Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.171
Filtrar
1.
Braz. j. biol ; 83: e249424, 2023. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1345538

RESUMO

Abstract Hypoxia is a prominent feature of head and neck cancer. However, the oxygen element characteristics of proteins and how they adapt to hypoxia microenvironments of head and neck cancer are still unknown. Human genome sequences and proteins expressed data of head and neck cancer were retrieved from pathology atlas of Human Protein Atlas project. Then compared the oxygen and carbon element contents between proteomes of head and neck cancer and normal oral mucosa-squamous epithelial cells, genome locations, pathways, and functional dissection associated with head and neck cancer were also studied. A total of 902 differentially expressed proteins were observed where the average oxygen content is higher than that of the lowly expressed proteins in head and neck cancer proteins. Further, the average oxygen content of the up regulated proteins was 2.54% higher than other. None of their coding genes were distributed on the Y chromosome. The up regulated proteins were enriched in endocytosis, apoptosis and regulation of actin cytoskeleton. The increased oxygen contents of the highly expressed and the up regulated proteins might be caused by frequent activity of cytoskeleton and adapted to the rapid growth and fast division of the head and neck cancer cells. The oxygen usage bias and key proteins may help us to understand the mechanisms behind head and neck cancer in targeted therapy, which lays a foundation for the application of stoichioproteomics in targeted therapy and provides promise for potential treatments for head and neck cancer.


Resumo A hipóxia é uma característica proeminente do câncer de cabeça e pescoço. No entanto, as características do elemento oxigênio das proteínas e como elas se adaptam aos microambientes de hipóxia do câncer de cabeça e pescoço ainda são desconhecidas. Sequências do genoma humano e dados expressos de proteínas de câncer de cabeça e pescoço foram recuperados do atlas de patologia do projeto Human Protein Atlas. Em seguida, comparou o conteúdo do elemento de oxigênio e carbono entre proteomas de câncer de cabeça e pescoço, e células epiteliais escamosas da mucosa oral normal, localizações do genoma, vias e dissecção funcional associada ao câncer de cabeça e pescoço também foram estudadas. Um total de 902 proteínas expressas diferencialmente foi observado onde o conteúdo médio de oxigênio é maior do que as proteínas expressas de forma humilde em proteínas de câncer de cabeça e pescoço. Além disso, o conteúdo médio de oxigênio das proteínas reguladas positivamente foi 2,54% maior do que das outras. Nenhum de seus genes codificadores foi distribuído no cromossomo Y. As proteínas reguladas positivamente foram enriquecidas em endocitose, apoptose e regulação do citoesqueleto de actina. O conteúdo aumentado de oxigênio das proteínas altamente expressas e reguladas pode ser causado pela atividade frequente do citoesqueleto e adaptado ao rápido crescimento e divisão das células cancerosas de cabeça e pescoço. O viés do uso de oxigênio e as proteínas-chave podem nos ajudar a entender os mecanismos por trás do câncer de cabeça e pescoço na terapia direcionada, o que estabelece uma base para a aplicação da estequioproteômica na terapia direcionada e oferece uma promessa para potenciais tratamentos para o câncer de cabeça e pescoço.


Assuntos
Humanos , Neoplasias de Cabeça e Pescoço/genética , Oxigênio , Carbono , Proteoma/genética , Microambiente Tumoral
2.
Cell Commun Signal ; 20(1): 14, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35090497

RESUMO

Programmed cell death 1 ligand 1 (PD-L1) is the ligand for programmed death protein-1 (PD-1), is associated with immunosuppression. Signaling via PD-1/PD-L1 will transmits negative regulatory signals to T cells, inducing T-cell inhibition, reducing CD8+ T-cell proliferation, or promoting T-cell apoptosis, which effectively reduces the immune response and leads to large-scale tumor growth. Accordingly, many antibody preparations targeting PD-1 or PD-L1 have been designed to block the binding of these two proteins and restore T-cell proliferation and cytotoxicity of T cells. However, these drugs are ineffective in clinical practice. Recently, numerous of studies have shown that, in addition to the surface of tumor cells, PD-L1 is also found on the surface of extracellular vesicles secreted by these cells. Extracellular vesicle PD-L1 can also interact with PD-1 on the surface of T cells, leading to immunosuppression, and has been proposed as a potential mechanism underlying PD-1/PD-L1-targeted drug resistance. Therefore, it is important to explore the production, regulation and tumor immunosuppression of PD-L1 on the surface of tumor cells and extracellular vesicles, as well as the potential clinical application of extracellular vesicle PD-L1 as tumor biomarkers and therapeutic targets. Video Abstract.


