Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.463
Filtrar
1.
Food Chem ; 367: 130647, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34343806

RESUMO

To increase the reuse of food residues, multifrequency countercurrent ultrasonic treatment was used to enhance the extraction yield of defatted mulberry seed protein (DMSP), and sweet-flavored peptides from DMSP hydrolysates (DMSPHs) were obtained for the first time. Here, the DMSP yield was increased by 16.2% (p < 0.05) while the power density was halved compared with single-frequency ultrasonic treatment. According to Fick's second law, a molecular diffusion dynamics model was developed to be suitable for predicting the pretreatment conditions (R2 = 0.9785). After that, the sweet-flavored peptides were purified and the main amino acid sequences were identified, i.e., FEGGSIE, KDFPEAHSQAT, and GSQPAEGAK. Moreover, the antioxidant activities of DMSPHs prepared with tri-frequency treatment was higher than 60%. The DMSPHs retarded the growth of HepG2 cells in vitro, increased the necrotic quadrant (Q1-UL), and extended the S phase. Therefore, the sweet-flavored peptides prepared from DMSPHs using the multifrequency-ultrasonic treatment have significant biological activities.


Assuntos
Morus , Antioxidantes , Peptídeos , Sementes , Tecnologia , Ultrassom
2.
Oxid Med Cell Longev ; 2021: 5520059, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484562

RESUMO

Due to the increase of stress-related memory impairment accompanying with the COVID-19 pandemic and financial crisis, the prevention of cognitive decline induced by stress has gained much attention. Based on the evidence that an anthocyanin-rich mulberry milk demonstrated the cognitive enhancing effect, we hypothesized that it should be able to enhance memory in working-age volunteers who are exposed to working stress. This study is an open-label, two-arm randomized study. Both men and women volunteers at age between 18 and 60 years old were randomly assigned to consume the tested product either 1 or 2 servings daily for 6 weeks. All subjects were assessed for cortisol, acetylcholinesterase (AChE), monoamine oxidase (MAO), monoamine oxidase type A (MAO-A), and monoamine oxidase type B (MAO-B) in saliva, and their working memory was determined both at baseline and at a 6-week period. The results showed that the working memory of subjects in both groups was enhanced at the end of the study period together with the reduction of saliva cortisol. The suppression of AChE, MAO, and MAO-A was also observed in subjects who consumed the tested product 2 servings daily. Therefore, we suggest the memory enhancing effect of an anthocyanin-rich mulberry milk. The possible mechanism may occur primarily via the suppression of cortisol. In addition, the high dose of mulberry milk also suppresses AChE, MAO, and MAO-A.


Assuntos
Antocianinas/farmacologia , Memória de Curto Prazo/efeitos dos fármacos , Morus , Estresse Ocupacional , Extratos Vegetais/farmacologia , Acetilcolinesterase/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Monoaminoxidase/efeitos dos fármacos , Monoaminoxidase/metabolismo , Morus/química
3.
J Med Food ; 24(9): 978-986, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34524028

RESUMO

Epigenetic regulation by histone acetyltransferase (HAT) is associated with various biological processes and the progression of diseases, including nonalcoholic fatty liver disease (NAFLD). The objective of this study was to investigate whether the hypolipidemic properties of black mulberry (Morus atropurpurea Roxb.) fruit extract (BME) contribute toward protection against NAFLD by HAT inhibition. HepG2 cells were treated with oleic and palmitic acids to induce lipid accumulation, which was significantly attenuated by the treatment with BME at 50 and 100 µg/mL. BME also markedly reduced the expression of proteins associated with lipogenesis, which was attributed to the BME-mediated downregulation of lipogenic genes in HepG2 cells. BME significantly inhibited in vitro total HAT and p300 activities. In addition, BME suppressed total acetylated lysine as well as specific histone acetylation of proteins H3K14 and H3K27 in HepG2 cells. Mice were then fed with either a chow diet or western diet (WD), with or without BME (1%, w/w) supplementation, for 12 weeks to confirm hypolipidemic activity of BME. BME attenuated serum nonesterified fatty acids and low-density lipoprotein (LDL) cholesterol levels, which was likely associated with the downregulation of hepatic lipogenic gene expression in WD-fed obese mice. Taken together, the hypolipidemic activity of BME was observed in HepG2 cells treated with fatty acids as well as in livers of obese mice, and the hepatoprotection of BME is likely associated with the inhibition of acetylation. Further investigation is warranted to determine whether BME can be developed into an efficacious dietary intervention to attenuate the progression of NAFLD by epigenetic regulation in clinical settings.


