Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.579
Filtrar
1.
Cell Biochem Funct ; 42(5): e4085, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38951992

RESUMO

This review rigorously investigates the early cerebral changes associated with Alzheimer's disease, which manifest long before clinical symptoms arise. It presents evidence that the dysregulation of calcium (Ca2+) homeostasis, along with mitochondrial dysfunction and aberrant autophagic processes, may drive the disease's progression during its asymptomatic, preclinical stage. Understanding the intricate molecular interplay that unfolds during this critical period offers a window into identifying novel therapeutic targets, thereby advancing the treatment of neurodegenerative disorders. The review delves into both established and emerging insights into the molecular alterations precipitated by the disruption of Ca2+ balance, setting the stage for cognitive decline and neurodegeneration.


Assuntos
Doença de Alzheimer , Autofagia , Cálcio , Mitocôndrias , Mitofagia , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Cálcio/metabolismo , Animais , Hemostasia , Homeostase
2.
Front Endocrinol (Lausanne) ; 15: 1417007, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952389

RESUMO

Ovarian aging is a complex process characterized by a decline in oocyte quantity and quality, directly impacting fertility and overall well-being. Recent researches have identified mitochondria as pivotal players in the aging of ovaries, influencing various hallmarks and pathways governing this intricate process. In this review, we discuss the multifaceted role of mitochondria in determining ovarian fate, and outline the pivotal mechanisms through which mitochondria contribute to ovarian aging. Specifically, we emphasize the potential of targeting mitochondrial dysfunction through innovative therapeutic approaches, including antioxidants, metabolic improvement, biogenesis promotion, mitophagy enhancement, mitochondrial transfer, and traditional Chinese medicine. These strategies hold promise as effective means to mitigate age-related fertility decline and preserve ovarian health. Drawing insights from advanced researches in the field, this review provides a deeper understanding of the intricate interplay between mitochondrial function and ovarian aging, offering valuable perspectives for the development of novel therapeutic interventions aimed at preserving fertility and enhancing overall reproductive health.


Assuntos
Envelhecimento , Mitocôndrias , Ovário , Humanos , Feminino , Mitocôndrias/metabolismo , Envelhecimento/fisiologia , Envelhecimento/metabolismo , Ovário/metabolismo , Ovário/fisiologia , Animais , Antioxidantes/uso terapêutico , Oócitos/metabolismo , Oócitos/fisiologia , Mitofagia/fisiologia
3.
World J Gastroenterol ; 30(23): 2934-2946, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38946875

RESUMO

In this editorial, we comment on an article titled "Morphological and biochemical characteristics associated with autophagy in gastrointestinal diseases", which was published in a recent issue of the World Journal of Gastroenterology. We focused on the statement that "autophagy is closely related to the digestion, secretion, and regeneration of gastrointestinal cells". With advancing research, autophagy, and particularly the pivotal role of the macroautophagy in maintaining cellular equilibrium and stress response in the gastrointestinal system, has garnered extensive study. However, the significance of mitophagy, a unique selective autophagy pathway with ubiquitin-dependent and independent variants, should not be overlooked. In recent decades, mitophagy has been shown to be closely related to the occurrence and development of gastrointestinal diseases, especially inflammatory bowel disease, gastric cancer, and colorectal cancer. The interplay between mitophagy and mitochondrial quality control is crucial for elucidating disease mechanisms, as well as for the development of novel treatment strategies. Exploring the pathogenesis behind gastrointestinal diseases and providing individualized and efficient treatment for patients are subjects we have been exploring. This article reviews the potential mechanism of mitophagy in gastrointestinal diseases with the hope of providing new ideas for diagnosis and treatment.


Assuntos
Autofagia , Gastroenteropatias , Mitocôndrias , Mitofagia , Humanos , Autofagia/fisiologia , Gastroenteropatias/patologia , Gastroenteropatias/metabolismo , Gastroenteropatias/fisiopatologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Trato Gastrointestinal/patologia , Trato Gastrointestinal/metabolismo , Animais
4.
PeerJ ; 12: e17664, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974415

