Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.402
Filtrar
1.
Biomolecules ; 11(8)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34439804

RESUMO

The bioprospecting of marine and brackish water systems has increased during the last decades. In this respect, microalgae, including cyanobacteria, and their metabolites are one of the most widely explored resources. Most of the bioactive compounds are isolated from ex situ cultures of microorganisms; however, analysis of field samples could also supply valuable information about the metabolic and biotechnological potential of microalgae communities. In this work, the activity of phytoplankton samples from the Curonian Lagoon was studied. The samples were active against antibiotic resistant clinical and environmental bacterial strains as well as against serine proteases and T47D human breast adenocarcinoma cells. No significant effect was found on Daphnia magna. In addition, using LC-MS/MS, we documented the diversity of metabolites present in field samples. A list of 117 detected cyanopeptides was presented. Cyanopeptolins constituted the largest class of cyanopeptides. As complex bloom samples were analyzed, no link between the observed activity and a specific sample component can be established. However, the results of the study showed a biotechnological potential of natural products from the Curonian Lagoon.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Cianobactérias/química , Microalgas/química , Fitoplâncton/química , Animais , Antibacterianos/química , Antineoplásicos/química , Oceano Atlântico , Países Bálticos , Baías/microbiologia , Produtos Biológicos/química , Linhagem Celular Tumoral , Misturas Complexas/química , Misturas Complexas/farmacologia , Cianobactérias/metabolismo , Daphnia/efeitos dos fármacos , Daphnia/fisiologia , Depsipeptídeos/química , Depsipeptídeos/farmacologia , Eutrofização , Água Doce/microbiologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/crescimento & desenvolvimento , Humanos , Microalgas/metabolismo , Testes de Sensibilidade Microbiana , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Fitoplâncton/metabolismo , Águas Salinas/química , Serina Proteases/metabolismo
2.
Molecules ; 26(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34443557

RESUMO

The first production of defibrillated celluloses from microalgal biomass using acid-free, TEMPO-free and bleach-free hydrothermal microwave processing is reported. Two routes were explored: i. direct microwave process of native microalgae ("standard"), and ii. scCO2 pre-treatment followed by microwave processing. ScCO2 was investigated as it is commonly used to extract lipids and generates considerable quantities of spent algal biomass. Defibrillation was evidenced in both cases to afford cellulosic strands, which progressively decreased in their width and length as the microwave processing temperature increased from 160 °C to 220 °C. Lower temperatures revealed aspect ratios similar to microfibrillated cellulose whilst at the highest temperature (220 °C), a mixture of microfibrillated cellulose and nanocrystals were evidenced. XRD studies showed similar patterns to cellulose I but also some unresolved peaks. The crystallinity index (CrI), determined by XRD, increased with increasing microwave processing temperature. The water holding capacity (WHC) of all materials was approximately 4.5 g H2O/g sample. The materials were able to form partially stable hydrogels, but only with those processed above 200 °C and at a concentration of 3 wt% in water. This unique work provides a new set of materials with potential applications in the packaging, food, pharmaceutical and cosmetic industries.


Assuntos
Microalgas/metabolismo , Microalgas/efeitos da radiação , Micro-Ondas , Celulose/biossíntese , Celulose/química , Temperatura , Água/química
3.
Arch Biochem Biophys ; 710: 108987, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34260946

RESUMO

Microalgae biotechnology has made it possible to derive secondary bioactive metabolites from microalgae strains that have opened up their entire potential to uncover a wide range of novel metabolic capabilities and turn these into bio-products for the development of sustainable bio-refineries. Nuclear Magnetic Resonance Technology (NMR) has been one of the most successful and functional research technology over the past two decades to analyse the composition, structure and functionality of distinct metabolites in the different microalgae strains. This technology offers qualitative as well as quantitative knowledge about the endogenous metabolites and lipids of low molecular mass to offer a good picture of the physiological state of biological samples in metabolomics and lipidomics studies. Henceforth, this review is aimed at introducing the metabolomics and lipidomics studies into the field of NMR technology and also highlights the protocols for the isolation and metabolic measurements of metabolites from microalgae that should be redirected to resource recovery and value-added products with a systematic and holistic approach for scalability or sustainability.