Assuntos
Morus , Hepatopatia Gordurosa não Alcoólica , Acetilação , Animais , Dieta Hiperlipídica/efeitos adversos , Epigênese Genética , Frutas/metabolismo , Células Hep G2 , Histonas/metabolismo , Humanos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia
4.
J Agric Food Chem ; 69(37): 10989-10998, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34516110

RESUMO

The alkaloid 1-deoxynojirimycin (DNJ) is one of the major bioactive compounds in mulberry leaves (Morus alba L.). Previously, we discovered four key genes involved in the pathway from lysine to piperidine in the biosynthesis of DNJ in mulberry leaves, MaLDC (MG727866), MaCAO (MH205733), MaSDR1 (MT989445), and MaSDR2 (MT989446), which encoded lysine decarboxylase, copper amine oxidase, and short-chain dehydrogenase/reductase 1 and 2, respectively. However, the in vivo functions of these four genes have not been verified yet. Here, these four genes were successfully cloned and used for the establishment of C58C1 Agrobacterium rhizogenes mediated overexpression genetic transformation systems and GV3101 Agrobacterium-mediated virus-induced gene silencing transformation systems in order to verify the influence of these four genes on the biosynthetic content of DNJ in mulberry leaves. The results showed that the content of DNJ increased after the four genes were overexpressed. When these four genes were silenced, the gene expression was blocked, which affected the biosynthesis of DNJ, and the DNJ content decreased. The above results indicated that these four genes participated in DNJ biosynthesis. This study provided a foundation for further elucidating the regulatory mechanisms of DNJ biosynthesis in mulberry leaves.


Assuntos
Morus , 1-Desoxinojirimicina , Agrobacterium , Vias Biossintéticas , Morus/genética , Folhas de Planta/genética
5.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502318

RESUMO

Mulberry, an important woody tree, has strong tolerance to environmental stresses, including salinity, drought, and heavy metal stress. However, the current research on mulberry resistance focuses mainly on the selection of resistant resources and the determination of physiological indicators. In order to clarify the molecular mechanism of salt tolerance in mulberry, the physiological changes and proteomic profiles were comprehensively analyzed in salt-tolerant (Jisang3) and salt-sensitive (Guisangyou12) mulberry varieties. After salt treatment, the malondialdehyde (MDA) content and proline content were significantly increased compared to control, and the MDA and proline content in G12 was significantly lower than in Jisang3 under salt stress. The calcium content was significantly reduced in the salt-sensitive mulberry varieties Guisangyou12 (G12), while sodium content was significantly increased in both mulberry varieties. Although the Jisang3 is salt-tolerant, salt stress caused more reductions of photosynthetic rate in Jisang3 than Guisangyou12. Using tandem mass tags (TMT)-based proteomics, the changes of mulberry proteome levels were analyzed in salt-tolerant and salt-sensitive mulberry varieties under salt stress. Combined with GO and KEGG databases, the differentially expressed proteins were significantly enriched in the GO terms of amino acid transport and metabolism and posttranslational modification, protein turnover up-classified in Guisangyou12 while down-classified in Jisang3. Through the comparison of proteomic level, we identified the phenylpropanoid biosynthesis may play an important role in salt tolerance of mulberry. We clarified the molecular mechanism of mulberry salt tolerance, which is of great significance for the selection of excellent candidate genes for saline-alkali soil management and mulberry stress resistance genetic engineering.