RESUMO

Objective: To study the mechanism by which conditioned medium of bone marrow mesenchymal stem cells (BMSCs-CM) facilitates the transition of pro-inflammatory polarized microglia to an anti-inflammatory phenotype. Methods: BV2 cells, a mouse microglia cell line, were transformed into a pro-inflammatory phenotype using lipopolysaccharide. The expression of phenotypic genes in BV2 cells was detected using real-time quantitative PCR (RT-qPCR). Enzyme-linked immunosorbent assay was used to measure inflammatory cytokine levels in BV2 cells co-cultured with BMSCs-CM. The expressions of mitophagy-associated proteins were determined using western blot. The mitochondrial membrane potential and ATP levels in BV2 cells were measured using JC-1 staining and an ATP assay kit, respectively. Additionally, we examined the proliferation, apoptosis, and migration of C8-D1A cells, a mouse astrocyte cell line, co-cultured with BV2 cells. Results: After co- culture with BMSCs -CM, the mRNA expression of tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase significantly decreased in pro-inflammatory BV2 cells, whereas the expression of CD206 and arginase-1 significantly increased. Moreover, TNF-α and interleukin-6 levels significantly decreased, whereas transforming growth factor-ß and interleukin-10 levels significantly increased. Furthermore, co-culture with BMSCs-CM increased mitophagy-associated protein expression, ATP levels, mitochondrial and lysosomal co-localization in these cells and decreased reactive oxygen species levels. Importantly, BMSCs-CM reversed the decrease in the proliferation and migration of C8-D1A cells co-cultured with pro-inflammatory BV2 cells and inhibited the apoptosis of C8-D1A cells. Conclusion: BMSCs-CM may promote the transition of polarized microglia from a pro-inflammatory to an anti-inflammatory phenotype by regulating mitophagy and influences the functional state of astrocytes.


Assuntos
Autofagia , Técnicas de Cocultura , Células-Tronco Mesenquimais , Microglia , Mitocôndrias , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Microglia/metabolismo , Camundongos , Meios de Cultivo Condicionados/farmacologia , Mitocôndrias/metabolismo , Fenótipo , Linhagem Celular , Mitofagia , Proliferação de Células , Citocinas/metabolismo , Apoptose , Lipopolissacarídeos/farmacologia
5.
Front Immunol ; 15: 1400431, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994370

RESUMO

Background: Clear Cell Renal Cell Carcinoma (ccRCC) is the most common type of kidney cancer, characterized by high heterogeneity and complexity. Recent studies have identified mitochondrial defects and autophagy as key players in the development of ccRCC. This study aims to delve into the changes in mitophagic activity within ccRCC and its impact on the tumor microenvironment, revealing its role in tumor cell metabolism, development, and survival strategies. Methods: Comprehensive analysis of ccRCC tumor tissues using single cell sequencing and spatial transcriptomics to reveal the role of mitophagy in ccRCC. Mitophagy was determined to be altered among renal clear cells by gene set scoring. Key mitophagy cell populations and key prognostic genes were identified using NMF analysis and survival analysis approaches. The role of UBB in ccRCC was also demonstrated by in vitro experiments. Results: Compared to normal kidney tissue, various cell types within ccRCC tumor tissues exhibited significantly increased levels of mitophagy, especially renal clear cells. Key genes associated with increased mitophagy levels, such as UBC, UBA52, TOMM7, UBB, MAP1LC3B, and CSNK2B, were identified, with their high expression closely linked to poor patient prognosis. Particularly, the ubiquitination process involving the UBB gene was found to be crucial for mitophagy and its quality control. Conclusion: This study highlights the central role of mitophagy and its regulatory factors in the development of ccRCC, revealing the significance of the UBB gene and its associated ubiquitination process in disease progression.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Mitofagia , Análise de Célula Única , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Mitofagia/genética , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Análise de Célula Única/métodos , Perfilação da Expressão Gênica , Transcriptoma , Microambiente Tumoral/genética , Regulação Neoplásica da Expressão Gênica , Prognóstico , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral
6.
Cell Death Dis ; 15(7): 505, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013891

RESUMO

During oxidative phosphorylation, mitochondria continuously produce reactive oxygen species (ROS), and untimely ROS clearance can subject mitochondria to oxidative stress, ultimately resulting in mitochondrial damage. Mitophagy is essential for maintaining cellular mitochondrial quality control and homeostasis, with activation involving both ubiquitin-dependent and ubiquitin-independent pathways. Over the past decade, numerous studies have indicated that different forms of regulated cell death (RCD) are connected with mitophagy. These diverse forms of RCD have been shown to be regulated by mitophagy and are implicated in the pathogenesis of a variety of diseases, such as tumors, degenerative diseases, and ischemia‒reperfusion injury (IRI). Importantly, targeting mitophagy to regulate RCD has shown excellent therapeutic potential in preclinical trials, and is expected to be an effective strategy for the treatment of related diseases. Here, we present a summary of the role of mitophagy in different forms of RCD, with a focus on potential molecular mechanisms by which mitophagy regulates RCD. We also discuss the implications of mitophagy-related RCD in the context of various diseases.