Assuntos
Lipidômica/métodos , Metabolômica/métodos , Microalgas/química , Microalgas/metabolismo , Espectroscopia de Prótons por Ressonância Magnética/métodos , Animais , Aquicultura , Biomassa , Biotecnologia/métodos , Cadeia Alimentar , Hidrogênio , Lipídeos/análise , Lipídeos/química , Solventes
4.
J Sci Food Agric ; 101(14): 5763-5774, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34148229

RESUMO

The global food crisis has led to a great deal of attention being given to microalgal oil as a sustainable natural food source. This article provides an overview of the progress and future directions in promoting the commercialization of microalgal edible oils, including microalgal triglyceride accumulation, suitable edible oil culture strategies for high nutritional value, metabolic engineering, production, and downstream technologies. The integration of the production process, biosafety, and the economic sustainability of microalgal oil production are analyzed for their critical roles in the commercialization of microalgal edible oil to provide a theoretical and scientific basis for the comprehensive development and utilization of microalgal edible oil. © 2021 Society of Chemical Industry.


Assuntos
Microalgas/química , Óleos/economia , Óleos/metabolismo , Animais , Comércio , Humanos , Microalgas/metabolismo , Valor Nutritivo , Óleos/química , Pesquisa/tendências
5.
Mar Drugs ; 19(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064032

RESUMO

Porphyridium purpureum is a well-known Rhodophyta that recently has attracted enormous attention because of its capacity to produce many high-value metabolites such as the pigment phycoerythrin and several high-value fatty acids. Phycoerythrin is a fluorescent red protein-pigment commercially relevant with antioxidant, antimicrobial activity, and fluorescent properties. The volumetric mass transfer coefficient (kLa) was kept constant within the different scaling-up stages in the present study. This scaling-up strategy was sought to maintain phycoerythrin production and other high-value metabolites by Porphyridium purpureum, using hanging-bag photobioreactors. The kLa was monitored to ensure the appropriate mixing and CO2 diffusion in the entire culture during the scaling process (16, 80, and 400 L). Then, biomass concentration, proteins, fatty acids, carbohydrates, and phycoerythrin were determined in each step of the scaling-up process. The kLa at 16 L reached a level of 0.0052 s-1, while at 80 L, a value of 0.0024 s-1 was achieved. This work result indicated that at 400 L, 1.22 g L-1 of biomass was obtained, and total carbohydrates (117.24 mg L-1), proteins (240.63 mg L-1), and lipids (17.75% DW) were accumulated. Regarding fatty acids production, 46.03% palmitic, 8.03% linoleic, 22.67% arachidonic, and 2.55% eicosapentaenoic acid were identified, principally. The phycoerythrin production was 20.88 mg L-1 with a purity of 2.75, making it viable for food-related applications. The results of these experiments provide insight into the high-scale production of phycoerythrin via the cultivation of P. purpureum in an inexpensive and straightforward culture system.


Assuntos
Ácidos Graxos/biossíntese , Microalgas/crescimento & desenvolvimento , Ficoeritrina/biossíntese , Porphyridium/crescimento & desenvolvimento , Proteínas/metabolismo , Carboidratos/análise , Carboidratos/biossíntese , Ácidos Graxos/análise , Microalgas/metabolismo , Fotobiorreatores , Ficoeritrina/análise , Porphyridium/metabolismo , Proteínas/análise
6.
Molecules ; 26(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072101