Assuntos
Regulação da Expressão Gênica de Plantas , Morus/metabolismo , Fenilpropionatos/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Estresse Salino , Tolerância ao Sal , Morus/crescimento & desenvolvimento , Proteoma/análise
6.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360887

RESUMO

The fruits of the mulberry tree (Morus alba L.), known as white mulberry, have been consumed in various forms, including tea, beverages, and desserts, worldwide. As part of an ongoing study to discover bioactive compounds from M. alba fruits, the anti-inflammatory effect of compounds from M. alba were evaluated in lipopolysaccharide (LPS)-stimulated mouse RAW 264.7 macrophages. Phytochemical analysis of the ethanol extract of the M. alba fruits led to the isolation of 22 compounds. Among the isolated compounds, to the best of our knowledge, compounds 1, 3, 5, 7, 11, 12, and 14-22 were identified from M. alba fruits for the first time in this study. Inhibitory effects of 22 compounds on the production of the nitric oxide (NO) known as a proinflammatory mediator in LPS-stimulated RAW 264.7 macrophages were evaluated using NO assays. Western blot analysis was performed to evaluate the anti-inflammatory effects of cyclo(L-Pro-L-Val) (5). We evaluated whether the anti-inflammatory effects of cyclo(L-Pro-L-Val) (5) following LPS stimulation in RAW 264.7 macrophages occurred because of phosphorylation of IκB kinase alpha (IKKα), IκB kinase beta (IKKß), inhibitor of kappa B alpha (IκBα), nuclear factor kappa B (NF-κB) and activations of inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Cyclo(L-Pro-L-Val) (5) significantly suppressed phosphorylations of IKKα, IKKß, IκBα, and NF-κB and activations of iNOS and COX-2 in a concentration-dependent manner. Taken together, these results indicate that cyclo(L-Pro-L-Val) (5) can be considered a potential therapeutic agent for the treatment of inflammation-associated disorders.


Assuntos
Anti-Inflamatórios/farmacologia , Dipeptídeos/farmacologia , Frutas/química , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Morus/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
7.
J Food Sci ; 86(9): 3926-3938, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34341996

RESUMO

Mulberry (Morus alba L.) fruit (MF) is a rich source of functional compounds, such as anthocyanin. However, during solvent extraction, these compounds are not fully dispersed into the substrate, leading to incomplete extraction. Moreover, raw MF rapidly ripens and deteriorates after harvesting; hence, innovative methods to process MF are needed. Here, a pectinase-assisted extraction method is developed to liberate polyphenols and anthocyanins from cell wall matrices in MF. We optimized the procedure to maximize water solubility index (WSI), total phenolic (TP) content, and total anthocyanin (TA) content using a central composite design to perform a response surface methodology (RSM) analysis. The optimal conditions predicted by the RSM were a 1:5 w/v material/water ratio with 3.5% pectinase (v/w) and 1.5% citric acid (w/w) for 113 min at 50°C. Under these conditions, the WSI, TP, and TA were significantly higher compared with those in the untreated control. The results well matched (within 5% differences) with the predicted RSM values. Furthermore, metabolite analysis revealed that the levels of cyanidin-3-O-glucoside, delphinidin hexoside, and quercetin were higher in pectinase-assisted MF extraction compared with the untreated control. This work demonstrated that pectinase-assisted extraction using citric acid could be an efficient technique to enhance the value of MF and its potential applications in the food industry. PRACTICAL APPLICATION: A pectinase-assisted extraction method was optimized to enhance the WSI, TP, and TA yields from MF extracts. The optimal conditions were predicted to be 1:5 w/v material/water ratio, 3.5% pectinase (v/w), and 1.5% CA (w/w) with a 113 min reaction time at 50°C. Under these conditions, WSI, TP, and TA were significantly increased compared with the untreated control. These results suggested the potential of mulberry plants for use in the food industry via the development of a simple, efficient process to extract functional compounds from MF.


