RESUMO
Li6ZnO4 was chemically modified by nickel addition, in order to develop different compositions of the solid solution Li6Zn1-xNixO4. These materials were evaluated bifunctionally; analyzing their CO2 capture performances, as well as on their catalytic properties for H2 production via dry reforming of methane (DRM). The crystal structures of Li6Zn1-xNixO4 solid solution samples were determined through X-ray diffraction, which confirmed the integration of nickel ions up to a concentration around 20 mol%, meanwhile beyond this value, a secondary phase was detected. These results were supported by XPS and TEM analyses. Then, dynamic and isothermal thermogravimetric analyses of CO2 capture revealed that Li6Zn1-xNixO4 solid solution samples exhibited good CO2 chemisorption efficiencies, similarly to the pristine Li6ZnO4 chemisorption trends observed. Moreover, a kinetic analysis of CO2 isothermal chemisorptions, using the Avrami-Erofeev model, evidenced an increment of the constant rates as a function of the Ni content. Since Ni2+ ions incorporation did not reduce the CO2 capture efficiency and kinetics, the catalytic properties of these materials were evaluated in the DRM process. Results demonstrated that nickel ions favored hydrogen (H2) production over the pristine Li6ZnO4 phase, despite a second H2 production reaction was determined, methane decomposition. Thereby, Li6Zn1-xNixO4 ceramics can be employed as bifunctional materials.
Assuntos
Dióxido de Carbono , Hidrogênio , Metano , Hidrogênio/química , Metano/química , Dióxido de Carbono/química , Níquel/química , Catálise , Modelos QuímicosRESUMO
There is interest in assessing the potential climate mitigation benefit of coastal wetlands based on the balance between their greenhouse gas (GHG) emissions and carbon sequestration. Here we investigated soil GHG fluxes (CO2 and CH4) on mangroves of the Brazilian Amazon coast, and across common land use impacts including shrimp farms and a pasture. We found greater methane fluxes near the Amazon River mouth (1439 to 3312 µg C m-2 h-1), which on average are equivalent to 37% of mangrove C sequestration in the region. Soil CO2 fluxes were predominant in mangrove forests to the East of the Amazon Delta. Land use change shifted mangroves from C sinks (mean sequestration of 12.2 ± 1.4 Mg CO2e ha-1 yr-1) to net GHG sources (mean loss of 8.0 ± 3.3 Mg CO2e ha-1 yr-1). Our data suggests that mangrove forests in the Amazon can aid decreasing the net annual emissions in the Brazilian forest sector in 9.7 ± 0.8 Tg CO2e yr-1 through forest conservation and avoided deforestation.
Assuntos
Dióxido de Carbono , Sequestro de Carbono , Gases de Efeito Estufa , Metano , Solo , Áreas Alagadas , Brasil , Gases de Efeito Estufa/análise , Solo/química , Dióxido de Carbono/análise , Metano/análise , Monitoramento AmbientalRESUMO
Methanogenic communities of hypersaline microbial mats of Guerrero Negro, Baja California Sur, Mexico, have been recognized to be dominated by methylotrophic methanogens. However, recent studies of environmental samples have evidenced the presence of hydrogenotrophic and methyl-reducing methanogenic members, although at low relative abundances. Physical and geochemical conditions that stimulate the development of these groups in hypersaline environments, remains elusive. Thus, in this study the taxonomic diversity of methanogenic archaea of two sites of Exportadora de Sal S.A was assessed by mcrA gene high throughput sequencing from microcosm experiments with different substrates (both competitive and non-competitive). Results confirmed the dominance of the order Methanosarcinales in all treatments, but an increase in the abundance of Methanomassiliiccocales was also observed, mainly in the treatment without substrate addition. Moreover, incubations supplemented with hydrogen and carbon dioxide, as well as the mixture of hydrogen, carbon dioxide and trimethylamine, managed to stimulate the richness and abundance of other than Methanosarcinales methanogenic archaea. Several OTUs that were not assigned to known methanogens resulted phylogenetically distributed into at least nine orders. Environmental samples revealed a wide diversity of methanogenic archaea of low relative abundance that had not been previously reported for this environment, suggesting that the importance and diversity of methanogens in hypersaline ecosystems may have been overlooked. This work also provided insights into how different taxonomic groups responded to the evaluated incubation conditions.