Assuntos
Vesículas Extracelulares , Neoplasias , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/metabolismo , Linfócitos T CD8-Positivos , Vesículas Extracelulares/metabolismo , Humanos , Neoplasias/metabolismo , Microambiente Tumoral
3.
Clin. transl. oncol. (Print) ; 24(10): 1833–1843, octubre 2022.
Artigo em Inglês | IBECS | ID: ibc-207940

RESUMO

Chimeric antigen receptor (CAR) T cell therapy is a novel therapeutic approach that uses gene editing techniques and lentiviral transduction to engineer T cells so that they can effectively kill tumors. However, CAR T cell therapy still has some drawbacks: many patients who received CAR T cell therapy and achieve remission, still had tumor relapse and treatment resistance, which may be due to tumor immune escape and CAR T cell dysfunction. To overcome tumor relapse, more researches are being done to optimize CAR T cell therapy to make it more precise and personalized, including screening for more specific tumor antigens, developing novel CAR T cells, and combinatorial treatment approaches. In this review, we will discuss the mechanisms as well as the progress of research on overcoming plans. (AU)


Assuntos
Humanos , Antígenos , Neoplasias , Imunoterapia Adotiva , Linfócitos T , Microambiente Tumoral
4.
Clin. transl. oncol. (Print) ; 24(10): 1986–1997, octubre 2022. graf
Artigo em Inglês | IBECS | ID: ibc-207954

RESUMO

Purpose: Prostate adenocarcinoma (PRAD) is a high incidence of malignant tumor of the urinary system and the second most common male cancer in the world. Immune checkpoint inhibitor (ICIS) therapy is becoming a new hope for cancer treatment.MethodsTo realize the possibility of PRAD patients benefiting from ICIS treatment, we analyzed the mutation spectrum of all PRAD patients, calculated the TMB of each PRAD patient, and divided the patients into high TMB group and low TMB group. Differentially expressed genes (DEGs) between the two groups were identified and path analysis was carried out. The immune cell infiltration of each PRAD patient was evaluated and survival analysis was performed to explore the effect of immune cell infiltration on the prognosis.ResultsWe found that high TMB was associated with better survival outcomes, with higher TMB scores in young patients, T2 and N0 patients. 28 hub genes were screened by the overlap between 229 DEGs and immune-related genes. T cells CD8 and CD4 memory activated in the high TMB group were higher than those in the low TMB group, while Mast cells resting in the low TMB group were higher than that in the high TMB group. High neutrophil infiltration is associated with poor prognosis in patients with PRAD. Finally, from the immune genes used to construct the prognostic risk model of TMB, it is found that CHP2 and NRG1 are independent prognostic factors of PRAD.ConclusionsThis study provides new insights into the immune microenvironment and potential immunotherapy of PRAD. (AU)


Assuntos
Humanos , Biomarcadores Tumorais , Imunoterapia , Neoplasias da Próstata , Microambiente Tumoral , Prognóstico , Mutação
5.
Oxid Med Cell Longev ; 2022: 9614819, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046686