Assuntos
Mitofagia , Humanos , Animais , Morte Celular Regulada , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/genética , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética
7.
Reprod Biol Endocrinol ; 22(1): 86, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044215

RESUMO

Reproductive aging not only affects the fertility and physical and mental health of women but also accelerates the aging process of other organs. There is an urgent need newfor novel mechanisms, targets, and drugs to break the vicious cycle of mitochondrial dysfunction, redox imbalance, and germ cell apoptosis associated with ovarian aging. Autophagy, recognized as a longevity mechanism, has recently become a focal point in anti-aging research. Although mitophagy is a type of autophagy, its role and regulatory mechanisms in ovarian aging, particularly in age-related ovarian function decline, remain unclear. Nerve growth factor inducible gene B (Nur77) is an early response gene that can be stimulated by oxidative stress, DNA damage, metabolism, and inflammation. Recent evidence recommends that decreased expression of Nur77 is associated with age-related myocardial fibrosis, renal dysfunction, and Parkinson's disease; however, its association with ovarian aging has not been studied yet. We herein identified Nur77 as a regulator of germ cell senescence, apoptosis, and mitophagy and found that overexpression of Nur77 can activate mitophagy, improve oxidative stress, reduce apoptosis, and ultimately enhance ovarian reserve in aged mice ovaries. Furthermore, we discovered an association between Nur77 and the AKT pathway through String and molecular docking analyses. Experimental confirmation revealed that the AKT/mTOR signaling pathway is involved in the regulation of Nur77 in ovarian function. In conclusion, our results suggest Nur77 as a promising target for preventing and treating ovarian function decline related to reproductive aging.


Assuntos
Envelhecimento , Apoptose , Mitofagia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Ovário , Animais , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Feminino , Mitofagia/fisiologia , Camundongos , Apoptose/fisiologia , Apoptose/genética , Ovário/metabolismo , Envelhecimento/fisiologia , Envelhecimento/genética , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia , Reserva Ovariana/fisiologia , Reprodução/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Endogâmicos C57BL
8.
Cell Death Dis ; 15(7): 523, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39039044

RESUMO

The mechanism regulating cellular senescence of postmitotic muscle cells is still unknown. cGAS-STING innate immune signaling was found to mediate cellular senescence in various types of cells, including postmitotic neuron cells, which however has not been explored in postmitotic muscle cells. Here by studying the myofibers from Zmpste24-/- progeria aged mice [an established mice model for Hutchinson-Gilford progeria syndrome (HGPS)], we observed senescence-associated phenotypes in Zmpste24-/- myofibers, which is coupled with increased oxidative damage to mitochondrial DNA (mtDNA) and secretion of senescence-associated secretory phenotype (SASP) factors. Also, Zmpste24-/- myofibers feature increased release of mtDNA from damaged mitochondria, mitophagy dysfunction, and activation of cGAS-STING. Meanwhile, increased mtDNA release in Zmpste24-/- myofibers appeared to be related with increased VDAC1 oligomerization. Further, the inhibition of VDAC1 oligomerization in Zmpste24-/- myofibers with VBIT4 reduced mtDNA release, cGAS-STING activation, and the expression of SASP factors. Our results reveal a novel mechanism of innate immune activation-associated cellular senescence in postmitotic muscle cells in aged muscle, which may help identify novel sets of diagnostic markers and therapeutic targets for progeria aging and aging-associated muscle diseases.


Assuntos
Senescência Celular , DNA Mitocondrial , Proteínas de Membrana , Nucleotidiltransferases , Animais , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , DNA Mitocondrial/metabolismo , DNA Mitocondrial/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Camundongos , Progéria/metabolismo , Progéria/patologia , Progéria/genética , Transdução de Sinais , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Canal de Ânion 1 Dependente de Voltagem/genética , Camundongos Knockout , Células Musculares/metabolismo , Mitofagia , Mitocôndrias/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Metaloendopeptidases
9.
Cardiovasc Diabetol ; 23(1): 261, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026280