Assuntos
Metano , Metano/metabolismo , México , Salinidade , Filogenia , Biodiversidade , Hidrogênio/metabolismo , Dióxido de Carbono/metabolismo , Archaea/genética , Archaea/metabolismo , Archaea/classificação , Microbiota , Metilaminas/metabolismoRESUMO
To assess microbial dynamics during anaerobic digestion (AD) of sewage sludge (SWS) from a municipal Wastewater Treatment Plant (WWTP), a Biochemical Methane Potential (BMP) assay at 37 °C under mono-digestion conditions was conducted. Utilizing the Illumina MiSeq platform, 16S ribosomal RNA (rRNA) gene sequencing unveiled a core bacterial community in the solid material, showcasing notable variations in profiles. The research investigates changes in microbial communities and metabolic pathways to understand their impact on the efficiency of the digestion process. Prior to AD, the relative abundance in SWS was as follows: Proteobacteria > Bacteroidota > Actinobacteriota. Post-AD, the relative abundance shifted to Firmicutes > Synergistota > Proteobacteria, with Sporanaerobacter and Clostridium emerging as dominant genera. Notably, the methanogenic community underwent a metabolic pathway shift from acetoclastic to hydrogenotrophic in the lab-scale reactors. At the genus level, Methanosaeta, Methanolinea, and Methanofastidiosum predominated initially, while post-AD, Methanobacterium, Methanosaeta, and Methanospirillum took precedence. This metabolic transition may be linked to the increased abundance of Firmicutes, particularly Clostridia, which harbor acetate-oxidizing bacteria facilitating the conversion of acetate to hydrogen.
Assuntos
Reatores Biológicos , Metano , RNA Ribossômico 16S , Esgotos , Esgotos/microbiologia , Anaerobiose , Metano/metabolismo , RNA Ribossômico 16S/genética , Reatores Biológicos/microbiologia , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Hidrogênio/metabolismo , Biocombustíveis , Acetatos/metabolismo , MicrobiotaRESUMO
The global shift towards sustainable waste management has led to an intensified exploration of co-digestion and co-treatment of sewage and organic waste using anaerobic reactors. This review advocates for an integrated approach where organic waste is treated along with the sewage stream, as a promising solution to collect, treat, and dispose of organic waste, thereby reducing the environmental and economic burden on municipalities. Various efforts, ranging from laboratory to full-scale studies, have been undertaken to assess the feasibility and impacts of co-digestion or co-management of sewage and organic waste, using technologies such as up-flow anaerobic sludge blankets or anaerobic membrane bioreactors. However, there has been no consensus on a standardized definition of co-digestion, nor a comprehensive understanding of its impacts. In this paper, we present a comprehensive review of the state-of-the-art in liquid anaerobic co-digestion systems, which typically operate at 1.1% total solids. The research aims to investigate how the integration of organic waste into mainstream anaerobic-based sewage treatment plants has the potential to enhance the sustainability of both sewage and organic waste management. In addition, utilizing the surplus capacity of existing anaerobic reactors leads to significant increases in methane production ranging from 190 to 388% (v/v). However, it should be noted that certain challenges may arise, such as the necessity for the development of tailored strategies and regulatory frameworks to enhance co-digestion practices and address the inherent challenges.
Assuntos
Reatores Biológicos , Esgotos , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Gerenciamento de Resíduos/métodos , MetanoRESUMO
The increase in the negative effects of global change promotes the search for alternatives to supply the demand for food worldwide aligned with the Sustainable Development Goals (SDGs) to ensure food security. Animal protein, which is a main source of nutrients in the diet of today's society, especially beef, which is one of the most demanded products nowadays, has been criticized not only for its high water consumption and land occupation for production but also for the emission of greenhouse gases (GHG) from enteric methane generated in the fermentation process within the bovine rumen and deforestation for the adaptation of pastures. This study is mainly motivated by the lack of quantifiable scientific information in Colombia on the environmental impacts of beef production. Therefore, it is intended to estimate some of the impacts of beef production in extensive systems using the life cycle assessment (LCA) method under a particular scenario considering all the production phases (from raw material to fattening, where the cattle are ready to be slaughtered). The study was conducted with data supplied by a farm in Antioquia, Colombia, and the functional unit (FU) was defined as 1 kg of live weight (LW). The scope of this study was gate-to-gate. "The 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories" (IPCC 2006; IPCC 2019) was used to calculate methane and nitrous oxide emissions. LCA modeling was developed with Ecoinvent database v3.8 and the Umberto LCA + software. It was found that the most affected category of damage was ecosystem quality, which represents 77% of the total, followed by human health at 17% and resources at 6%. The category impact of agricultural land occupation is the one that represents the most significant contribution to the ecosystem quality endpoint, with a percentage of 87%, due to the soil's compaction and the loss of the soil's properties. Additionally, the obtained carbon footprint for the system was 28.9 kg of CO2-eq/kg LW.