RESUMO

Protein disulfide isomerase A3 (PDIA3) is a kind of thiol oxidoreductase with a wide range of functions, and its expression is elevated in a variety of tumors, which is closely related to the invasion and metastasis of tumor cells, and has a significant impact on the immunogenicity of tumor cells. Although more and more studies have shown that PDIA3 plays an important role in the occurrence and development of many tumors, there is no systematic pan-cancer study on PDIA3. Therefore, in this study, the differential expression of PDIA3 in 33 kinds of tumors was analyzed to explore its ability to regulate tumor immunity as a biomarker and evaluate its role in different cancer onset stages or clinical prognosis. In this paper, by analyzing the multilevel data including 33 kinds of cancers in the databases of Cancer Genome Atlas (TCGA), UCSC Xena, Cancer Cell Encyclopedia (CCLE), Genotypic Tissue Expression (GTEx), Human Protein Atlas (HPA), cBioPortal, and GDC; the differential expression level of PDIA3 in different types of malignant tumors and its relationship with prognosis and the potential correlation between PDIA3 expression and microsatellite instability (MSI), tumor mutation load (TMB), mismatch repair gene (MMR), DNA methylation level, and immune infiltration level were analyzed with bioinformatics. The results showed that PDIA3 was highly expressed in 19 types of cancers, but downregulated only in THCA. Next, PDIA3 in different tumors was positively or negatively correlated with patient outcome, Kaplan-Meier survival analysis showed that PDIA3 plays an important role in the prognosis of patients with KIRP, KICH, and CESC and may be used as a prognostic biomarker, and the methylation level of PDIA3 promoter region was closely related to patient outcome in eight tumors. The expression level of PDIA3 was correlated with TMB in 13 tumors and MSI in 9 tumors. Among them, the expression level of PDIA3 in THYM has the strongest correlation with TMB, and the expression level of PDIA3 in READ has the strongest correlation with MSI. In addition, the expression of PDIA3 in eight kinds of tumors, including BRCA, HNSC, THYM, LGG, LUAD, LUSC, PRAD, and THCA, had the highest correlation with the infiltration degree of immune cells, and the expression of PDIA3 had the highest correlation with the infiltration degree of 11 kinds of immune cells, including regulatory T cell and macrophages. And LGG is the tumor most likely to be affected by the tumor microenvironment to affect its development and prognosis. To sum up, this study suggests that PDIA3 plays an important role in the occurrence and development of KIRP, KICH, and CESC and in the immunotherapeutic response of THYM, READ, and LGG and can be used as a prognostic biomarker for these tumors.


Assuntos
Neoplasias , Isomerases de Dissulfetos de Proteínas , Biomarcadores/metabolismo , Metilação de DNA/genética , Humanos , Fatores Imunológicos , Imunoterapia , Neoplasias/genética , Neoplasias/terapia , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Microambiente Tumoral
6.
J Transl Med ; 20(1): 386, 2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36058929

RESUMO

BACKGROUND: Although the anti-programmed death-1 (PD-1) inhibitor plus chemotherapy combination has been approved as the standard first-line treatment for advanced gastric cancer, a proportion of patients do not significantly benefit from this therapy. Who would respond poorly to this treatment and the underlying mechanisms of treatment failure are far from clear. METHODS: We retrospectively analyzed the associations between the peripheral basophils at baseline and clinical outcomes in 63 advanced gastric cancer patients treated with anti-PD-1 plus chemotherapy and 54 patients treated with chemotherapy alone. Immunohistochemistry and immunofluorescence staining in gastric cancer samples were utilized to investigate the basophil-related immunophenotype. RESULTS: The optimal cutoff of basophil count to distinguish responders to anti-PD-1 plus chemotherapy from non-responders was 20.0/µL. Compared with the low basophil group (≤ 20.0/µL, n = 40), the high basophil group (> 20.0/µL, n = 23) had a significantly lower objective response rate (ORR 17.4% vs. 67.5%, p = 0.0001), worse progression-free survival (median PFS 4.0 vs. 15.0 months, p = 0.0003), and worse overall survival (median OS not reached, p = 0.027). Multivariate analyses identified a basophil count of > 20.0/µL as an independent risk factor for a worse ORR (OR 0.040, 95% CI 0.007-0.241, p = 0.0004), worse PFS (HR 3.720, 95% CI 1.823-7.594, p = 0.0003) and worse OS (HR 3.427, 95% CI 1.698-6.917, p = 0.001). In contrast, there was no significant association between peripheral basophil counts and tumor response or survival in the chemotherapy-alone group (p > 0.05). In primary gastric cancer samples, we observed a correlation between higher peripheral basophil counts and the accumulation of tumor-infiltrating basophils (r = 0.6833, p = 0.005). Tumor-infiltrating basophils were found to be spatially proximate to M2 macrophages within TME and positively correlated with tumor M2 macrophage infiltration (r = 0.7234, p = 0.0023). The peripheral basophil counts also had a significant positive correlation with tumor-infiltrating M2 macrophage counts (r = 0.6584, p = 0.003). Further validation in tumor samples treated with the neoadjuvant anti-PD-1 inhibitor plus chemotherapy combination suggests that the peripheral basophils, tumor infiltration of basophils, and M2 macrophages were significantly more abundant in non-responders than in responders (p = 0.0333, p = 0.0007, and p = 0.0066, respectively). CONCLUSIONS: The peripheral basophil count was observed to be a potential biomarker of anti-PD-1 efficacy for advanced gastric cancer. Moreover, basophils may induce an immune-evasive tumor microenvironment by increasing M2 macrophage infiltration, which could be a potential immunotherapeutic target for advanced gastric cancer.