RESUMO

The tannery industry is one of the economic sectors that contributes to the development of different countries. Globally, Europe and Asia are the main producers of this industry, although Latin America and Africa have been growing considerably in recent years. With this growth, the negative environmental impacts towards different ecosystem resources as a result of the discharges of recalcitrated pollutants, have led to different investigations to generate alternative solutions. Worldwide, different technologies have been studied to address this problem, biological and physicochemical processes have been widely studied, presenting drawbacks with some recalcitrant compounds. This review provides a context on the different existing technologies for the treatment of tannery wastewater, analyzing the physicochemical composition of this liquid waste, the impact it generates on human health and ecosystems and the advances in the different existing technologies, focusing on advanced oxidation processes and the use of microalgae. The coupling of advanced oxidation processes with biological processes, mainly microalgae, is seen as a viable biotechnological strategy, not only for the removal of pollutants, but also to obtain value-added products with potential use in the biorefining of the biomass.


Assuntos
Resíduos Industriais/análise , Microalgas/metabolismo , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/química , Biocombustíveis , Análise da Demanda Biológica de Oxigênio , Biomassa , Biotecnologia , Cianobactérias , Ecossistema , Eletroquímica , Geografia , Metais Pesados , Oxirredução , Oxigênio/química , Curtume , Purificação da Água/métodos
7.
Methods Mol Biol ; 2290: 3-21, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34009579

RESUMO

Renewable biobutanol production is receiving more attention toward substituting fossil-based nonrenewable fuels. Biobutanol is recognized as the top most biofuel with extraordinary properties as compared with gasoline. The demand for biobutanol production is increasing enormously due to application in various industries as chemical substituent. Biobutanol production technology has attracted many researchers toward implementation of replacing cost-effective substrate and easy method to recover from the fermentation broth. Sugarcane bagasse, algal biomass, crude glycerol, and lignocellulosic biomass are potential cost-effective substrates which could replace consistent glucose-based substrates. The advantages and limitations of these substrates have been discussed in this chapter. Moreover, finding the integrated biobutanol recovery methods is an important factor parameter in production of biobutanol. This chapter also concentrated on possibilities and drawbacks of obtainable integrated biobutanol recovery methods. Thus, successful process involving cost-effective substrate and biobutanol recovery methods could help to implementation of biobutanol production industry. Overall, this chapter has endeavored to increase the viability of industrial production of biobutanol.


Assuntos
Biotecnologia/métodos , Butanóis/metabolismo , Biocombustíveis , Biomassa , Butanóis/síntese química , Butanóis/química , Celulose , Fermentação , Glicerol/metabolismo , Microbiologia Industrial/métodos , Lignina/metabolismo , Microalgas/metabolismo , Saccharum
8.
Methods Mol Biol ; 2290: 31-51, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34009581

RESUMO

Worldwide demand for ethanol alternative fuel has been emerging day by day owing to the rapid population growth and industrialization. Culturing microalgae as an alternative feedstock is anticipated to be a potentially significant approach for sustainable bioethanol biofuel production. Microalgae are abundant in nature, which grow at faster rates with a capability of storing high lipid and starch/cellulose contents inside their cells. This process offers several environmental advantages, including the effective utilization of land, good CO2 sequestration without entering into "food against fuel" dispute. This chapter focuses on the methods and processes used for the production of bioethanol biofuels from algae. Thus, it also covers significant achievements in the research and developments on algae bioethanol production, mainly including pretreatment, hydrolysis, and fermentation of algae biomass. The processes of producing biodiesel, biogas, and hydrogen have also been discussed.