Assuntos
Gases de Efeito Estufa , Colômbia , Bovinos , Animais , Gases de Efeito Estufa/análise , Meio Ambiente , MetanoRESUMO
Infrared thermography may be an alternative technology for measuring the amount of CH4 produced and has the advantages of low cost, speed and efficiency in obtaining results. The study's objective was to determine if the infrared thermography is adequate for predicting the emission of CH4 in hair sheep and the best time after feeding to carry out the measurement. Twelve Santa Inês lambs (females, non-pregnant, with twelve months old and mean body weight of 39.3 ± 2.1 kg) remained for two days in respirometric chambers, in a semi-closed system, to determine the CH4 production. The animals were divided into two treatments, according to the diet provided. During this period, seven thermographic photographs were taken, at times - 1 h, -0.5 h, 0 h, 0.5 h, 1 h, 2 h, 3 h, 5 h, and 7 h, according to the feeding time, defined as 0 h. CH4 production was measured over 24 h. Thermographic images measured the maximum, minimum, average and point temperatures at the left and right flanks. The temperature difference between the left and right flanks (left minus right) was calculated each time. Pearson correlation coefficients, multiple regression and principal component analysis were carried out in SAS®. The best prediction of emission intensity of CH4 (kg of CH4 per dry matter intake) was obtained at 3 h after feeding: CH4/DMI = 13.9016-0,38673 * DifP2 + 3.39089 * DifMed2 (R² = 0.48), using the difference between left and right flanks for point and average temperature measures. Therefore, infrared thermography can be used as an indicator of CH4 production in hair sheep three hours after feeding.
Assuntos
Metano , Carneiro Doméstico , Termografia , Animais , Termografia/veterinária , Termografia/métodos , Metano/análise , Metano/metabolismo , Feminino , Carneiro Doméstico/fisiologia , Ração Animal/análise , Dieta/veterinária , Raios Infravermelhos , Ovinos/fisiologiaRESUMO
Methane capture via oxidation is considered one of the 'Holy Grails' of catalysis (Tucci and Rosenzweig, 2024). Methane is also a primary greenhouse gas that has to be reduced by 1.2 billion metric tonnes in 10 years to decrease global warming by only 0.23°C (He and Lidstrom, 2024); hence, new technologies are needed to reduce atmospheric methane levels. In Nature, methane is captured aerobically by methanotrophs and anaerobically by anaerobic methanotrophic archaea; however, the anaerobic process dominates. Here, we describe the history and potential of using the two remarkable enzymes that have been cloned with activity for capturing methane: aerobic capture via soluble methane monooxygenase and anaerobic capture via methyl-coenzyme M reductase. We suggest these two enzymes may play a prominent, sustainable role in addressing our current global warming crisis.
Assuntos
Metano , Oxirredutases , Oxigenases , Proteínas Recombinantes , Metano/metabolismo , Oxigenases/genética , Oxigenases/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Oxirredução , Anaerobiose , Aerobiose , Archaea/enzimologia , Archaea/genética , Archaea/metabolismoRESUMO
Gold(I) N-heterocyclic carbenes have been explored for their therapeutic potential against several diseases. Neglected tropical diseases, including leishmaniasis, Chagas disease, and viral infections, such as zika, mayaro, and chikungunya, urgently require new treatment options. The emergent SARS-CoV-2 also demands significant attention. Gold complexes have shown promise as alternative treatments for these conditions. Previously, gold(I)(1,3-bis(mesityl)imidazole-2-ylidene)Cl (AuIMesCl) demonstrated significant leishmanicidal and anti-Chikungunya virus activities. In this study, we synthesized and fully characterized a series of gold(I)(1,3-bis(mesityl)imidazole-2-ylidene)(SR) complexes, where SR includes thiolate donor species such as 1,3-thiazolidine-2-thione, 1,3-benzothiazole-2-thione, 2-mercaptopyrimidine, and 2-thiouracil. These compounds were stable in solution, and ligand exchange reactions with N-acetyl-L-cysteine indicated that complexes with SR ligands are more labile than those with chloride. Although the reactions are rapid, they reach equilibrium at varying molar ratios depending on the SR ligand. The increased lability of these compounds results in higher cytotoxicity to host cells, such as Vero E6 and bone marrow-differentiated macrophages, compared to AuIMesCl. Despite this, the compounds effectively inhibited viral replication, achieving 95.5% inhibition of Zika virus replication at 2 µM with 96% host cell viability. Although active at low concentrations (â¼2 µM) against Leishmania (L.) amazonensis and Trypanosoma cruzi, their high cytotoxicity for macrophages confirmed AuIMesCl as a better candidate with a higher selectivity index. This work correlates the coordination chemistry of pyrimidines and thiazolidines with their in vitro biological activities against significant diseases.