Assuntos
Tecnologia de Alimentos , Frutas , Morus , Extratos Vegetais , Antocianinas/química , Antocianinas/isolamento & purificação , Tecnologia de Alimentos/métodos , Frutas/química , Morus/química , Extratos Vegetais/análise , Extratos Vegetais/isolamento & purificação , Poligalacturonase/metabolismo , Polifenóis/química , Polifenóis/isolamento & purificação
8.
Fitoterapia ; 154: 105018, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34450202

RESUMO

Twenty-two flavonoids and stilbenes (1-22) were obtained from the leaf of Morus alba var. multicaulis. Among them, morusalbanosides A (1), B1 (2), and B2 (3) were new compounds. Moreover, compounds 1, 3, 4-11, 15-18, and 22 displayed inhibitory effects on triglyceride (TG) accumulation in HepG2 cells in a concentration dependent manner. Furthermore, compounds 1, 3, 11, and 22 could activate the phosphorylation of AMP-activated protein kinase α (AMPKα), reduce the synthesis of TG by inhibiting the expression of fatty acid synthase (FAS) and stearoyl-CoA desaturase 1 (SCD1). While, only compounds 1 and 11 could promote the phosphorylation of acetyl-CoA carboxylase 1 (ACC1) and accelerate the oxidation of fatty acids by up-regulating carnitine palmitoyltransferase 1A (CPT1A). In brief, this study found that most of the researched flavonoids and stilbenes could regulate TG metabolism in vitro. They might play the role by up-regulating phosphorylation of AMPKα, inhibiting TG biosynthesis, and promoting the oxidation of fatty acids.


Assuntos
Flavonoides/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Morus/química , Estilbenos/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , China , Flavonoides/isolamento & purificação , Células Hep G2 , Humanos , Estrutura Molecular , Fosforilação/efeitos dos fármacos , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Folhas de Planta/química , Estilbenos/isolamento & purificação , Triglicerídeos/metabolismo
9.
Plant Foods Hum Nutr ; 76(3): 304-310, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34260014

RESUMO

Mulberry fruit is well recognized as one of the richest sources of bioactive compounds. We investigated the physicochemical composition and characterized the bioactive compounds during different ripening stages of mulberry (Morus indica) fruit and evaluated their anti-quorum sensing activity on Chromobacterium violaceum. The proximate components such as carbohydrates, proteins and lipids were found to be high in the ripe fruit compared to unripe and mid-ripe fruit. The ripe fruit contained higher content of total phenolics and flavonoids (336.05 and 282.55 mg/100 g fresh weight (FW), respectively). Epicatechin and resveratrol were the major polyphenols detected in the fruit with the range 5.13-19.46 and 4.07-14.45 mg/100 g FW, respectively. Chlorogenic acid and myricetin were predominant in the unripe and mid-ripe fruit (7.14 and 1.84 mg/100 g FW, respectively). The fruit was found to be an excellent source of anti-diabetic compound 1-deoxynojirimycin. The highest content of 1-deoxynojirimycin was present in the mid-ripe fruit, with a content of 2.91 mg/100 g FW. Furthermore, fruit extracts exhibited anti-quorum sensing activity against Chromobacterium violaceum by effectively inhibiting violacein production. Ripe fruit extracts showed the highest activity of 76.30% at 1 mg/mL and thus, could be used as a potent anti-quorum sensing agent. The results could be promising in the selection of appropriate developmental stages for M. indica fruit commercial exploitation in the food formulations rich in potential health components.


Assuntos
Morus , Antioxidantes , Chromobacterium , Frutas , Extratos Vegetais
10.
J Plant Res ; 134(5): 1013-1020, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34215965

RESUMO

While increasing numbers of studies report wide variations of leaf silicon (Si) accumulation among plant species, within-species variations of leaf Si accumulation have scarcely been examined for tree species. As in crop plants, environmental factors that affect transpiration rates may influence passive transpiration-dependent transport of Si uptake in trees. Here, we tested a hypothesis that leaf Si accumulation rate should be higher in shoots that receive more light and thus achieve faster growth, using Broussonetia papyrifera, a pioneer tree species with successive leaf production and Si accumulation with leaf age. We marked individual leaves weekly throughout the growing season (June-September), and measured Si concentration and light availability in relation to the chronosequence of leaf age in September. In shoots that continued growing and successively produced leaves throughout the growing season, leaf Si content increased linearly with leaf age. In support of our hypothesis, leaf Si accumulation rate varied widely among shoots with positive correlations with shoot growth and light availability. In conclusion, both leaf age and microenvironment affect within-species variations in leaf Si concentration of this species, a moderate Si accumulator.