Assuntos
Biocombustíveis , Biotecnologia/métodos , Etanol/metabolismo , Microalgas , Biomassa , Fermentação , Raios gama , Hidrogênio/metabolismo , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Micro-Ondas , Feófitas/classificação , Feófitas/metabolismo , Fitoplâncton , Rodófitas/classificação , Rodófitas/metabolismo , Ultrassom
9.
Methods Mol Biol ; 2295: 81-97, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34047973

RESUMO

Algae are ecologically important organisms and are widely used for basic research, with a focus on for example photosynthesis, evolution, and lipid metabolism. Many biosynthetic pathways of algal lipids have been deciphered using available genomic information. Here we describe methods for lipid analyses from three representative algae, including Archaeplastida, the SAR lineage (Stramenopiles, Alveolata, Rhizaria), and Excavata. Archaeplastida acquired their plastids by primary endosymbiosis, and the others by secondary endosymbiosis with a Rhodophyceae-type plastid in SAR and a Chlorophyceae-type plastid in Excavata (Euglenozoa). Analytical methods for these algae are described for membrane lipids and neutral lipids including triacylglycerol and wax esters.


Assuntos
Carofíceas/metabolismo , Euglênidos/metabolismo , Lipídeos/análise , Caráceas/genética , Evolução Molecular , Microalgas/metabolismo , Fotossíntese/fisiologia , Filogenia , Plastídeos/metabolismo , Rodófitas/genética , Estramenópilas/genética , Simbiose/fisiologia
10.
Methods Mol Biol ; 2295: 203-218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34047979

RESUMO

The acyl-CoA pool is pivotal in cellular metabolism. The ability to provide reliable estimates of acyl-CoA abundance and distribution between molecular species in plant tissues and microalgae is essential to our understanding of lipid metabolism and acyl exchange. Acyl-CoAs are typically found in low abundance and require specific methods for extraction, separation and detection. Here we describe methods for acyl-CoA extraction and measurement in plant tissues and microalgae, with a focus on liquid chromatography hyphenated to detection techniques including ultraviolet (UV), fluorescence and mass spectrometry (MS). We address the resolution of isobaric species and the selection of columns needed to achieve this, including the analysis of branched chain acyl-CoA thioesters. For MS analyses, we describe diagnostic ions for the identification of acyl-CoA species and how these can be used for both discovery of new species (data dependent acquisition) and routine quantitation (triple quadrupole MS with multiple reaction monitoring).


Assuntos
Acil Coenzima A/análise , Acil Coenzima A/isolamento & purificação , Cromatografia Líquida/métodos , Acil Coenzima A/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Microalgas/metabolismo , Plantas/metabolismo , Espectrometria de Massas em Tandem/métodos
11.
Food Chem Toxicol ; 152: 112197, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33864840

RESUMO

Declines across global fishery stocks forced aquaculture feed manufacturers to search for new and sustainable components. Therefore, the aim of study was assessing nutritional value and sensory properties of meat of common carp (Cyprinus carpio L.) fed for 116 days with two blends. The control feed contained 5% of fishmeal and vegetable oils (rapeseed and soybean) as sole fat sources. While in the experimental diet half of the fishmeal was replaced with a blend of microalgae (Spirulina sp., Chlorella sp.), macroalgae (Laminaria digitata) and vegetable oil was replaced with salmon oil. Proximate composition, energy value, fatty acid profile of meat, nutritional characteristics of fat and protein as well as culinary properties of fillets were assessed. Fillets of carp fed experimental diet had a higher level of protein, lower level of fat and energy value. Intramuscular fat of fish fed with the experimental diet had a better parameters of quality. Protein in the meat of fish from both groups was characterized by a high quality comparing to the protein standard. Our study showed that meat of carp fed with experimental feed enriched with sustainable and natural feed ingredients can be a sensorily attractive source of nutritious ingredients in the human diet.


Assuntos
Ração Animal , Carpas/metabolismo , Produtos Pesqueiros/análise , Valor Nutritivo , Animais , Óleos de Peixe/metabolismo , Proteínas de Peixes/análise , Humanos , Microalgas/metabolismo , Odorantes/análise , Salmão , Alga Marinha/metabolismo , Paladar , Triglicerídeos/análise
12.
Ecotoxicol Environ Saf ; 217: 112199, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33864982