Assuntos
Neoplasias Pulmonares , Neoplasias Gástricas , Basófilos , Humanos , Contagem de Leucócitos , Macrófagos , Estudos Retrospectivos , Neoplasias Gástricas/tratamento farmacológico , Microambiente Tumoral
7.
J Transl Med ; 20(1): 388, 2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36058942

RESUMO

BACKGROUND: Radiotherapy is the primary therapeutic option for glioblastoma. Some studies proved that radiotherapy increased the release of exosomes from cells. The mechanism by which these exosomes modify the phenotype of microglia in the tumor microenvironment to further determine the fate of irradiated glioblastoma cells remains to be elucidated. METHODS: We erected the co-culture system of glioblastoma cells and microglia. After radiation, we analyzing the immunophenotype of microglia and the proliferation of radiated glioblastoma cells. By whole transcriptome sequencing, we analyzed of circRNAs in exosomes from glioblastoma cells and microglia. We used some methods, which included RT-PCR, dual-luciferase reporter, et al., to identify how circ_0012381 from radiated glioblastoma cell-derived exosomes regulated the immunophenotype of microglia to further affect the proliferation of radiated glioblastoma cells. RESULTS: Radiated glioblastoma cell-derived exosomes markedly induced M2 microglia polarization. These M2-polarized microglia promoted the proliferation of irradiated glioblastoma cells. Circ_0012381 expression was increased in the irradiated glioblastoma cells, and circ_0012381 entered the microglia via exosomes. Circ_0012381 induced M2 microglia polarization by sponging with miR-340-5p to increase ARG1 expression. M2-polarized microglia suppressed phagocytosis and promoted the growth of the irradiated glioblastoma cells by CCL2/CCR2 axis. Compared with the effects of radiotherapy alone, the inhibition of exosomes significantly inhibited the growth of irradiated glioblastoma cells in a zebrafish model. CONCLUSIONS: Our data suggested that the inhibition of exosome secretion might represent a potential therapeutic strategy to increase the efficacy of radiotherapy in patients with glioblastoma.


Assuntos
Exossomos , Glioblastoma , MicroRNAs , Animais , Exossomos/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/radioterapia , MicroRNAs/genética , MicroRNAs/metabolismo , Microglia/metabolismo , Microambiente Tumoral , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
8.
J Transl Med ; 20(1): 391, 2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36058945

