocyclic carbene-catalyzed cascade reaction of α-bromoenals with 2-aminoaryl N-tosyl hydrazones is reported. The in situ-generated α,ß-unsaturated acylazoliums underwent an aza-Michael-Mannich-lactamization sequence to afford the tricyclic products bearing three contiguous stereocenters, including a sterically demanding quaternary stereocenter with high enantioselectivity. The unprotected amine-triggered aza-Michael pathway over the competing amidation pathway is noteworthy.


Assuntos
Aminas , Metano , Estereoisomerismo , Catálise
16.
J Environ Manage ; 330: 117033, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36603247

RESUMO

Anaerobic digestion (AD) of wasted activated sludge from wastewater plants is recognized as an effective method to reclaim energy in the form of methane. AD performance has been enhanced by coupling various pretreatments that impact energy conversion from sludge. This paper mainly reviewed the development of pretreatments based on different technologies reported in recent years and evaluated their energy benefit. Significant increases in methane yield are generally obtained in AD with pretreatments demanding energy input, including thermal- and ultrasound-based methods. However, these energy-intense pretreatments usually gained negative energy benefit that the increase in methane yield consumed extra energy input. The unbalanced relationship counts against the goal of energy reclamation from sludge. Combined pretreatment consisting of multiple technologies normally outcompetes the single pretreatment, and the combination of energy-intense methods and chemicals potentially reduces energy input and simultaneously ensure high methane yield. For determining whether the energy reclamation from sludge via AD contribute to mitigating global warming, integrating greenhouse gas emission into the evaluation system of pretreated AD is further warranted.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Metano , Reatores Biológicos
17.
J Hazard Mater ; 446: 130717, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36610343

RESUMO

Large amounts of microplastics (MPs) accumulate in the sludge anaerobic digestion system after being treated by the wastewater treatment plants, inevitably leading to aging and chemicals leaching. However, no information is available about the effects of aged MPs and leachates on the anaerobic digestion of sludge. In this study, the effects of different aged MPs ((polyethylene (PE), polyethylene terephthalate (PET), polyvinyl chloride (PVC), and polylactic acid (PLA)) and leachates on anaerobic methanogenesis of sludge were investigated. PLA-related treatments caused no adverse effects on anaerobic digestion. While PE-, PET-, and PVC-related treatments significantly inhibited methane production with an order of leachates (26.4-42.4 %) > MPs (16.1-22.9 %) > aged MPs (2.4-11.8 %). For different leachates, PET leachate caused the strongest inhibitory effects. The same order was found for the methane potential and hydrolysis coefficient. These results suggest that the inhibition of MPs on methanogenesis is mainly caused by the leachates. Based on biochemical and microbial community analysis, the primary mechanism is that the leachates induce oxidative stress, damaging microbial cells and reducing microbial activity, consequently inhibiting methanogenesis. Furthermore, via effect-directed analysis, methyl benzoate (MB), dimethyl phthalate (DMP), and 2,4-Di-tert-butylphenol (DTBP) were identified as key components in the PET-leachate inhibiting anaerobic methanogenesis.


Assuntos
Microplásticos , Esgotos , Microplásticos/toxicidade , Anaerobiose , Plásticos , Eliminação de Resíduos Líquidos/métodos , Polietilenotereftalatos , Polietileno , Metano , Reatores Biológicos
18.
Bioresour Technol ; 371: 128603, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36634876

RESUMO

Methanol was produced in a two-stage integrated process using Methylosinus trichosporium NCIMB 11131. The first stage involved sequestration of methane to produce methanotrophic biomass, which was utilized as biocatalyst in the second stage to convert CO2 into methanol. A combinatorial process engineering approach of design of micro-sparger, engagement of draft tube, addition of mass transfer vector and elevation of reactor operating pressure was employed to enhance production of biomass and methanol. Maximum biomass titer of 7.68 g/L and productivity of 1.46 g/L d-1 were achieved in an airlift reactor equipped with a micro-sparger of 5 µm pore size, in the presence of draft tube and 10 % v/v silicone oil, as mass transfer vector. Maximum methane fixation rate was estimated to be 0.80 g/L d-1. Maximum methanol titer of 1.98 g/L was achieved under an elevated operating pressure of 4 bar in a high-pressure stirred tank reactor.


Assuntos
Metano , Methylosinus trichosporium , Metanol , Dióxido de Carbono , Solubilidade
19.
Environ Sci Technol ; 57(4): 1788-1796, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36652306

RESUMO

Continuous monitoring systems, consisting of multiple fixed sensors, are increasingly being deployed at oil and gas production sites to detect methane emissions. While these monitoring systems operate continuously, their efficiency in detecting emissions will depend on meteorological conditions, sensor detection limits, the number of sensors deployed, and sensor placement strategies. This work demonstrates an approach to assess the effectiveness of continuous sensor networks in detecting infinite-duration and fixed-duration emission events. The case studies examine a single idealized source and a group of nine different sources at varying heights and locations on a single pad. Using site-specific meteorological data and dispersion modeling, the emission detection performance is characterized. For these case studies, infinite-duration emission events are detected within 1 h to multiple days, depending on the number of sensors deployed. The percentage of fixed-duration emission events that are detected ranged from less than 10% to more than 90%, depending on the number of sources, emission release height, emission event duration, and the number of sensors deployed. While these results are specific to these case studies, the analysis framework described in this work can be broadly applied in the evaluation of continuous emission monitoring network designs.


Assuntos
Poluentes Atmosféricos , Metano , Metano/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Meteorologia , Gás Natural/análise
20.
Bioresour Technol ; 371: 128633, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36657585

RESUMO

The effects of zero-valent iron (ZVI) and iron oxides nanoparticles on anaerobic digestion (AD) performance of food waste (FW) were comparably clarified in this study. Results indicated that the nanoparticles supplement effectively enhanced the methane yields. As observed, these nanoparticles accelerated organics transformation and alleviated acidification process. Also, the enriched total methanogens and functional bacteria (e.g., Proteiniphilum) were consistent with the promotion of oxidative phosphorylation, citrate cycle, coenzymes biosynthesis and the metabolisms of amino acid, carbohydrate, methane. Additionally, these nanoparticles stimulated electron transfer potential via enriching syntrophic genera (e.g., Geobacter, Syntrophomonas), primary acetate-dependent methanogens (Methanosaeta, Methanosarcina) and related functions (pilus assembly protein, ferredoxins). By comparison, ZVI nanoparticle presented the excellent performance on methanogenesis. This study provides comprehensive understanding of the methanogenesis facilitated by ZVI and iron oxides nanoparticles through the enhancement of key microbes and microbial metabolisms, while ZVI is an excellent option for promoting the methane production.


Assuntos
Microbiota , Eliminação de Resíduos , Ferro/química , Anaerobiose , Reatores Biológicos , Esgotos/microbiologia , Metano/metabolismo , Suplementos Nutricionais , Óxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...