RESUMO

Mitochondria play a central role in cellular energy metabolism, and their dysfunction is increasingly recognized as a critical factor in the pathogenesis of diabetes-related cardiac pathophysiology, including vulnerability to ischemic events that culminate in myocardial infarction on the one hand and ventricular arrhythmias on the other. In diabetes, hyperglycemia and altered metabolic substrates lead to excessive production of reactive oxygen species (ROS) by mitochondria, initiating a cascade of oxidative stress that damages mitochondrial DNA, proteins, and lipids. This mitochondrial injury compromises the efficiency of oxidative phosphorylation, leading to impaired ATP production. The resulting energy deficit and oxidative damage contribute to functional abnormalities in cardiac cells, placing the heart at an increased risk of electromechanical dysfunction and irreversible cell death in response to ischemic insults. While cardiac mitochondria are often considered to be relatively autonomous entities in their capacity to produce energy and ROS, their highly dynamic nature within an elaborate network of closely-coupled organelles that occupies 30-40% of the cardiomyocyte volume is fundamental to their ability to exert intricate regulation over global cardiac function. In this article, we review evidence linking the dynamic properties of the mitochondrial network to overall cardiac function and its response to injury. We then highlight select studies linking mitochondrial ultrastructural alterations driven by changes in mitochondrial fission, fusion and mitophagy in promoting cardiac ischemic injury to the diabetic heart.


Assuntos
Cardiomiopatias Diabéticas , Metabolismo Energético , Mitocôndrias Cardíacas , Isquemia Miocárdica , Estresse Oxidativo , Humanos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Animais , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/fisiopatologia , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/etiologia , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/fisiopatologia , Isquemia Miocárdica/patologia , Dinâmica Mitocondrial , Mitofagia , Espécies Reativas de Oxigênio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Transdução de Sinais
10.
Alzheimers Res Ther ; 16(1): 160, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030577

RESUMO

BACKGROUND: Alpha-lipoic acid (ALA) has a neuroprotective effect on neurodegenerative diseases. In the clinic, ALA can improve cognitive impairments in patients with Alzheimer's disease (AD) and other dementias. Animal studies have confirmed the anti-amyloidosis effect of ALA, but its underlying mechanism remains unclear. In particular, the role of ALA in amyloid-ß precursor protein (APP) metabolism has not been fully elucidated. OBJECTIVE: To investigate whether ALA can reduce the amyloidogenic effect of APP in a transgenic mouse model of AD, and to study the mechanism underlying this effect. METHODS: ALA was infused into 2-month-old APP23/PS45 transgenic mice for 4 consecutive months and their cognitive function and AD-like pathology were then evaluated. An ALA drug concentration gradient was applied to 20E2 cells in vitro to evaluate its effect on the expression of APP proteolytic enzymes and metabolites. The mechanism by which ALA affects APP processing was studied using GI254023X, an inhibitor of A Disintegrin and Metalloproteinase 10 (ADAM10), as well as the mitochondrial toxic drug carbonyl cyanide m-chlorophenylhydrazone (CCCP). RESULTS: Administration of ALA ameliorated amyloid plaque neuropathology in the brain tissue of APP23/PS45 mice and reduced learning and memory impairment. ALA also increased the expression of ADAM10 in 20E2 cells and the non-amyloidogenic processing of APP to produce the 83 amino acid C-terminal fragment (C83). In addition to activating autophagy, ALA also significantly promoted mitophagy. BNIP3L-knockdown reduced the mat/pro ratio of ADAM10. By using CCCP, ALA was found to regulate BNIP3L-mediated mitophagy, thereby promoting the α-cleavage of APP. CONCLUSIONS: The enhanced α-secretase cleavage of APP by ADAM10 is the primary mechanism through which ALA ameliorates the cognitive deficits in APP23/PS45 transgenic mice. BNIP3L-mediated mitophagy contributes to the anti-amyloid properties of ALA by facilitating the maturation of ADAM10. This study provides novel experimental evidence for the treatment of AD with ALA.


Assuntos
Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide , Precursor de Proteína beta-Amiloide , Disfunção Cognitiva , Camundongos Transgênicos , Mitofagia , Ácido Tióctico , Animais , Ácido Tióctico/farmacologia , Mitofagia/efeitos dos fármacos , Proteína ADAM10/metabolismo , Camundongos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Modelos Animais de Doenças , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Fármacos Neuroprotetores/farmacologia , Camundongos Endogâmicos C57BL , Masculino
11.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000117