RESUMO

Advances in immune checkpoint and combination therapy have led to improvement in overall survival for patients with advanced melanoma. Improved understanding of the tumor, tumor microenvironment and tumor immune-evasion mechanisms has resulted in new approaches to targeting and harnessing the host immune response. Combination modalities with other immunotherapy agents, chemotherapy, radiotherapy, electrochemotherapy are also being explored to overcome resistance and to potentiate the immune response. In addition, novel approaches such as adoptive cell therapy, oncogenic viruses, vaccines and different strategies of drug administration including sequential, or combination treatment are being tested. Despite the progress in diagnosis of melanocytic lesions, correct classification of patients, selection of appropriate adjuvant and systemic theràapies, and prediction of response to therapy remain real challenges in melanoma. Improved understanding of the tumor microenvironment, tumor immunity and response to therapy has prompted extensive translational and clinical research in melanoma. There is a growing evidence that genomic and immune features of pre-treatment tumor biopsies may correlate with response in patients with melanoma and other cancers, but they have yet to be fully characterized and implemented clinically. Development of novel biomarker platforms may help to improve diagnostics and predictive accuracy for selection of patients for specific treatment. Overall, the future research efforts in melanoma therapeutics and translational research should focus on several aspects including: (a) developing robust biomarkers to predict efficacy of therapeutic modalities to guide clinical decision-making and optimize treatment regimens, (b) identifying mechanisms of therapeutic resistance to immune checkpoint inhibitors that are potentially actionable, (c) identifying biomarkers to predict therapy-induced adverse events, and (d) studying mechanism of actions of therapeutic agents and developing algorithms to optimize combination treatments. During the Melanoma Bridge meeting (December 2nd-4th, 2021, Naples, Italy) discussions focused on the currently approved systemic and local therapies for advanced melanoma and discussed novel biomarker strategies and advances in precision medicine as well as the impact of COVID-19 pandemic on management of melanoma patients.


Assuntos
COVID-19 , Melanoma , Biomarcadores , Humanos , Imunoterapia/métodos , Itália , Melanoma/genética , Pandemias , Microambiente Tumoral
9.
J Nanobiotechnology ; 20(1): 403, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064358

RESUMO

The current diagnosis and treatment of sarcoma continue to show limited timeliness and efficacy. In order to enable the early detection and management of sarcoma, increasing attentions have been given to the tumor microenvironment (TME). TME is a dynamic network composed of multiple cells, extracellular matrix, vasculature, and exosomes. Exosomes are nano-sized extracellular vesicles derived from various cells in the TME. The major function of exosomes is to promote cancer progress and metastasis through mediating bidirectional cellular communications between sarcoma cells and TME cells. Due to the content specificity, cell tropism, and bioavailability, exosomes have been regarded as promising diagnostic and prognostic biomarkers, and therapeutic vehicles for sarcoma. This review summarizes recent studies on the roles of exosomes in TME of sarcoma, and explores the emerging clinical applications.


Assuntos
Exossomos , Vesículas Extracelulares , Sarcoma , Comunicação Celular , Humanos , Microambiente Tumoral
10.
J Transl Med ; 20(1): 404, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064415

RESUMO

Microparticles (MPs) are 100-1000 nm heterogeneous submicron membranous vesicles derived from various cell types that express surface proteins and antigenic profiles suggestive of their cellular origin. MPs contain a diverse array of bioactive chemicals and surface receptors, including lipids, nucleic acids, and proteins, which are essential for cell-to-cell communication. The tumour microenvironment (TME) is enriched with MPs that can directly affect tumour progression through their interactions with receptors. Liquid biopsy, a minimally invasive test, is a promising alternative to tissue biopsy for the early screening of lung cancer (LC). The diverse biomolecular information from MPs provides a number of potential biomarkers for LC risk assessment, early detection, diagnosis, prognosis, and surveillance. Remodelling the TME, which profoundly influences immunotherapy and clinical outcomes, is an emerging strategy to improve immunotherapy. Tumour-derived MPs can reverse drug resistance and are ideal candidates for the creation of innovative and effective cancer vaccines. This review described the biogenesis and components of MPs and further summarised their main isolation and quantification methods. More importantly, the review presented the clinical application of MPs as predictive biomarkers in cancer diagnosis and prognosis, their role as therapeutic drug carriers, particularly in anti-tumour drug resistance, and their utility as cancer vaccines. Finally, we discussed current challenges that could impede the clinical use of MPs and determined that further studies on the functional roles of MPs in LC are required.