Assuntos
Antivirais , Ouro , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Ouro/química , Ouro/farmacologia , Animais , Ligantes , Compostos de Sulfidrila/química , Compostos de Sulfidrila/farmacologia , Metano/análogos & derivados , Metano/química , Metano/farmacologia , Chlorocebus aethiops , Antiparasitários/farmacologia , Antiparasitários/química , Antiparasitários/síntese química , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Camundongos , Células Vero , Humanos , Trypanosoma cruzi/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Zika virus/efeitos dos fármacosRESUMO
Turkey litter waste is lignocellulosic and keratinous, requiring prior enzymatic treatment to facilitate fiber hydrolysis and utilization by microorganisms in anaerobic digestion (AD) process. The understanding of the performance of microorganisms in AD can be facilitated through molecular biology and bioinformatics tools. This study aimed to determine the taxonomic profile and functional prediction of microbial communities in the AD of turkey litter waste subjected to enzymatic pretreatment and correlate it with operational parameters. The tests involved the use of turkey litter (T) at 25 g L-1 of volatile solids, a granular inoculum (S) (10% m/v), and the addition of cellulase (C), and pectinase (P) enzymes at four concentrations. The use of enzymes increased methane production by 19% (turkey litter, inoculum, and cellulase-TSC4) and 15% (turkey litter, inoculum, and enzymatic pectinase-TSP4) compared to the control (turkey litter and inoculum-TS), being more effective in TSC4 (667.52 mLCH4), where there was consumption of acetic, butyric, and propionic acids. The pectinase assay (TSP4) showed a methane production of 648 mLCH4 and there was the accumulation of metabolites. Cellulolytic microorganisms Bacteroides, Ruminofilibacter, Lachnospiraceae, Ruminococcaceae, and Methanosaeta were favored in TSC4. In TSP4, the predominant genus was Macellibacteroides and Methanosarcina, and genes involved in methylotrophic methanogenesis were also found (mtaB, mtmB, and mtbB). Enzymes involved in hydrogenotrophic methanogenesis were identified in both assays (TSC4 and TSP4). Molecular tools helped to understand the metabolic routes involved in AD with enzymatic treatment, allowing the elaboration of strategies to improve the sustainable degradation of turkey litter waste.
Assuntos
Bactérias , Celulase , Metano , Poligalacturonase , Perus , Anaerobiose , Animais , Metano/metabolismo , Celulase/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Perus/microbiologia , Poligalacturonase/metabolismo , Hidrólise , Lignina/metabolismo , Agricultura , MetagenômicaRESUMO
Although anthropogenic activities are the primary drivers of increased greenhouse gas (GHG) emissions, it is crucial to acknowledge that wetlands are a significant source of these gases. Brazil's Pantanal, the largest tropical inland wetland, includes numerous lacustrine systems with freshwater and soda lakes. This study focuses on soda lakes to explore potential biogeochemical cycling and the contribution of biogenic GHG emissions from the water column, particularly methane. Both seasonal variations and the eutrophic status of each examined lake significantly influenced GHG emissions. Eutrophic turbid lakes (ET) showed remarkable methane emissions, likely due to cyanobacterial blooms. The decomposition of cyanobacterial cells, along with the influx of organic carbon through photosynthesis, accelerated the degradation of high organic matter content in the water column by the heterotrophic community. This process released byproducts that were subsequently metabolized in the sediment leading to methane production, more pronounced during periods of increased drought. In contrast, oligotrophic turbid lakes (OT) avoided methane emissions due to high sulfate levels in the water, though they did emit CO2 and N2O. Clear vegetated oligotrophic turbid lakes (CVO) also emitted methane, possibly from organic matter input during plant detritus decomposition, albeit at lower levels than ET. Over the years, a concerning trend has emerged in the Nhecolândia subregion of Brazil's Pantanal, where the prevalence of lakes with cyanobacterial blooms is increasing. This indicates the potential for these areas to become significant GHG emitters in the future. The study highlights the critical role of microbial communities in regulating GHG emissions in soda lakes, emphasizing their broader implications for global GHG inventories. Thus, it advocates for sustained research efforts and conservation initiatives in this environmentally critical habitat.