RESUMO

Environmental aging of ubiquitous microplastics (MP) occurs through the action of biotic and abiotic factors, and aged MP exhibit different physicochemical properties and environmental behavior from virgin MP. This study aimed to investigate the aged micro-sized polystyrene (mPS) and polyvinyl chloride (mPVC), and the heavy metals copper (Cu) and cadmium (Cd), and examine the effects of their combined toxicities on microalga Chlorella vulgaris. Results showed that the presence of MP inhibited cell growth as compared with the control, the inhibition rate (I) decreased as concentrations of MP rose and aged MP exhibited stronger inhibition of cells than did virgin MP. The largest I was achieved in each culture with the MP concentration of 0.01 g/L, in which aged mPS with the maximal of 36.84% (Iaged mPS) followed by aged mPVC (Iaged mPVC = 30.03%), virgin mPS (Ivirgin mPS = 29.10%) and virgin mPVC (Ivirgin mPVC = 16.72%). Addition of the heavy metals Cu2+ and Cd2+ significantly inhibited cell growth, and toxicity increased with concentrations in a range of 0.5-2.0 mg/L; the maximum I values were 19.50% (ICu) and 85.14% (ICd), respectively. The combined toxicity of aged MP + Cu or aged MP + Cd was less than that of individual heavy metals. In particular, as compared with the maximal ICd of 85.14% achieved by single Cd2+, the toxicity of Cd2+ was greatly reduced when combined with aged mPS and mPVC, with the I value decreased to 27.55% (Iaged mPS) and 32.51% (Iaged mPVC), respectively. Both single and combined treatments caused cell damage to the microalga, accompanied by increased superoxide dismutase (SOD) and intracellular malonaldehyde (MDA) content.


Assuntos
Chlorella vulgaris/metabolismo , Metais Pesados/toxicidade , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Disponibilidade Biológica , Cádmio/toxicidade , Chlorella vulgaris/efeitos dos fármacos , Cobre/toxicidade , Malondialdeído/farmacologia , Metais Pesados/metabolismo , Microalgas/metabolismo , Microplásticos/metabolismo , Plásticos , Poliestirenos/toxicidade , Cloreto de Polivinila , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/metabolismo
13.
Molecules ; 26(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919133

RESUMO

There are numerous strains of Chlorella with a corresponding variety of metabolic pathways. A strain we previously isolated from wastewater in northern Sweden can grow heterotrophically as well as autotrophically in light and has higher lipid contents under heterotrophic growth conditions. The aims of the present study were to characterize metabolic changes associated with the higher lipid contents in order to enhance our understanding of lipid production in microalgae and potentially identify new compounds with utility in sustainable development. Inter alia, the amino acids glutamine and lysine were 7-fold more abundant under heterotrophic conditions, the key metabolic intermediate alpha-ketoglutarate was more abundant under heterotrophic conditions with glucose, and maltose was more abundant under heterotrophic conditions with glycerol than under autotrophic conditions. The metabolite 3-hydroxy-butyric acid, the direct precursor of the biodegradable plastic PHB (poly-3-hydroxy-butyric acid), was also more abundant under heterotrophic conditions. Our metabolomic analysis has provided new insights into the alga's lipid production pathways and identified metabolites with potential use in sustainable development, such as the production of renewable, biodegradable plastics, cosmetics, and nutraceuticals, with reduced pollution and improvements in both ecological and human health.


Assuntos
Chlorella/metabolismo , Processos Heterotróficos , Metaboloma , Metabolômica , Águas Residuárias , Biomassa , Chlorella/crescimento & desenvolvimento , Ácidos Graxos/metabolismo , Metabolômica/métodos , Microalgas/metabolismo , Suécia
14.
Toxins (Basel) ; 13(4)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924256