Assuntos
Vacinas Anticâncer , Micropartículas Derivadas de Células , Neoplasias Pulmonares , Micropartículas Derivadas de Células/metabolismo , Humanos , Biópsia Líquida , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/terapia , Prognóstico , Microambiente Tumoral
12.
Cell Mol Life Sci ; 79(10): 509, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36066630

RESUMO

Monoclonal antibody (mAb) therapy has successfully been introduced as treatment of several lymphomas and leukemias. However, solid tumors reduce the efficacy of mAb therapy because of an immune-suppressive tumor micro-environment (TME), which hampers activation of effector immune cells. Pro-inflammatory cytokine therapy may counteract immune suppression in the TME and increase mAb efficacy, but untargeted pro-inflammatory cytokine therapy is limited by severe off-target toxicity and a short half-life of cytokines. Antibody-cytokine fusion proteins, also referred to as immunocytokines, provide a solution to either issue, as the antibody both acts as local delivery platform and increases half-life. The antibody can furthermore bridge local cytotoxic immune cells, like macrophages and natural killer cells with tumor cells, which can be eliminated after effector cells are activated via the cytokine. Currently, a variety of different antibody formats as well as a handful of cytokine payloads are used to generate immunocytokines. However, many potential formats and payloads are still left unexplored. In this review, we describe current antibody formats and cytokine moieties that are used for the development of immunocytokines, and highlight several immunocytokines in (pre-)clinical studies. Furthermore, potential future routes of development are proposed.


Assuntos
Imunoterapia , Neoplasias , Anticorpos Monoclonais/uso terapêutico , Citocinas , Humanos , Células Matadoras Naturais , Neoplasias/tratamento farmacológico , Proteínas Recombinantes de Fusão , Microambiente Tumoral
13.
PLoS One ; 17(9): e0273766, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36067173

RESUMO

Cancer cachexia is accompanied by muscle atrophy, sharing multiple common catabolic pathways with sarcopenia, including mitochondrial dysfunction. This study investigated gene expression from skeletal muscle tissues of older healthy adults, who are at risk of age-related sarcopenia, to identify potential gene biomarkers whose dysregulated expression and protein interference were involved in non-small cell lung cancer (NSCLC). Screening of the literature resulted in 14 microarray datasets (GSE25941, GSE28392, GSE28422, GSE47881, GSE47969, GSE59880 in musculoskeletal ageing; GSE118370, GSE33532, GSE19804, GSE18842, GSE27262, GSE19188, GSE31210, GSE40791 in NSCLC). Differentially expressed genes (DEGs) were used to construct protein-protein interaction networks and retrieve clustering gene modules. Overlapping module DEGs were ranked based on 11 topological algorithms and were correlated with prognosis, tissue expression, and tumour purity in NSCLC. The analysis revealed that the dysregulated expression of the mammalian mitochondrial ribosomal proteins, Mitochondrial Ribosomal Protein S26 (MRPS26), Mitochondrial Ribosomal Protein S17 (MRPS17), Mitochondrial Ribosomal Protein L18 (MRPL18) and Mitochondrial Ribosomal Protein L51 (MRPL51) were linked to reduced survival and tumour purity in NSCLC while tissue expression of the same genes followed an opposite direction in healthy older adults. These results support a potential link between the mitochondrial ribosomal microenvironment in ageing muscle and NSCLC. Further studies comparing changes in sarcopenia and NSCLC associated cachexia are warranted.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Sarcopenia , Idoso , Envelhecimento/genética , Caquexia/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Homeostase , Humanos , Neoplasias Pulmonares/patologia , Mitocôndrias/metabolismo , Proteínas Ribossômicas/genética , Sarcopenia/genética , Sarcopenia/patologia , Microambiente Tumoral
14.
Nat Commun ; 13(1): 4981, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068198