Assuntos
Gases de Efeito Estufa , Lagos , Metano , Microbiota , Lagos/química , Lagos/microbiologia , Gases de Efeito Estufa/análise , Brasil , Metano/análise , Monitoramento Ambiental , Áreas Alagadas , Eutrofização , Poluentes Atmosféricos/análiseRESUMO
The objectives of the present study were to estimate the heritability for daily methane emission (CH4) and residual daily methane emission (CH4res) in Nellore cattle, as well as to perform genome-wide association studies (GWAS) to identify genomic regions and candidate genes influencing the genetic variation of CH4 and CH4res. Methane emission phenotypes of 743 Nellore animals belonging to 3 breeding programs were evaluated. CH4 was measured using the sulfur hexafluoride (SF6) tracer technique (which involves an SF6 permeation tube introduced into the rumen, and an appropriate apparatus on each animal), and CH4res was obtained as the difference between observed CH4 and CH4 adjusted for dry matter intake. A total of 6,252 genotyped individuals were used for genomic analyses. Data were analyzed with a univariate animal model by the single-step GBLUP method using the average information restricted maximum likelihood (AIREML) algorithm. The effects of single nucleotide polymorphisms (SNPs) were obtained using a single-step GWAS approach. Candidate genes were identified based on genomic windows associated with quantitative trait loci (QTLs) related to the 2 traits. Annotation of QTLs and identification of candidate genes were based on the initial and final coordinates of each genomic window considering the bovine genome ARS-UCD1.2 assembly. Heritability estimates were of moderate to high magnitude, being 0.42â ±â 0.09 for CH4 and 0.21â ±â 0.09 for CH4res, indicating that these traits will respond rapidly to genetic selection. GWAS revealed 11 and 15 SNPs that were significantly associated (Pâ <â 10-6) with genetic variation of CH4 and CH4res, respectively. QTLs associated with feed efficiency, residual feed intake, body weight, and height overlapped with significant markers for the traits evaluated. Ten candidate genes were present in the regions of significant SNPs; 3 were associated with CH4 and 7 with CH4res. The identified genes are related to different functions such as modulation of the rumen microbiota, fatty acid production, and lipid metabolism. CH4 and CH4res presented sufficient genetic variation and may respond rapidly to selection. Therefore, these traits can be included in animal breeding programs aimed at reducing enteric methane emissions across generations.
Genetic selection designed to reduce the amount of enteric methane emission from livestock is a mitigation strategy to ensure more sustainable production over generations since genetic gains are cumulative. Brazil is a large producer of beef, and the Nellore breed (Bos taurus indicus) plays a very important role in this production. There are a few studies evaluating genetic and genomic aspects of enteric methane emission in Nellore cattle. The objectives of the present study were to estimate the heritability of daily methane emission (CH4) and residual daily methane emission (CH4res) in Nellore cattle, as well as to identify genomic regions and candidate genes associated with genetic variation of these traits. The heritability estimates for CH4 and CH4res were of moderate to high magnitude (0.42â ±â 0.09 and 0.21â ±â 0.09, respectively). Genome-wide association analyses revealed new loci associated with methane emission in Nellore cattle on chromosomes 5, 11, 17, and 20, where 10 candidate genes were identified, 3 for CH4 and 7 for CH4res. The 2 traits possess sufficient genetic variability to be included as selection criteria in breeding programs.