RESUMO

Microplastics (MP) widely distributed in aquatic environments have adverse effects on aquatic organisms. Currently, the impact of MP on toxigenic red tide microalgae is poorly understood. In this study, the strain of Alexandrium pacificum ATHK, typically producing paralytic shellfish toxins (PST), was selected as the target. Effects of 1 and 0.1 µm polystyrene MP with three concentration gradients (5 mg L-1, 25 mg L-1 and 100 mg L-1) on the growth, chlorophyll a (Chl a), photosynthetic activity (Fv/Fm) and PST production of ATHK were explored. Results showed that the high concentration (100 mg L-1) of 1 µm and 0.1 µm MP significantly inhibited the growth of ATHK, and the inhibition depended on the size and concentration of MP. Contents of Chl a showed an increase with various degrees after MP exposure in all cases. The photosynthesis indicator Fv/Fm of ATHK was significantly inhibited in the first 11 days, then gradually returned to the level of control group at day 13, and finally was gradually inhibited in the 1 µm MP treatments, and promotion or inhibition to some degree also occurred at different periods after exposure to 0.1 µm MP. Overall, both particle sizes of MP at 5 and 25 mg L-1 had no significant effect on cell toxin quota, and the high concentration 100 mg L-1 significantly promoted the PST biosynthesis on the day 7, 11 and 15. No significant difference occurred in the cell toxin quota and the total toxin content in all treatments at the end of the experiment (day 21). All MP treatments did not change the toxin profiles of ATHK, nor did the relative molar percentage of main PST components. The growth of ATHK, Chl a content, Fv/Fm and toxin production were not affected by MP shading. This is the first report on the effects of MP on the PST-producing microalgae, which will improve the understanding of the adverse impact of MP on the growth and toxin production of A. pacificum.


Assuntos
Dinoflagelados/efeitos dos fármacos , Toxinas Marinhas/metabolismo , Microalgas/efeitos dos fármacos , Microplásticos/toxicidade , Fotossíntese/efeitos dos fármacos , Poliestirenos/toxicidade , Intoxicação por Frutos do Mar , Poluentes Químicos da Água/toxicidade , Clorofila A/metabolismo , Dinoflagelados/crescimento & desenvolvimento , Dinoflagelados/metabolismo , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Fatores de Tempo
15.
Commun Biol ; 4(1): 450, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33837247

RESUMO

Light/dark cycling is an inherent condition of outdoor microalgae cultivation, but is often unfavorable for lipid accumulation. This study aims to identify promising targets for metabolic engineering of improved lipid accumulation under outdoor conditions. Consequently, the lipid-rich mutant Chlamydomonas sp. KOR1 was developed through light/dark-conditioned screening. During dark periods with depressed CO2 fixation, KOR1 shows rapid carbohydrate degradation together with increased lipid and carotenoid contents. KOR1 was subsequently characterized with extensive mutation of the ISA1 gene encoding a starch debranching enzyme (DBE). Dynamic time-course profiling and metabolomics reveal dramatic changes in KOR1 metabolism throughout light/dark cycles. During light periods, increased flux from CO2 through glycolytic intermediates is directly observed to accompany enhanced formation of small starch-like particles, which are then efficiently repartitioned in the next dark cycle. This study demonstrates that disruption of DBE can improve biofuel production under light/dark conditions, through accelerated carbohydrate repartitioning into lipid and carotenoid.


Assuntos
Proteínas de Algas/metabolismo , Metabolismo dos Carboidratos , Carotenoides/metabolismo , Chlamydomonas/metabolismo , Metabolismo dos Lipídeos , Amido/metabolismo , Chlamydomonas/enzimologia , Microalgas/enzimologia , Microalgas/metabolismo
16.
Molecules ; 26(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922050