RESUMO

Lactate is a key metabolite produced from glycolytic metabolism of glucose molecules, yet it also serves as a primary carbon fuel source for many cell types. In the tumor-immune microenvironment, effect of lactate on cancer and immune cells can be highly complex and hard to decipher, which is further confounded by acidic protons, a co-product of glycolysis. Here we show that lactate is able to increase stemness of CD8+ T cells and augments anti-tumor immunity. Subcutaneous administration of sodium lactate but not glucose to mice bearing transplanted MC38 tumors results in CD8+ T cell-dependent tumor growth inhibition. Single cell transcriptomics analysis reveals increased proportion of stem-like TCF-1-expressing CD8+ T cells among intra-tumoral CD3+ cells, a phenotype validated by in vitro lactate treatment of T cells. Mechanistically, lactate inhibits histone deacetylase activity, which results in increased acetylation at H3K27 of the Tcf7 super enhancer locus, leading to increased Tcf7 gene expression. CD8+ T cells in vitro pre-treated with lactate efficiently inhibit tumor growth upon adoptive transfer to tumor-bearing mice. Our results provide evidence for an intrinsic role of lactate in anti-tumor immunity independent of the pH-dependent effect of lactic acid, and might advance cancer immune therapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Animais , Linhagem Celular Tumoral , Glicólise , Ácido Láctico/metabolismo , Camundongos , Neoplasias/patologia , Microambiente Tumoral
15.
Med Oncol ; 39(12): 183, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071295

RESUMO

Exosomes are a subgroup of extracellular vesicles generated by distinct cells. Tumor-derived extracellular vesicles convey immunological checkpoint molecules. TEXs as critical mediators in tumor development, metastasis, and immune escape have recently become the focus of scientific research. Exosomes are involved in the regulation of the immune system. Exosomes interact with target cells in the tumor microenvironment, changing their function based on the cargo they contain. Exosomal immune checkpoints might be exploited to track tumor immune evasion, treatment response, and patient prognosis while enhancing tumor cell proliferation and spread. This review focuses on tumor-derived exosomes, their immunosuppressive effects in mice models, and their role in cancer immunotherapy. Exosomes are being studied as possible cancer vaccines, with numerous uses in tumor immunotherapy. Exosomes can carry chemotherapeutics, siRNA, and monoclonal antibodies. Exosomes produced by macrophages might be used to treat cancer. These and other clinical consequences provide new doors for cancer treatment.


Assuntos
Exossomos , Neoplasias , Animais , Exossomos/genética , Imunoterapia , Camundongos , Neoplasias/tratamento farmacológico , Evasão Tumoral , Microambiente Tumoral
16.
Med Oncol ; 39(12): 193, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071302

RESUMO

Epithelial-mesenchymal transition (EMT) as a trans-differentiation program and a key process in tumor progression is linked positively with increased expansion of cancer stem cells and cells with stem-like properties. This is mediated through modulation of critical tumorigenic events and is positively correlated with hypoxic conditions in tumor microenvironment. The presence of cells eliciting diverse phenotypical states inside tumor is representative of heterogeneity and higher tumor resistance to therapy. In this review, we aimed to discuss about the current understanding toward EMT, stemness, and heterogeneity in tumors of solid organs, their contribution to the key tumorigenic events along with major signaling pathway involved, and, finally, to suggest some strategies to target these critical events.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias , Carcinogênese/patologia , Humanos , Neoplasias/terapia , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral
17.
Mol Cancer ; 21(1): 177, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36071472

RESUMO

Given that hypoxia is a persistent physiological feature of many different solid tumors and a key driver for cancer malignancy, it is thought to be a major target in cancer treatment recently. Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment (TME), which have a large impact on tumor development and immunotherapy. TAMs massively accumulate within hypoxic tumor regions. TAMs and hypoxia represent a deadly combination because hypoxia has been suggested to induce a pro-tumorigenic macrophage phenotype. Hypoxia not only directly affects macrophage polarization, but it also has an indirect effect by altering the communication between tumor cells and macrophages. For example, hypoxia can influence the expression of chemokines and exosomes, both of which have profound impacts on the recipient cells. Recently, it has been demonstrated that the intricate interaction between cancer cells and TAMs in the hypoxic TME is relevant to poor prognosis and increased tumor malignancy. However, there are no comprehensive literature reviews on the molecular mechanisms underlying the hypoxia-mediated communication between tumor cells and TAMs. Therefore, this review has the aim to collect all recently available data on this topic and provide insights for developing novel therapeutic strategies for reducing the effects of hypoxia.