Assuntos
Estudo de Associação Genômica Ampla , Metano , Polimorfismo de Nucleotídeo Único , Animais , Bovinos/genética , Metano/metabolismo , Estudo de Associação Genômica Ampla/veterinária , Locos de Características Quantitativas , Masculino , Feminino , Genótipo , Cruzamento , FenótipoRESUMO
Although benthic microbial community offers crucial insights into ecosystem services, they are underestimated for coastal sediment monitoring. Sepetiba Bay (SB) in Rio de Janeiro, Brazil, holds long-term metal pollution. Currently, SB pollution is majorly driven by domestic effluents discharge. Here, functional prediction analysis inferred from 16S rRNA gene metabarcoding data reveals the energy metabolism profiles of benthic microbial assemblages along the metal pollution gradient. Methanogenesis, denitrification, and N2 fixation emerge as dominant pathways in the eutrophic/polluted internal sector (Spearman; p < 0.05). These metabolisms act in the natural attenuation of sedimentary pollutants. The methane (CH4) emission (mcr genes) potential was found more abundant in the internal sector, while the external sector exhibited higher CH4 consumption (pmo + mmo genes) potential. Methanofastidiosales and Exiguobacterium, possibly involved in CH4 emission and associated with CH4 consumers respectively, are the main taxa detected in SB. Furthermore, SB exhibits higher nitrous oxide (N2O) emission potential since the norB/C gene proportions surpass nosZ up to 4 times. Blastopirellula was identified as the main responsible for N2O emissions. This study reveals fundamental contributions of the prokaryotic community to functions involved in greenhouse gas emissions, unveiling their possible use as sentinels for ecosystem monitoring.
Assuntos
Monitoramento Ambiental , Gases de Efeito Estufa , Poluentes da Água , Gases de Efeito Estufa/análise , Clima Tropical , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Código de Barras de DNA Taxonômico , Metano/análise , Brasil , Urbanização , Poluição da Água/estatística & dados numéricos , Poluentes da Água/análise , Microbiota , Ascomicetos , Dióxido de Nitrogênio/análiseRESUMO
The CH4 storage by adsorption on activated carbons for natural gas handling has gained interest due to the appearance of lightweight materials with large surface areas and pore volumes. Consequently, kinetic parameters estimation of the adsorptive process can play a crucial role in understanding and scaling up the system. Concerning its versatility, banana peel (BP) is a biomass with potential for obtaining different products, such as biochar, a solid residue from the biomass' thermal decomposition of difficult disposal, where through an activation process, the material porous features are taken advantage to application as adsorbent of gaseous substances. This research reported data for the CH4 adsorption kinetic modeling by biochar from BP pyrolysis. The activated biochar textural characterization showed particles with fine mesoporous structure (pore diameter ranging between 29.39 and 55.62 Å). Adsorption kinetic analysis indicated that a modified pseudo-first-order model was the most suitable to represent the experimental data, with equilibrium adsorption of 28 mg g-1 for the samples activated with 20.0% vol wt.-1 of H3PO4 and pyrolysis at 500 °C. The equilibrium constant was consistent with the Freundlich isotherm model, suggesting a physisorption mechanism, and led to a non-ideal, reversible, and not limited to monolayer CH4 adsorption.
Assuntos
Carvão Vegetal , Metano , Metano/química , Adsorção , Carvão Vegetal/química , Cinética , Biomassa , Musa/químicaRESUMO
The global food system is a key driver of land-use and climate change which in turn drive biodiversity change. Developing sustainable food systems is therefore critical to reversing biodiversity loss. We use the multi-regional input-output model EXIOBASE to estimate the biodiversity impacts embedded within the global food system in 2011. Using models that capture regional variation in the sensitivity of biodiversity both to land use and climate change, we calculate the land-driven and greenhouse gas-driven footprints of food using two metrics of biodiversity: local species richness and rarity-weighted species richness. We show that the footprint of land area underestimates biodiversity impact in more species-rich regions and that our metric of rarity-weighted richness places a greater emphasis on biodiversity costs in Central and South America. We find that methane emissions are responsible for 70% of the overall greenhouse gas-driven biodiversity footprint and that, in several regions, emissions from a single year's food production are associated with global biodiversity loss equivalent to 2% or more of that region's total land-driven biodiversity loss. The measures we present are relatively simple to calculate and could be incorporated into decision-making and environmental impact assessments by governments and businesses.
Assuntos
Biodiversidade , Mudança Climática , Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Conservação dos Recursos Naturais , Abastecimento de Alimentos , Agricultura , América do Sul , Metano/análiseRESUMO
OBJECTIVES: This lab-scale study aimed to investigate the effect of total ammonia nitrogen (TAN) stress on the methanogenic activity and the taxonomic and functional profiles of the microbial community of anaerobic sludge (AS) from a full-scale bioreactor. METHODS: The AS was subjected to a stepwise increase in TAN every 14 days at concentrations of 1, 2, 2.5, 3, 3.5, and 4 g TAN/L (Acclimated-AS or AAS). This acclimation stage was followed by an ammonia stress stage (4 g/L). A blank-AS (BAS) was maintained without TAN during the acclimation stage. In the second stress stage (ST), the BAS was divided into two new treatments: a control (BAS') and one that received a shock load of TAN of 4 g/L (SBAS'). Methane production was measured, and a metagenomic analysis was conducted to describe the microbial community. RESULTS: A decrease in the relative abundance of Methanothrix soehngenii of 16 % was related to a decrease of 23 % in the methanogenic capacity of AAS when comparing with the final stage of BAS. However, recovery was observed at 3.5 g TAN/L, and a shift to methylotrophic metabolism occurred, indicated by a 4-fold increase in abundance of Methanosarcina mazei. The functional analysis of sludge metagenomes indicated that no statistical differences (p > 0.05, RM ANOVA) were found in the relative abundance of methanogenic genes that initiate acetoclastic and hydrogenotrophic pathways (acetyl-CoA synthetase, ACSS; acetate kinase, ackA; phosphate acetyltransferase, pta; and formylmethanofuran dehydrogenase subunit A, fwdA) into the BAS and AAS during the acclimation phase. The same was observed between groups of genes associated with methanogenesis from methylated compounds. In contrast, statistical differences (p < 0.05, one-way ANOVA) in the relative abundance of these genes were recorded during ST. The functional profiles of the genes involved in acetoclastic, hydrogenotrophic, and methylotrophic methanogenic pathways were brought to light for acclimatation and stress experimental stages. CONCLUSIONS: TAN inhibited methanogenic activity and acetoclastic metabolism. The gradual acclimatization to TAN leads to metabolic and taxonomic changes that allow for the subsequent recovery of methanogenic functionality. The study highlights the importance of adequate management of anaerobic bioprocesses with high nitrogen loads to maintain the methanogenic functionality of the microbial community.
Assuntos
Amônia , Reatores Biológicos , Metano , Esgotos , Metano/metabolismo , Amônia/metabolismo , Anaerobiose , Reatores Biológicos/microbiologia , Esgotos/microbiologia , Nitrogênio/metabolismoRESUMO
BACKGROUND: Mangroves are complex and dynamic coastal ecosystems under frequent fluctuations in physicochemical conditions related to the tidal regime. The frequent variation in organic matter concentration, nutrients, and oxygen availability, among other factors, drives the microbial community composition, favoring syntrophic populations harboring a rich and diverse, stress-driven metabolism. Mangroves are known for their carbon sequestration capability, and their complex and integrated metabolic activity is essential to global biogeochemical cycling. Here, we present a metabolic reconstruction based on the genomic functional capability and flux profile between sympatric MAGs co-assembled from a tropical restored mangrove. RESULTS: Eleven MAGs were assigned to six Bacteria phyla, all distantly related to the available reference genomes. The metabolic reconstruction showed several potential coupling points and shortcuts between complementary routes and predicted syntrophic interactions. Two metabolic scenarios were drawn: a heterotrophic scenario with plenty of carbon sources and an autotrophic scenario with limited carbon sources or under inhibitory conditions. The sulfur cycle was dominant over methane and the major pathways identified were acetate oxidation coupled to sulfate reduction, heterotrophic acetogenesis coupled to carbohydrate catabolism, ethanol production and carbon fixation. Interestingly, several gene sets and metabolic routes similar to those described for wastewater and organic effluent treatment processes were identified. CONCLUSION: The mangrove microbial community metabolic reconstruction reflected the flexibility required to survive in fluctuating environments as the microhabitats created by the tidal regime in mangrove sediments. The metabolic components related to wastewater and organic effluent treatment processes identified strongly suggest that mangrove microbial communities could represent a resourceful microbial model for biotechnological applications that occur naturally in the environment.