Assuntos
Broussonetia , Moraceae , Morus , Folhas de Planta , Silício
11.
Phytomedicine ; 90: 153641, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34281775

RESUMO

BACKGROUND: Neurodegenerative diseases are becoming increasingly prevalent over the world. Therefore, drug development in this field is urgently required. Neuron impairment leads to the pathogenesis of neurodegenerative diseases, while amelioration of oxidative stress can inhibit the impairment. As a traditional Chinese medicine, mulberry leaf exhibits various pharmacological properties, including neuroprotective activity. But the major components responsible for the neuroprotective activity of mulberry leaf remained unknown. Phytochemicals were potent candidates of neuroprotective drug. Prenylated phenolics are the leading phytochemicals present in mulberry leaf. PURPOSE: The aim of this study was to investigate the neuroprotective activities and mechanisms of prenylated phenolics. METHODS: The chemical structure of isolated compounds were elucidated by MS and NMR. UPLC-MS/MS was used to determine the contents of prenylated phenolics in fresh mulberry leaf. Neurotoxicity was induced by erastin in HT22 cells. CCK-8 assay was performed to assess cell viability. ROS production, GSH level and iron release were monitored by using DCFH-DA, monobromobimane, and FeRhoNox™-1, respectively. qRT-PCR and Western blotting assays were performed to assess gene and protein expression, respectively. RESULTS: Four prenylated phenolics, including isobavachalcone, morachalcone B, moracin N and morachalcone A were isolated and identified from mulberry leaf. Their levels in fresh mulberry leaf were in a decreasing order, moracin N > morachalcone A > morachalcone B > isobavachalcone. Moreover, moracin N showed a good neuroprotective activity with an EC50 < 0.50 µM. The neuroprotective mechanisms of moracin N included inhibition of glutathione depletion, glutathione peroxidase 4 (GPx4) inactivation, reactive oxygen species (ROS) overproduction and iron accumulation, as well as improvement of intracellular antioxidant enzyme activities. Moracin N augmented the transcriptional levels of genes involved in antioxidant defense and glutathione biosynthesis in the early state of ferroptosis induction, and downregulated expression of genes related to iron accumulation and lipid peroxidation. CONCLUSION: The results confirmed that moracin N was a good ferroptosis inhibitor, which exerted neuroprotective activity through preventing from oxidative stress.


Assuntos
Morus , Fármacos Neuroprotetores/farmacologia , Fenóis , Animais , Linhagem Celular , Cromatografia Líquida , Camundongos , Morus/química , Fenóis/farmacologia , Compostos Fitoquímicos/farmacologia , Folhas de Planta/química , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas em Tandem
12.
BMC Plant Biol ; 21(1): 338, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34271854

RESUMO

BACKGROUND: Mulberry (Morus alba L.) is an important sericulture crop; however, root-knot nematode infection seriously limits its production. Understanding the mechanism of interaction between mulberry and nematode is important for control of infection. RESULTS: Using sequencing and de novo transcriptome assembly, we identified 55,894 unigenes from root samples of resistant and susceptible mulberry cultivars at different stages after infection with the nematode Meloidogyne enterolobii; 33,987 of these were annotated in the Nr, SWISS-PROT, KEGG, and KOG databases. Gene ontology and pathway enrichment analyses of differentially expressed genes (DEGs) revealed key genes involved in hormone metabolic processes, plant hormone signal transduction, flavonoid biosynthesis, phenylpropanoid biosynthesis, and peroxisomal and photosynthetic pathways. Analysis of key trends in co-expression networks indicated that expression of unigenes 0,015,083, 0,073,272, 0,004,006, and 0,000,628 was positively correlated with resistance to M. enterolobii. Unigene 0015083 encodes tabersonine 16-O-methyltransferase (16OMT), which is involved in alkaloid biosynthesis. Unigene 0073272 encodes a transcription factor contributing to nitric oxide accumulation during plant immune responses. Unigenes 0,004,006 and 0,000,628 encode ERF and MYB transcription factors, respectively, involved in plant hormone signaling. We verified the accuracy of transcriptome sequencing results by RT-qPCR of 21 DEGs. CONCLUSIONS: The results of this study increase our understanding of the resistance mechanisms and candidate genes involved in mulberry-M. enterolobii interaction. Thus, our data will contribute to the development of effective control measures against this pathogen.