Assuntos
Neoplasias , Macrófagos Associados a Tumor , Humanos , Hipóxia/metabolismo , Macrófagos/metabolismo , Neoplasias/patologia , Microambiente Tumoral
18.
Sci Rep ; 12(1): 14982, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056123

RESUMO

Mechanical forces created by the extracellular environment regulate biochemical signals that modulate the inter-related cellular phenotypes of morphology, proliferation, and migration. A stiff microenvironment induces glioblastoma (GBM) cells to develop prominent actin stress fibres, take on a spread morphology and adopt trapezoid shapes, when cultured in 2D, which are phenotypes characteristic of a mesenchymal cell program. The mesenchymal subtype is the most aggressive among the molecular GBM subtypes. Recurrent GBM have been reported to transition to mesenchymal. We therefore sought to test the hypothesis that stiffer microenvironments-such as those found in different brain anatomical structures and induced following treatment-contribute to the expression of markers characterising the mesenchymal subtype. We cultured primary patient-derived cell lines that reflect the three common GBM subtypes (mesenchymal, proneural and classical) on polyacrylamide (PA) hydrogels with controlled stiffnesses spanning the healthy and pathological tissue range. We then assessed the canonical mesenchymal markers Connective Tissue Growth Factor (CTGF) and yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) expression, via immunofluorescence. Replating techniques and drug-mediated manipulation of the actin cytoskeleton were utilised to ascertain the response of the cells to differing mechanical environments. We demonstrate that CTGF is induced rapidly following adhesion to a rigid substrate and is independent of actin filament formation. Collectively, our data suggest that microenvironmental rigidity can stimulate expression of mesenchymal-associated molecules in GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Biomarcadores , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Recidiva Local de Neoplasia , Fatores de Transcrição/metabolismo , Microambiente Tumoral
19.
Ceska Slov Farm ; 71(3): 91-97, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36058637

RESUMO

Metronomic therapy is a therapeutic method in selected oncological diseases, using long-term administration of low doses of drugs with direct or indirect antitumor effect. In addition, to direct cytotoxic eradication of tumor cells, metronomic therapy can very strongly affect the tumor microenvironment; it also has an immunomodulatory and antiangiogenic effect. Its minimal toxic profile allows for use in patients with severe organ dysfunctions and directly impacts the quality of life and social inclusion of oncological patients.


Assuntos
Antineoplásicos , Neoplasias , Inibidores da Angiogênese/uso terapêutico , Antineoplásicos/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Qualidade de Vida , Microambiente Tumoral
20.
Methods Cell Biol ; 172: 179-189, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36064224

RESUMO

The rapid proliferation of cancer cells and the aberrant vasculature present in most solid tumors frequently result in the lack of oxygen generating a hypoxic tumor microenvironment. Low levels of oxygen not only affect the tumor cell biology and tumorigenesis, but also the other components of the tumor microenvironment such as the tumor stroma and the immune infiltrate, promoting a more suppressive environment. In addition, tumor hypoxia has been associated with reduced sensitivity to chemotherapy (CH) and radiotherapy (RT), leading to poor outcomes in cancer patients. Therefore, the evaluation of tumor oxygen status has become clinically relevant. Tumor hypoxia can be assessed by different methods that include the analysis of the oxygen concentration or the expression of endogenous markers directly related to hypoxia. In this paper, we focus on the use of the hypoxia-specific marker pimonidazole as a straightforward way to measure tumor hypoxia following radiotherapy in a preclinical melanoma model.


Assuntos
Hipóxia , Neoplasias , Biomarcadores/metabolismo , Hipóxia Celular , Humanos , Hipóxia/metabolismo , Neoplasias/radioterapia , Nitroimidazóis , Oxigênio/metabolismo , Coloração e Rotulagem , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...