RESUMO

Diabetic cardiomyopathy (DCM) is a major determinant of mortality in diabetic populations, and the potential strategies are insufficient. Canagliflozin has emerged as a potential cardioprotective agent in diabetes, yet its underlying molecular mechanisms remain unclear. We employed a high-glucose challenge (60 mM for 48 h) in vitro to rat cardiomyocytes (H9C2), with or without canagliflozin treatment (20 µM). In vivo, male C57BL/6J mice were subjected to streptozotocin and a high-fat diet to induce diabetes, followed by canagliflozin administration (10, 30 mg·kg-1·d-1) for 12 weeks. Proteomics and echocardiography were used to assess the heart. Histopathological alterations were assessed by the use of Oil Red O and Masson's trichrome staining. Additionally, mitochondrial morphology and mitophagy were analyzed through biochemical and imaging techniques. A proteomic analysis highlighted alterations in mitochondrial and autophagy-related proteins after the treatment with canagliflozin. Diabetic conditions impaired mitochondrial respiration and ATP production, alongside decreasing the related expression of the PINK1-Parkin pathway. High-glucose conditions also reduced PGC-1α-TFAM signaling, which is responsible for mitochondrial biogenesis. Canagliflozin significantly alleviated cardiac dysfunction and improved mitochondrial function both in vitro and in vivo. Specifically, canagliflozin suppressed mitochondrial oxidative stress, enhancing ATP levels and sustaining mitochondrial respiratory capacity. It activated PINK1-Parkin-dependent mitophagy and improved mitochondrial function via increased phosphorylation of adenosine monophosphate-activated protein kinase (AMPK). Notably, PINK1 knockdown negated the beneficial effects of canagliflozin on mitochondrial integrity, underscoring the critical role of PINK1 in mediating these protective effects. Canagliflozin fosters PINK1-Parkin mitophagy and mitochondrial function, highlighting its potential as an effective treatment for DCM.


Assuntos
Canagliflozina , Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Camundongos Endogâmicos C57BL , Mitofagia , Proteínas Quinases , Ubiquitina-Proteína Ligases , Animais , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Mitofagia/efeitos dos fármacos , Masculino , Camundongos , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Ratos , Canagliflozina/farmacologia , Canagliflozina/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Linhagem Celular , Transdução de Sinais/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos
12.
Nat Commun ; 15(1): 5715, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977659

RESUMO

Mitochondria are maternally inherited, but the mechanisms underlying paternal mitochondrial elimination after fertilization are far less clear. Using Drosophila, we show that special egg-derived multivesicular body vesicles promote paternal mitochondrial elimination by activating an LC3-associated phagocytosis-like pathway, a cellular defense pathway commonly employed against invading microbes. Upon fertilization, these egg-derived vesicles form extended vesicular sheaths around the sperm flagellum, promoting degradation of the sperm mitochondrial derivative and plasma membrane. LC3-associated phagocytosis cascade of events, including recruitment of a Rubicon-based class III PI(3)K complex to the flagellum vesicular sheaths, its activation, and consequent recruitment of Atg8/LC3, are all required for paternal mitochondrial elimination. Finally, lysosomes fuse with strings of large vesicles derived from the flagellum vesicular sheaths and contain degrading fragments of the paternal mitochondrial derivative. Given reports showing that in some mammals, the paternal mitochondria are also decorated with Atg8/LC3 and surrounded by multivesicular bodies upon fertilization, our findings suggest that a similar pathway also mediates paternal mitochondrial elimination in other flagellated sperm-producing organisms.


Assuntos
Proteínas de Drosophila , Fertilização , Mitocôndrias , Corpos Multivesiculares , Fagocitose , Espermatozoides , Animais , Mitocôndrias/metabolismo , Masculino , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Feminino , Espermatozoides/metabolismo , Corpos Multivesiculares/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Óvulo/metabolismo , Lisossomos/metabolismo , Cauda do Espermatozoide/metabolismo , Mitofagia
13.
Nat Commun ; 15(1): 5818, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987265

RESUMO

A stable mitochondrial pool is crucial for healthy cell function and survival. Altered redox biology can adversely affect mitochondria through induction of a variety of cell death and survival pathways, yet the understanding of mitochondria and their dysfunction in primary human cells and in specific disease states, including asthma, is modest. Ferroptosis is traditionally considered an iron dependent, hydroperoxy-phospholipid executed process, which induces cytosolic and mitochondrial damage to drive programmed cell death. However, in this report we identify a lipoxygenase orchestrated, compartmentally-targeted ferroptosis-associated peroxidation process which occurs in a subpopulation of dysfunctional mitochondria, without promoting cell death. Rather, this mitochondrial peroxidation process tightly couples with PTEN-induced kinase (PINK)-1(PINK1)-Parkin-Optineurin mediated mitophagy in an effort to preserve the pool of functional mitochondria and prevent cell death. These combined peroxidation processes lead to altered epithelial cell phenotypes and loss of ciliated cells which associate with worsened asthma severity. Ferroptosis-targeted interventions of this process could preserve healthy mitochondria, reverse cell phenotypic changes and improve disease outcomes.