RESUMO

The aim of this study was to remove 5-hydroxymethyl furfural (5-HMF) and furfural, known as fermentation inhibitors, in acid pretreated hydrolysates (APH) obtained from Scenedesmus obliquus using activated carbon. Microwave-assisted pretreatment was used to produce APH containing glucose, xylose, and fermentation inhibitors (5-HMF, furfural). The response surface methodology was applied to optimize key detoxification variables such as temperature (16.5-58.5 °C), time (0.5-5.5 h), and solid-liquid (S-L) ratio of activated carbon (0.6-7.4 w/v%). Three variables showed significant effects on the removal of fermentation inhibitors. The optimum detoxification conditions with the maximum removal of fermentation inhibitors and the minimum loss of sugars (glucose and xylose) were as follows: temperature of 36.6 °C, extraction time of 3.86 h, and S-L ratio of 3.3 w/v%. Under these conditions, removal of 5-HMF, furfural, and sugars were 71.6, 83.1, and 2.44%, respectively, which agreed closely with the predicted values. When the APH and detoxified APH were used for ethanol fermentation by S. cerevisiae, the ethanol produced was 38.5% and 84.5% of the theoretical yields, respectively, which confirmed that detoxification using activated carbon was effective in removing fermentation inhibitors and increasing fermentation yield without significant removal of fermentable sugars.


Assuntos
Produtos Biológicos/farmacologia , Fermentação/efeitos dos fármacos , Desentoxicação Metabólica Fase I , Microalgas/química , Produtos Biológicos/química , Celulose/química , Etanol/metabolismo , Hidrólise , Lignina/química , Microalgas/metabolismo , Açúcares/metabolismo , Temperatura
17.
Bioengineered ; 12(1): 1226-1237, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33858291

RESUMO

The world at large is facing a new threat with the emergence of the Coronavirus Disease 2019 (COVID-19) pandemic. Though imperceptible by the naked eye, the medical, sociological and economical implications caused by this newly discovered virus have been and will continue to be a great impediment to our lives. This health threat has already caused over two million deaths worldwide in the span of a year and its mortality rate is projected to continue rising. In this review, the potential of algae in combating the spread of COVID-19 is investigated since algal compounds have been tested against viruses and algal anti-inflammatory compounds have the potential to treat the severe symptoms of COVID-19. The possible utilization of algae in producing value-added products such as serological test kits, vaccines, and supplements that would either mitigate or hinder the continued health risks caused by the virus is prominent. Many of the characteristics in algae can provide insights on the development of microalgae to fight against SARS-CoV-2 or other viruses and contribute in manufacturing various green and high-value products.


Assuntos
COVID-19/tratamento farmacológico , Microalgas/química , Extratos Vegetais/farmacologia , Rodófitas/química , Animais , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia , Humanos , Microalgas/genética , Microalgas/metabolismo , Pandemias , Rodófitas/genética , Rodófitas/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , SARS-CoV-2/fisiologia
18.
PLoS One ; 16(3): e0247452, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33651835

RESUMO

The treatability of seven wastewater samples generated by a textile digital printing industry was evaluated by employing 1) anammox-based processes for nitrogen removal 2) microalgae (Chlorella vulgaris) for nutrient uptake and biomass production 3) white-rot fungi (Pleurotus ostreatus and Phanerochaete chrysosporium) for decolorization and laccase activity. The biodegradative potential of each type of organism was determined in batch tests and correlated with the main characteristics of the textile wastewaters through statistical analyses. The maximum specific anammox activity ranged between 0.1 and 0.2 g N g VSS-1 d-1 depending on the sample of wastewater; the photosynthetic efficiency of the microalgae decreased up to 50% during the first 24 hours of contact with the textile wastewaters, but it improved from then on; Pleurotus ostreatus synthetized laccases and removed between 20-62% of the colour after 14 days, while the enzymatic activity of Phanerochaete chrysosporium was inhibited. Overall, the findings suggest that all microbes have great potential for the treatment and valorisation of textile wastewater after tailored adaptation phases. Yet, the depurative efficiency can be probably enhanced by combining the different processes in sequence.