Assuntos
Morus/parasitologia , Doenças das Plantas/parasitologia , Tylenchoidea/fisiologia , Animais , Resistência à Doença/genética , Perfilação da Expressão Gênica , Ontologia Genética , Genes de Plantas , Morus/genética , Morus/imunologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Reação em Cadeia da Polimerase em Tempo Real
13.
Int J Biol Macromol ; 182: 2024-2036, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34087293

RESUMO

In this study, ramulus mori polysaccharide (RMP) was encapsulated into Poly (lactic-co-glycolicacid) (PLGA) to form PLGA-RMP (PR). The aim of study is to investigate anti-inflammatory effects of PR. The particle size of PR nanoparticles was approximately 205.6 ± 1.86 nm. PR nanoparticles showed significant therapeutic effects on colitis mice model, evidenced by attenuation of the loss of body weight, reduction of the DAI score, and restoration of the colon length. From the histopathological analysis, alleviation of the histopathological damage, less production of IFN-γ and IL-6, and improvement of IL-10 were observed with the treatment of PR. Meanwhile, the treatment of PR not only promoted the expression of ZO-1 and occludin, but also improved the contents of acetate, propionate, and butyrate in the colitis colon. Furthermore, PR extenuated the reduction of the diversity and richness of gut microbiota induced by DSS, and decreased the ratio of Firmicutes to Bacteroidetes while increasing the proportion of Clostridium XIVa, Mucispirillum, and Paraprevotella in the gut microbiota. What's more, PR nanoparticles attenuated the metabolic disorders in the colitis colon induced by DSS. These results indicated that PR nanoparticles could serve as a potent nanomedicine to treat IBD and be used as potential prebiotics.


Assuntos
Anti-Inflamatórios/farmacologia , Morus/química , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Polissacarídeos/farmacologia , Animais , Anti-Inflamatórios/uso terapêutico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/microbiologia , Colite/fisiopatologia , Colo/efeitos dos fármacos , Colo/patologia , Citocinas/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/patologia , Doenças Inflamatórias Intestinais/fisiopatologia , Camundongos Endogâmicos C57BL , Nanopartículas/ultraestrutura , Tamanho da Partícula , Polissacarídeos/uso terapêutico , Eletricidade Estática , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/patologia
14.
Phytochemistry ; 189: 112819, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34087504

RESUMO

Melatonin is recognized as an important regulator for human health and widely distributed in many plant species, including mulberry (Morus L.). Previous studies suggested mulberry contains high melatonin content, but the molecular mechanisms underlying melatonin biosynthesis in mulberry remain unclear. Here, 37 genes involved in melatonin biosynthesis were identified in mulberry genome, including a tryptophan decarboxylase gene (MnTDC), seven tryptophan 5-hydroxylase genes (MnT5Hs), six serotonin N-acetyltransferase genes (MnSNATs), 20 N-acetylserotonin methyltransferase genes (MnASMTs) and three caffeic acid 3-O-methyltransferase genes (MnCOMTs). Expression analysis showed that MnTDC, MnT5H2, MnSNAT5, MnASMT12 and MnCOMT1 from these genes had highest expression levels within their corresponding families. In vitro enzymatic assays indicated that MnTDC, MnT5H2, MnSNAT5, MnASMT12 and MnCOMT1 play important roles in melatonin biosynthesis. Multiple different pathways for melatonin biosynthesis in mulberry were discovered. In addition, mulberry ASMT showed distinct roles with those of ASTMs in Arabidopsis and rice. The class I ASMT, MnASMT12, and the class III ASMT, MnASMT20, catalyzed the conversion of N-acetylserotonin to melatonin and serotonin to 5-methoxytryptamine. Furthermore, the class II ASMT, MnASMT16, only catalyzed the conversion of N-acetylserotonin to melatonin. This study improved our knowledge on melatonin biosynthesis in mulberry and expands the repertoire of melatonin biosynthesis pathways in plants.