Assuntos
Asma , Proteínas de Ciclo Celular , Células Epiteliais , Ferroptose , Proteínas de Membrana Transportadoras , Mitocôndrias , Mitofagia , Fenótipo , Fator de Transcrição TFIIIA , Humanos , Mitocôndrias/metabolismo , Asma/metabolismo , Asma/patologia , Células Epiteliais/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fator de Transcrição TFIIIA/metabolismo , Fator de Transcrição TFIIIA/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Masculino , Proteínas Quinases/metabolismo , Feminino , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Peroxidação de Lipídeos , Camundongos , Pessoa de Meia-Idade
14.
Cell Death Dis ; 15(7): 484, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969639

RESUMO

An increasing evidence supports that cell competition, a vital selection and quality control mechanism in multicellular organisms, is involved in tumorigenesis and development; however, the mechanistic contributions to the association between cell competition and tumor drug resistance remain ill-defined. In our study, based on a contructed lenvitinib-resistant hepatocellular carcinoma (HCC) cells display obvious competitive growth dominance over sensitive cells through reprogramming energy metabolism. Mechanistically, the hyperactivation of BCL2 interacting protein3 (BNIP3) -mediated mitophagy in lenvatinib-resistant HCC cells promotes glycolytic flux via shifting energy production from mitochondrial oxidative phosphorylation to glycolysis, by regulating AMP-activated protein kinase (AMPK) -enolase 2 (ENO2) signaling, which perpetually maintaining lenvatinib-resistant HCC cells' competitive advantage over sensitive HCC cells. Of note, BNIP3 inhibition significantly sensitized the anti-tumor efficacy of lenvatinib in HCC. Our findings emphasize a vital role for BNIP3-AMPK-ENO2 signaling in maintaining the competitive outcome of lenvitinib-resistant HCC cells via regulating energy metabolism reprogramming; meanwhile, this work recognizes BNIP3 as a promising target to overcome HCC drug resistance.


Assuntos
Carcinoma Hepatocelular , Resistencia a Medicamentos Antineoplásicos , Metabolismo Energético , Neoplasias Hepáticas , Proteínas de Membrana , Mitofagia , Compostos de Fenilureia , Quinolinas , Humanos , Quinolinas/farmacologia , Mitofagia/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Proteínas de Membrana/metabolismo , Metabolismo Energético/efeitos dos fármacos , Compostos de Fenilureia/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas/metabolismo , Camundongos , Camundongos Nus , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos Endogâmicos BALB C , Reprogramação Metabólica
15.
Metallomics ; 16(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38955388

RESUMO

Both 8-hydroxyquinoline compounds and iridium (Ir) complexes have emerged as potential novel agents for tumor therapy. In this study, we synthesized and characterized two new Ir(III) complexes, [Ir(L1)(bppy)2] (Br-Ir) and [Ir(L2)(bppy)2] (Cl-Ir), with 5,7-dibromo-2-methyl-8-hydroxyquinoline (HL-1) or 5,7-dichloro-2-methyl-8-hydroxyquinoline as the primary ligand. Complexes Br-Ir and Cl-Ir successfully inhibited antitumor activity in Hep-G2 cells. In addition, complexes Br-Ir and Cl-Ir were localized in the mitochondrial membrane and caused mitochondrial damage, autophagy, and cellular immunity in Hep-G2 cells. We tested the proteins related to mitochondrial and mitophagy by western blot analysis, which showed that they triggered mitophagy-mediated apoptotic cell death. Remarkably, complex Br-Ir showed high in vivo antitumor activity, and the tumor growth inhibition rate was 63.0% (P < 0.05). In summary, our study on complex Br-Ir revealed promising results in in vitro and in vivo antitumor activity assays.