Assuntos
Purificação da Água/métodos , Compostos de Amônio/análise , Compostos de Amônio/química , Compostos de Amônio/metabolismo , Biodegradação Ambiental , Biomassa , Chlorella vulgaris/metabolismo , Resíduos Industriais/análise , Resíduos Industriais/prevenção & controle , Microalgas/metabolismo , Phanerochaete/metabolismo , Pleurotus/metabolismo , Indústria Têxtil/tendências , Águas Residuárias/análise , Águas Residuárias/química
19.
J Sci Food Agric ; 101(13): 5508-5519, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33682135

RESUMO

BACKGROUND: The three-phase extraction process of olive oil produces highly contaminated wastewater (OMW). The elimination of this toxic by-product is an important environmental issue that requires the development of an appropriate management solution. The cultivation of microalgae using OMW as growth medium was therefore studied using single (the culture medium was formed by 0% to 80% ultrafiltered olive mill wastewater (OMUF) or OMW added to BG11) and two-stage strategies (microalgae were firstly cultivated in the BG11 medium. In the second stage, 40% and 80% of OMUF and OMW were added to the culture). In this work, biodegradation of OMW and subsequent extraction of lipid and antioxidant molecules was investigated as an ecofriendly method for the bioremediation and valorization of OMW. RESULTS: For two-stage cultivation, OMUF and OMW stress enhanced the intracellular amount of polyphenol accumulated in Scenedesmus sp. and exhibited the highest 2, 2-diphenyl-1- picrylhydrazyl radical (DPPH) and 2,2'-azino-bis (3-ethylbenzoline-6-sulfonate) radical (ABTS) scavenging ability compared with single-stage cultivation. Moreover, the lipid profile is dominated by polyunsaturated acids. In the single-stage cultivation, the Ch a, Ch b, carotenoid, carbohydrate and lipid content of 2.57, 7.4, 1.69, 368, and 644 g kg-1 were observed in 40% OMUF added culture, respectively, along with high biomass productivity and 58% of polyphenol removal. Moreover, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that the biomass of Scenedesmus sp. cultured on 40% OMUF did not show any toxic effect, making it an efficient strategy. CONCLUSION: The results indicate that Scenedesmus sp. is a promising microalga for the biotreatment of OMW and the extraction of bioactive metabolites. © 2021 Society of Chemical Industry.


Assuntos
Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Polifenóis/metabolismo , Scenedesmus/crescimento & desenvolvimento , Scenedesmus/metabolismo , Águas Residuárias/análise , Biodegradação Ambiental , Manipulação de Alimentos , Microalgas/química , Azeite de Oliva/química , Polifenóis/análise , Scenedesmus/química , Resíduos/análise
20.
Microbiologyopen ; 10(1): e1156, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33650795

RESUMO

To realize the potential of microalgae in the biorefinery context, exploitation of multiple products is necessary for profitability and bioproduct valorization. Appropriate analytical tools are required for growth optimization, culture monitoring, and quality control purposes, with safe, low-tech, and low-cost solutions favorable. Rapid, high-throughput, and user-friendly methodologies were devised for (a) determination of phycobiliproteins, chlorophylls, carotenoids, proteins, carbohydrates, and lipids and (b) qualitative and quantitative carotenoid profiling using UPLC-PDA-MSE . The complementary methods were applied on 11 commercially important microalgal strains including prasinophytes, haptophytes, and cyanobacteria, highlighting the suitability of some strains for coproduct exploitation and the method utility for research and industrial biotechnology applications. The UPLC method allowed separation of 41 different carotenoid compounds in <15 min. Simple techniques are described for further quantification and comparison of pigment profiles, allowing for easy strain selection and optimization for pigment production, with suitability for biotechnological or biomedical applications.


Assuntos
Reatores Biológicos/microbiologia , Carotenoides/análise , Cianobactérias/metabolismo , Microalgas/metabolismo , Ficobiliproteínas/análise , Pigmentos Biológicos/análise , Biocombustíveis/análise , Carboidratos/análise , Clorofila/análise , Cromatografia Líquida/métodos , Haptófitas/metabolismo , Lipídeos/análise , Espectrometria de Massas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...