Assuntos
Bactérias , Microbiota , Áreas Alagadas , Microbiota/genética , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Filogenia , Processos Heterotróficos , Ciclo do Carbono , Carbono/metabolismo , Metano/metabolismo , Processos Autotróficos , Redes e Vias Metabólicas/genéticaRESUMO
Herein, four silver(I) complexes bearing acetylated d-galactopyranoside-based N-heterocyclic carbene ligands were synthesized and fully characterized by elemental analysis, NMR, and X-ray photoelectron spectroscopy. All complexes were obtained with an anomeric ß-configuration and as monocarbene species. In this study, we investigated the biological effects of the silver(I) complexes 2a-d on the human rhabdomyosarcoma cell line, RD. Our results show concentration-dependent effects on cell density, growth inhibition, and activation of key signaling pathways such as Akt 1/2, ERK 1/2, and p38-MAPK, indicating their potential as anticancer agents. Notably, at 35.5 µM, the complexes induced mitochondrial network disruption, as observed with 2b and 2c, whereas with 2a, this disruption was accompanied by nuclear content release. These results provide insight into the utility of carbohydrate incorporated NHC complexes of silver(I) as new agents in cancer therapy.
Assuntos
Antineoplásicos , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Rabdomiossarcoma , Prata , Humanos , Acetilação , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Relação Dose-Resposta a Droga , Galactose/química , Galactose/farmacologia , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/síntese química , Metano/química , Metano/análogos & derivados , Metano/farmacologia , Metano/síntese química , Estrutura Molecular , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/patologia , Prata/química , Prata/farmacologia , Relação Estrutura-AtividadeRESUMO
The aim of the study was to evaluate the effect of total mixed ration particle size (length) and breed of cow on intake dynamics, animal performance and CH4 emissions, comparing high yielding Holstein and low yielding Girolando cows. The experimental design was 2 × 2 Latin Square arranged as a crossover factorial scheme with two diets (short particle size, SPS and long particle size, LPS) and the two breed compositions. The design comprised two periods of 26 d each, where all data collection was performed at cow level. No influence of the particle size occurred for the passage rate, neutral detergent fiber digestibility, performance and milk composition, methane emissions or ruminal fermentation parameters. Girolando cows had greater dry matter intake (DMI) when fed SPS, while Holsteins had the same (P < 0.05). Girolando cows had lower dry matter digestibility when fed LPS compared to SPS, while Holsteins had the opposite effect (P < 0.05). Also, the digestibility of crude protein and non-fibrous carbohydrates decreased in Girolando cows fed LPS, but not in Holsteins (P < 0.05). Girolando cows reduced DMI by 10.6% when fed LPS diet (P < 0.05). Girolando had an increased eating rate (+24 g of DM/min; P < 0.05) compared to Holstein cows, but Holstein cows had a lower CH4 intensity (by 29.7%: P < 0.05). Girolando cows increased the dry matter intake when fed a diet with short particle size, while the same did not happen in Holsteins. Dry matter digestibility increased in Holsteins when fed long particle size, while the opposite was observed in Girolando cows. Nutrient digestibility was reduced in Girolando cows when fed short particle size. Particle size did not influence eating time, eating rate, feed trough visits, visits with intake, milk yield and composition regardless of the breed. Reducing particle size increased CH4 intensity in both breeds.
Assuntos
Ração Animal , Dieta , Digestão , Lactação , Leite , Tamanho da Partícula , Animais , Bovinos/fisiologia , Feminino , Digestão/fisiologia , Lactação/fisiologia , Leite/química , Dieta/veterinária , Ração Animal/análise , Rúmen/fisiologia , Metano/análise , Fermentação , Fenômenos Fisiológicos da Nutrição Animal , Ingestão de Alimentos/fisiologiaRESUMO
Mangroves forests may be important sinks of carbon in coastal areas but upon their death, these forests may become net sources of carbon dioxide (CO2) and methane (CH4) to the atmosphere. Here we assessed the spatial and temporal variability in soil CO2 and CH4 fluxes from dead mangrove forests and paired intact sites in SE-Brazil. Our findings demonstrated that during warmer and drier conditions, CO2 soil flux was 183 % higher in live mangrove forests when compared to the dead mangrove forests. Soil CH4 emissions in live forests were > 1.4-fold higher than the global mangrove average. During the wet season, soil GHG emissions dropped significantly at all sites. During warmer conditions, mangroves were net sources of GHG, with a potential warming effect (GWP100) of 32.9 ± 10.2 (±SE) Mg CO2e ha-1 y-1. Overall, we found that dead mangroves did not release great amounts of GHG after three years of forest loss.