Assuntos
Antineoplásicos , Irídio , Mitocôndrias , Humanos , Irídio/química , Irídio/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Animais , Células Hep G2 , Camundongos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Apoptose/efeitos dos fármacos , Oxiquinolina/farmacologia , Oxiquinolina/química , Oxiquinolina/análogos & derivados , Camundongos Endogâmicos BALB C , Mitofagia/efeitos dos fármacos , Camundongos Nus
16.
Redox Rep ; 29(1): 2377870, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39010730

RESUMO

OBJECTIVES: To observe the CISD2 expression among PCOS patients and to explore its profound impact on the follicular microenvironment. Moreover, we want to elucidate the intricate mechanistic contribution of CISD2 to the onset and progression of PCOS. METHODS: Oxidase NOX2, mitophagy-related proteins, and CISD2 were detected by WB. The changes in mitochondrial structure and quantity were observed by transmission electron microscopy. Mitochondrial and lysosome colocalization was used to detect the changes of mitophagy. MDA kit, GSH and GSSG Assay kit and ROS probe were used to detect oxidative stress damage. RESULTS: We found that CISD2, mitophagy and oxidase in the GCs of PCOS patients were significantly increased. Testosterone stimulation leads to the increase of oxidase, mitophagy, and CISD2 in KGN cells. CISD2 inhibition promoted the increase of mitophagy, and the activation of mitochondria-lysosome binding, while alleviating the oxidative stress. CONCLUSIONS: Inhibition of CISD2 can improve the occurrence of oxidative stress by increasing the level of mitophagy, thus affecting the occurrence and development of PCOS diseases.


Assuntos
Mitofagia , Estresse Oxidativo , Síndrome do Ovário Policístico , Humanos , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Feminino , Mitofagia/efeitos dos fármacos , Mitofagia/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Adulto , Microambiente Celular/fisiologia
17.
Life Sci Alliance ; 7(9)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38991726

RESUMO

PPTC7 is a mitochondrial-localized phosphatase that suppresses BNIP3- and NIX-mediated mitophagy, but the mechanisms underlying this regulation remain ill-defined. Here, we demonstrate that loss of PPTC7 upregulates BNIP3 and NIX post-transcriptionally and independent of HIF-1α stabilization. Loss of PPTC7 prolongs the half-life of BNIP3 and NIX while blunting their accumulation in response to proteasomal inhibition, suggesting that PPTC7 promotes the ubiquitin-mediated turnover of BNIP3 and NIX. Consistently, overexpression of PPTC7 limits the accumulation of BNIP3 and NIX protein levels, which requires an intact catalytic motif but is surprisingly independent of its targeting to mitochondria. Consistently, we find that PPTC7 is dual-localized to the outer mitochondrial membrane and the matrix. Importantly, anchoring PPTC7 to the outer mitochondrial membrane is sufficient to blunt BNIP3 and NIX accumulation, and proximity labeling and fluorescence co-localization experiments demonstrate that PPTC7 dynamically associates with BNIP3 and NIX within the native cellular environment. Collectively, these data reveal that a fraction of PPTC7 localizes to the outer mitochondrial membrane to promote the proteasomal turnover of BNIP3 and NIX, limiting basal mitophagy.


Assuntos
Proteínas de Membrana , Mitocôndrias , Membranas Mitocondriais , Proteínas Mitocondriais , Mitofagia , Proteínas Proto-Oncogênicas , Mitofagia/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Humanos , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Células HeLa , Animais
18.
Cell Death Dis ; 15(7): 473, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956064

RESUMO

Damage to renal tubular epithelial cells (RTECs) signaled the onset and progression of sepsis-associated acute kidney injury (SA-AKI). Recent research on mitochondria has revealed that mitophagy plays a crucial physiological role in alleviating injury to RTECs and it is suppressed progressively by the inflammation response in SA-AKI. However, the mechanism by which inflammation influences mitophagy remains poorly understood. We examined how macrophage migration inhibitory factor (MIF), a pro-inflammatory protein, influences the PINK1-Parkin pathway of mitophagy by studying protein-protein interactions when MIF was inhibited or overexpressed. Surprisingly, elevated levels of MIF were found to directly bind to PINK1, disrupting its interaction with Parkin. This interference hindered the recruitment of Parkin to mitochondria and impeded the initiation of mitophagy. Furthermore, this outcome led to significant apoptosis of RTECs, which could, however, be reversed by an MIF inhibitor ISO-1 and/or a new mitophagy activator T0467. These findings highlight the detrimental impact of MIF on renal damage through its disruption of the interaction between PINK1 and Parkin, and the therapeutic potential of ISO-1 and T0467 in mitigating SA-AKI. This study offers a fresh perspective on treating SA-AKI by targeting MIF and mitophagy.