Assuntos
Arabidopsis , Melatonina , Morus , Oryza , Morus/genética
15.
Mar Pollut Bull ; 170: 112652, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34182301

RESUMO

During the process of studying some morphological characters of fish found in the food of the Australasian gannet Morus serrator breeding at Horuhoru Rock and Mahuki islands in the Hauraki Gulf, New Zealand, one carangid specimen of fish species Trachurus declivis out of the 25 fish specimens examined revealed seven small plastic particles in its stomach of different colours: black, red, blue, green, and transparent. Fourier transform infrared (FTIR) spectroscopy was used to identify the compositions of the particles as low and high density polyethylene, poly (methyl methacrylate), polypropylene, and a copolymer of butadiene, acrylonitrile, and methacrylamide. The plastic particles comprised several different shapes and sizes, ranging between 4.5 and 10 mm, and are therefore categorized as micro-and mesoplastic fragments.


Assuntos
Morus , Poluentes Químicos da Água , Animais , Ingestão de Alimentos , Monitoramento Ambiental , Microplásticos , Nova Zelândia , Melhoramento Vegetal , Plásticos , Poluentes Químicos da Água/análise
16.
Int J Mol Sci ; 22(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34074049

RESUMO

The vegetative phase transition is a prerequisite for flowering in angiosperm plants. Mulberry miR156 has been confirmed to be a crucial factor in the vegetative phase transition in Arabidopsis thaliana. The over-expression of miR156 in transgenic Populus × canadensis dramatically prolongs the juvenile phase. Here, we find that the expression of mno-miR156 decreases with age in all tissues in mulberry, which led us to study the hierarchical action of miR156 in mulberry. Utilizing degradome sequencing and dual-luciferase reporter assays, nine MnSPLs were shown to be directly regulated by miR156. The results of yeast one-hybrid and dual-luciferase reporter assays also revealed that six MnSPLs could recognize the promoter sequences of mno-miR172 and activate its expression. Our results demonstrate that mno-miR156 performs its role by repressing MnSPL/mno-miR172 pathway expression in mulberry. This work uncovered a miR156/SPLs/miR172 regulation pathway in the development of mulberry and fills a gap in our knowledge about the molecular mechanism of vegetative phase transition in perennial woody plants.


Assuntos
Envelhecimento/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , MicroRNAs/metabolismo , Morus/metabolismo , Proteínas de Plantas/metabolismo , Envelhecimento/genética , Arabidopsis/genética , Biologia Computacional , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Hydrastis/genética , Hydrastis/metabolismo , MicroRNAs/genética , Morus/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Populus/genética , Populus/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima
17.
Molecules ; 26(10)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063409

RESUMO

Brahmi essence, developed from Bacopa monnieri (L.) Wettst. standardized extract and mulberry juice, was proven to improve the memory speed of healthy participants aged 55-80 years old, following a 12-week dietary program. However, the metabolites have not yet been reported. Our objective was to characterize the altered metabolites in the plasma, urine, and feces of healthy volunteers after consumption of Brahmi essence for 12 weeks, using the LC-MS metabolomics approach. The altered metabolites were selected from OPLS-DA S-plots; 15 metabolites in the plasma, 7 in the urine, and 17 in the feces samples were tentatively identified by comparison with an online database and literature. The metabolites in the plasma samples were in the classes of amino acids, acylcarnitine, and phospholipids. Benzeneactamide-4-O-sulphate and 3-hydroxyhippuric acid were found in urine samples. The metabolites in the class of amino acids, together with jujubogenin and pseudojujubogenin, were identified in the fecal samples. The aminoacyl-tRNA, aromatic amino acids, and branched-chain amino acid biosynthetic pathways were mainly related to the identified metabolites in all three samples. It could be implied that those metabolites and their pathways might be linked with the effect of Brahmi essence on memory speed.


Assuntos
Bacopa/química , Fezes/química , Metabolômica/métodos , Morus/química , Extratos Vegetais/administração & dosagem , Plasma/química , Urina/química , Idoso , Idoso de 80 Anos ou mais , Cromatografia Líquida , Método Duplo-Cego , Feminino , Sucos de Frutas e Vegetais , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Extratos Vegetais/farmacocinética
18.
Meat Sci ; 178: 108522, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33957374

RESUMO

The objective was to determine the effects of different concentrations of lyophilized black mulberry water extract (BMWE) on lipid oxidation, metmyoglobin (MMb) formation, color stability, microbial quality, and sensory properties of aerobic (AP) and vacuum (VP) packaged beef patties during 15 days of chilled storage. Compared to control, incorporating of BMWE decreased (P < .01) the pH, thiobarbituric acid reactive substances (TBARS), MMb, and hue angle values of both AP and VP beef patties, while improving the redness (a*) and chroma values (P < .01). Addition of BMWE contributed significantly to extending the shelf life of beef patties by limiting lipid oxidation, discoloration and microbial growth during storage compared to control (P < .01). Although the lowest TAMB (total aerobic mesophylic bacteria) counts, TBARS and MMb values were determined in 0.4% BMWE groups, 0.2% BMWE was the most favourable concentration considering sensory acceptability and instrumental redness. These results showed that BMWE could be used as a promising natural colorant, antioxidant and antimicrobial agent in beef patties instead of synthetic additives.


Assuntos
Armazenamento de Alimentos/métodos , Produtos da Carne/análise , Extratos Vegetais/farmacologia , Animais , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Bovinos , Cor , Feminino , Humanos , Masculino , Produtos da Carne/microbiologia , Metamioglobina/análise , Morus/química , Odorantes , Paladar , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Vácuo
19.
Food Chem ; 360: 130005, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33984565

RESUMO

The effects of mulberry polyphenols and malondialdehyde (MDA) on the emulsifying and gel properties of myofibrillar protein (MP) were studied. Emulsibility and gel properties of MP were compared in range of mulberry polyphenol/MDA concentrations by particle size, Zeta potential, antioxidant capacity, gel strength, water-holding capacity (WHC), rheological properties and microstructure. Mulberry polyphenols enhanced the inoxidizability of MP emulsion but decreased its emulsifying property. MDA at intermediate concentrations (5-20 mM) improved the elasticity, strength, and WHC of polyphenols-modified MP emulsion gel, while at high concentration (40 mM) it destroyed the emulsion gel, resulting in "oil leakage". Polyphenol is not conducive to the gelation but weaken the oxidative damage of MDA to protein. The gel structure of MP emulsion collapsed after high dose of polyphenols or MDA treated. Thus, to maintain uniform textural and antioxidant activity of meat product, both polyphenols addition and oxidation intensity should be controlled simultaneously.


Assuntos
Emulsões/química , Malondialdeído/farmacologia , Morus/química , Proteínas Musculares/química , Polifenóis/farmacologia , Animais , Polifenóis/química
20.
Int J Biol Macromol ; 182: 1704-1712, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34052269

RESUMO

Designing clinical applicable polymeric composite scaffolds for auricular cartilage tissue engineering requires appropriate mechanical strength and biological characteristics. In this study, silk fiber-based scaffolds co-reinforced with poly-L-lactic acid porous microspheres (PLLA PMs) combined with either Bombyx mori (Bm) or Antheraea pernyi (Ap) silk fibers were fabricated as inspired by the "steel bars reinforced concrete" structure in architecture and their chondrogenic functions were also investigated. We found that the Ap silk fiber-based scaffolds reinforced by PLLA PMs (MAF) exhibited superior physical properties (the mechanical properties in particular) as compared to the Bm silk fiber-based scaffolds reinforced by PLLA PMs (MBF). Furthermore, in vitro evaluation of chondrogenic potential showed that the MAF provided better cell adhesion, viability, proliferation and GAG secretion than the MBF. Therefore, the MAF are promising in auricular cartilage tissue engineering and relevant plastic surgery-related applications.


Assuntos
Cartilagem da Orelha/fisiologia , Microesferas , Morus/química , Poliésteres/química , Seda/química , Tecidos Suporte/química , Animais , Bombyx , Proliferação de Células , Forma Celular , Sobrevivência Celular , Condrócitos/citologia , Condrócitos/metabolismo , Força Compressiva , DNA/metabolismo , Regulação da Expressão Gênica , Glicosaminoglicanos/metabolismo , Porosidade , Coelhos , Seda/ultraestrutura , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...