Assuntos
Injúria Renal Aguda , Fatores Inibidores da Migração de Macrófagos , Mitofagia , Proteínas Quinases , Sepse , Ubiquitina-Proteína Ligases , Fatores Inibidores da Migração de Macrófagos/metabolismo , Fatores Inibidores da Migração de Macrófagos/genética , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Quinases/metabolismo , Sepse/complicações , Sepse/metabolismo , Animais , Humanos , Mitocôndrias/metabolismo , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Apoptose , Ligação Proteica , Masculino , Oxirredutases Intramoleculares/metabolismo
19.
Theranostics ; 14(9): 3719-3738, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948070

RESUMO

Rationale: Autophagy dysregulation is known to be a mechanism of doxorubicin (DOX)-induced cardiotoxicity (DIC). Mitochondrial-Endoplasmic Reticulum Contacts (MERCs) are where autophagy initiates and autophagosomes form. However, the role of MERCs in autophagy dysregulation in DIC remains elusive. FUNDC1 is a tethering protein of MERCs. We aim to investigate the effect of DOX on MERCs in cardiomyocytes and explore whether it is involved in the dysregulated autophagy in DIC. Methods: We employed confocal microscopy and transmission electron microscopy to assess MERCs structure. Autophagic flux was analyzed using the mCherry-EGFP-LC3B fluorescence assay and western blotting for LC3BII. Mitophagy was studied through the mCherry-EGFP-FIS1 fluorescence assay and colocalization analysis between LC3B and mitochondria. A total dose of 18 mg/kg of doxorubicin was administrated in mice to construct a DIC model in vivo. Additionally, we used adeno-associated virus (AAV) to cardiac-specifically overexpress FUNDC1. Cardiac function and remodeling were evaluated by echocardiography and Masson's trichrome staining, respectively. Results: DOX blocked autophagic flux by inhibiting autophagosome biogenesis, which could be attributed to the downregulation of FUNDC1 and disruption of MERCs structures. FUNDC1 overexpression restored the blocked autophagosome biogenesis by maintaining MERCs structure and facilitating ATG5-ATG12/ATG16L1 complex formation without altering mitophagy. Furthermore, FUNDC1 alleviated DOX-induced oxidative stress and cardiomyocytes deaths in an autophagy-dependent manner. Notably, cardiac-specific overexpression of FUNDC1 protected DOX-treated mice against adverse cardiac remodeling and improved cardiac function. Conclusions: In summary, our study identified that FUNDC1-meditated MERCs exerted a cardioprotective effect against DIC by restoring the blocked autophagosome biogenesis. Importantly, this research reveals a novel role of FUNDC1 in enhancing macroautophagy via restoring MERCs structure and autophagosome biogenesis in the DIC model, beyond its previously known regulatory role as an mitophagy receptor.


Assuntos
Autofagia , Cardiotoxicidade , Doxorrubicina , Retículo Endoplasmático , Proteínas de Membrana , Proteínas Mitocondriais , Miócitos Cardíacos , Animais , Doxorrubicina/efeitos adversos , Doxorrubicina/farmacologia , Camundongos , Autofagia/efeitos dos fármacos , Cardiotoxicidade/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Masculino , Autofagossomos/metabolismo , Autofagossomos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
20.
Sci Rep ; 14(1): 16982, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043888

RESUMO

Increasing evidence suggests that mitophagy is crucially involved in the progression of polycystic ovary syndrome (PCOS). Exploration of PCOS-specific biomarkers related to mitophagy is expected to provide critical insights into disease pathogenesis. In this study, we employed bioinformatic analyses and machine learning algorithms to determine novel biomarkers for PCOS that may be tied with mitophagy. A grand total of 12 differential expressed mitophagy-related genes (DE-MRGs) associated with PCOS were identified. TOMM5 and MAP1LC3A among the 12 DE-MRGs were recognized as potential marker genes by LASSO, RF and SVM-RFE algorithms. The area under the ROC curve (AUROC) of MAP1LC3A were all greater than 0.8 both in the training set and validation sets. The CIBERSORT analysis indicated a potential association between alterations in the immune microenvironment of PCOS individuals and MAP1LC3A expression. In addition, we found that MAP1LC3A was positively related to the testosterone levels of PCOS patients. Overall, MAP1LC3A was identified as optimal PCOS-specific biomarkers related to mitophagy. Our findings created a diagnostic strength and offered a perspective for investigating the mitophagy process in PCOS.


Assuntos
Biomarcadores , Proteínas Associadas aos Microtúbulos , Mitofagia , Síndrome do Ovário Policístico , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Feminino , Humanos , Mitofagia/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Biologia Computacional/métodos , Adulto , Testosterona/sangue , Testosterona/metabolismo , Curva ROC , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA