Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.763
Filtrar
1.
Braz. j. biol ; 83: e248122, 2023. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1355851

RESUMO

Abstract Being vector of West Nile Virus and falariasis the control of Culex quinquefasciatus is likely to be essential. Synthetic insecticide treatment is looking most effective for vectors mosquito control. However, these products are toxic to the environment and non-target organisms. Consequently, ecofriendly control of vectors mosquito is needed. In this regard botanical insecticide is looking more fruitful. Therefore, the present research aimed to investigate the effectiveness of methanolic extract and various fractions, including, n-hexane, ethyl-acetate, chloroform, and aqueous fraction, obtained from methanolic extract of Ailanthus altissima, Artemisia scoparia, and Justicia adhatoda using separating funnel against larval, pupal, and adult stages of Culex quinquefasciatus. The larvae and pupae of Culex quinquefasciatus were exposed to various concentrations (31.25-1000 ppm) of methanolic extract and its fractions for 24 hours of exposure period. For knock-down bioassay (filter paper impregnation bioassay) different concentration of the methanolic extract and its various fractions (i.e. 0.0625, 0.125, 0.25, 0.5 and 1mg/mL) were applied for 1 hour exposure period. The results were statistically analysed using standard deviation, probit analysis, and linear regression. The R2 values of larvae, pupae, and adult range from 0.4 to 0.99. The values of LC50 (concentration causing 50% mortality) for late 3rd instar larvae after 24 hours exposure period range from 93-1856.7 ppm, while LC90 values range from 424 -7635.5ppm. The values of LC50for pupae range form 1326.7-6818.4ppm and and values of LC90 range from 3667.3-17427.9ppm, respectively. The KDT50 range from 0.30 to 2.8% and KDT90 values range from1.2 to 110.8%, respectively. In conclusion, Justicia adhatoda may be effective for controlling populations of vector mosquito.


Resumo Por ser o vetor do vírus do Nilo Ocidental e da falaríase, o controle de Culex quinquefasciatus Say é provavelmente essencial. O tratamento com inseticida sintético parece ser mais eficaz para o controle dos mosquitos vetores. No entanto, esses produtos são tóxicos para o meio ambiente e organismos não visados. Consequentemente, o controle ecológico dos mosquitos vetores é necessário. Nesse sentido, o inseticida botânico parece mais produtivo. Portanto, a presente pesquisa teve como objetivo investigar a eficácia do extrato metanólico e de várias frações, incluindo n-hexano, acetato de etila, clorofórmio e fração aquosa, obtidos do extrato metanólico de Ailanthus altissima (Mill.) Swingle, Artemisia scoparia Waldst. & Kit. e Justicia adhatoda L. usando funil de separação contra os estágios larval, pupal e adulto de C. quinquefasciatus. As larvas e pupas de C. quinquefasciatus foram expostas a várias concentrações (31,25-1000 ppm) de extrato metanólico, e suas frações por 24 horas de período de exposição. Para o bioensaio knock-down (bioensaio de impregnação de papel de filtro), diferentes concentrações do extrato metanólico e suas várias frações (ou seja, 0,0625, 0,125, 0,25, 0,5 e 1 mg / mL) foram aplicadas por um período de exposição de 1 hora. Os resultados foram analisados ​​estatisticamente usando desvio padrão, análise Probit e regressão linear. Os valores de R2 de larvas, pupas e adultos variaram de 0,4 a 0,99. Os valores de LC50 (concentração que causa 50% de mortalidade) para larvas de terceiro estádio tardio após 24 horas de período de exposição variaram de 93-1856,7 ppm, enquanto os valores de LC90 variaram de 424-7635,5ppm. Os valores de LC50 para pupas variaram de 1326,7-6818,4 ppm e os valores de LC90 variaram de 3667,3-17427,9 ppm, respectivamente. O KDT50 variou de 0,30 a 2,8% e os valores de KDT90 variaram de 1,2 a 110,8%, respectivamente. Por fim, a espécie J. adhatoda pôde ser eficaz para controlar populações de mosquitos vetores.


Assuntos
Animais , Culex , Inseticidas/farmacologia , Anopheles , Extratos Vegetais/farmacologia , Folhas de Planta , Mosquitos Vetores , Larva
2.
Braz. j. biol ; 83: e246230, 2023. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1339369

RESUMO

Abstract Dengue fever vectored by the mosquito Aedes aegypti is one of the most rapidly spreading insect-borne diseases. Current reliance of dengue vector control is mostly on chemical insecticides. Growing insecticide resistance in the primary mosquito vector, Aedes aegypti, limits the effectiveness of vector control through chemical insecticides. These chemical insecticides also have negative environmental impacts on animals, plants and human health. Myco-biocontrol agents are naturally occurring organisms and are found to be less damaging to the environment as compared to chemical insecticides. In the present study, entomopathogenic potential of local strains of fungi isolated from soil was assessed for the control of dengue vector. Local fungal isolates presents better alternative to introducing a foreign biocontrol strain, as they may be better adapted to environmental conditions of the area to survive and may have more entomopathogenic efficacy against target organism. Larvicidal efficacy of Fusarium equiseti and Fusarium proliferatum was evaluated against Aedes aegypti. Local strains of F. equiseti (MK371718) and F. proliferatum (MK371715) were isolated from the soil of Changa Manga Forest, Pakistan by using insect bait method. Larvicidal activity of two Fusarium spp. was tested against forth instar larvae of A. aegypti in the laboratory, using concentrations 105, 106, 107 and 108 conidia /ml. LC50 values for F. equiseti after 24h, 48h, 72h and 96h of exposure were recorded as 3.8x 108, 2.9x107, 2.0x107, and 7.1x106 conidia /ml respectively while LC50 values for F. proliferatum were recorded as 1.21x108, 9.6x107, 4.2x107, 2.6x107 conidia /ml respectively after 24h, 48h, 72h and 96h of exposure. The results indicate that among two fungal strains F. equiseti was found to be more effective in terms of its larvicidal activity than F. proliferatum against larvae of A. aegypti.


Resumo A dengue transmitida pelo mosquito Aedes aegypti é uma das doenças transmitidas por insetos de propagação mais rápida. A dependência atual do controle do vetor da dengue é principalmente de inseticidas químicos. O aumento da resistência a inseticidas no principal vetor do mosquito, Aedes aegypti, limita a eficácia do controle do vetor por meio de inseticidas químicos. Esses inseticidas químicos também têm impactos ambientais negativos sobre os animais, plantas e saúde humana. Os agentes de micobiocontrole são organismos que ocorrem naturalmente e são menos prejudiciais ao meio ambiente em comparação com os inseticidas químicos. No presente estudo, avaliou-se o potencial entomopatogênico de cepas locais de fungos isolados do solo para o controle do vetor da dengue. Isolados de fungos locais apresentam melhor alternativa para a introdução de uma cepa de biocontrole estrangeira, pois podem ser mais bem adaptados às condições ambientais da área para sobreviver e podem ter maior eficácia entomopatogênica contra o organismo-alvo. A eficácia larvicida de Fusarium equiseti e Fusarium proliferatum foi avaliada contra Aedes aegypti. Cepas locais de F. equiseti (MK371718) e F. proliferatum (MK371715) foram isoladas do solo de Changa Manga Forest, Paquistão, usando o método de isca para insetos. Atividade larvicida de dois Fusarium spp. foi testado contra larvas de quarto ínstar de A. aegypti em laboratório, nas concentrações 105, 106, 107 e 108 conídios / ml. Os valores de LC50 para F. equiseti após 24 h, 48 h, 72 h e 96 h de exposição foram registrados como 3,8x 108, 2,9x107, 2,0x107 e 7,1x106 conídios / ml, respectivamente, enquanto os valores de LC50 para F. proliferatum foram registrados como 1,21x108, 9,6 x107, 4,2x107, 2,6x107 conídios / ml, respectivamente, após 24 h, 48 h, 72 h e 96 h de exposição. Os resultados indicam que entre duas cepas de fungos F. equiseti se mostrou mais eficaz em termos de atividade larvicida do que F. proliferatum contra larvas de A. aegypti.


Assuntos
Humanos , Animais , Aedes , Fusarium , Inseticidas/farmacologia , Paquistão , Solo , Extratos Vegetais , Florestas , Mosquitos Vetores , Larva
3.
Braz. j. biol ; 83: e240118, 2023. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1278559

RESUMO

Abstract For many centuries human populations have been suffering and trying to fight with disease-bearing mosquitoes. Emerging and reemerging diseases such as Dengue, Zika, and Chikungunya affect billions of people around the world and recently has been appealing to control with chemical pesticides. Malathion (MT) is one of the main pesticides used against mosquitoes, the vectors of these diseases. This study aimed to assess cytotoxicity and mutagenicity of the malathion for the bioindicator Allium cepa L. using a multivariate and integrative approach. Moreover, an appendix table was compiled with all available literature of insecticides assessed by the Allium cepa system to support our discussion. Exposures during 48h to 0.5 mg mL-1 and 1.0 mg mL-1 MT were compared to the negative control (distilled water) and positive control (MMS solution at 10 mg L-1). The presence of chromosomal aberrations, micronuclei frequency, and mitotic index abnormalities was evaluated. Anaphase bridges were the alterations with higher incidence and presented a significantly elevated rate in the concentration of 0.5 mg mL-1, including when compared to the positive control. The integrative discriminant analysis summarizes that MT in assessed concentrations presented effects like the positive control, corroborating its potential of toxicity to DNA. Therefore, it is concluded that MT in its pure composition and in realistic concentrations used, has genotoxic potential in the biological assessment of A. cepa cells. The multivariate integrative analysis was fundamental to show a whole response of all data, providing a global view of the effect of MT on DNA.


Resumo Por muitos séculos, as populações humanas sofrem e tentam combater os mosquitos transmissores de doenças. Doenças emergentes e reemergentes como Dengue, Zika e Chikungunya afetam bilhões de pessoas em todo o mundo e, recentemente, vem apelando ao controle com pesticidas químicos. O Malation (MT) é um dos principais pesticidas usados ​​contra mosquitos, vetores dessas doenças. O objetivo deste estudo foi avaliar a citotoxicidade e a mutagenicidade do MT para o bioindicador Allium cepa L. usando uma abordagem multivariada e integrativa. Além disso, uma tabela suplementar foi compilada com toda a literatura disponível de inseticidas avaliada pelo sistema Allium cepa para apoiar nossa discussão. Exposições ao MT durante 48h a 0,5 mg mL-1 e 1,0 mg mL-1 foram comparadas a um controle negativo (água destilada) e um controle positivo (10 mg L-1 de MMS). Foram avaliadas a presença de aberrações cromossômicas, frequência de micronúcleos e anormalidades no índice mitótico. As pontes anafásicas foram as alterações com maior incidência e apresentaram uma taxa significativamente elevada na concentração de 0,5 mg mL-1, inclusive quando comparadas ao controle positivo. A análise discriminante integrativa resume que o MT nas concentrações avaliadas apresentou efeitos semelhantes ao controle positivo, corroborando seu potencial de toxicidade para o DNA. Portanto, conclui-se que o MT, em sua composição pura e nas concentrações realistas utilizadas, possui potencial genotóxico na avaliação biológica de células de A. cepa. A análise integrativa multivariada foi fundamental para mostrar uma resposta completa de todos os dados, fornecendo uma visão global do efeito da MT no DNA.


Assuntos
Humanos , Animais , Zika virus , Infecção por Zika virus , Inseticidas/toxicidade , Dano ao DNA , Aberrações Cromossômicas , Raízes de Plantas , Cebolas , Mosquitos Vetores , Malation/toxicidade , Índice Mitótico
4.
Malar J ; 21(1): 254, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064699

RESUMO

BACKGROUND: South Africa has set a mandate to eliminate local malaria transmission by 2023. In pursuit of this objective a Sterile Insect Technique programme targeting the main vector Anopheles arabiensis is currently under development. Significant progress has been made towards operationalizing the technology. However, one of the main limitations being faced is the absence of an efficient genetic sexing system. This study is an assessment of an An. arabiensis (AY-2) strain carrying the full Y chromosome from Anopheles gambiae, including a transgenic red fluorescent marker, being introgressed into a South African genetic background as a potential tool for a reliable sexing system. METHODS: Adult, virgin males from the An. arabiensis AY-2 strain were outcrossed to virgin females from the South African, Kwazulu-Natal An. arabiensis (KWAG strain) over three generations. Anopheles arabiensis AY-2 fluorescent males were sorted as first instar larvae (L1) using the Complex Object Parametric Analyzer and Sorter (COPAS) and later screened as pupae to verify the sex. Life history traits of the novel hybrid KWAG-AY2 strain were compared to the original fluorescent AY-2 strain, the South African wild-type KWAG strain and a standard laboratory An. arabiensis (Dongola reference strain). RESULTS: The genetic stability of the sex-linked fluorescent marker and the integrity and high level of sexing efficiency of the system were confirmed. No recombination events in respect to the fluorescent marker were detected over three rounds of introgression crosses. KWAG-AY2 had higher hatch rates and survival of L1 to pupae and L1 to adult than the founding strains. AY-2 showed faster development time of immature stages and larger adult body size, but lower larval survival rates. Adult KWAG males had significantly higher survival rates. There was no significant difference between the strains in fecundity and proportion of males. KWAG-AY2 males performed better than reference strains in flight ability tests. CONCLUSION: The life history traits of KWAG-AY2, its rearing efficiency under laboratory conditions, the preservation of the sex-linked fluorescence and perfect sexing efficiency after three rounds of introgression crosses, indicate that it has potential for mass rearing. The potential risks and benefits associated to the use of this strain within the Sterile Insect Technique programme in South Africa are discussed.


Assuntos
Anopheles , Infertilidade , Traços de História de Vida , Animais , Anopheles/genética , Feminino , Genômica , Larva/genética , Masculino , Controle de Mosquitos/métodos , Mosquitos Vetores/genética , Pupa , África do Sul
5.
PLoS One ; 17(9): e0273980, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36067192

RESUMO

BACKGROUND: Arboviruses represent a threat to global public health. In the Americas, the dengue fever is endemic. This situation worsens with the introduction of emerging, Zika fever and chikungunya fever, causing epidemics in several countries within the last decade. Hotspot analysis contributes to understanding the spatial and temporal dynamics in the context of co-circulation of these three arboviral diseases, which have the same vector: Aedes aegypti. OBJECTIVE: To analyze the spatial distribution and agreement between the hotspots of the historical series of reported dengue cases from 2000 to 2014 and the Zika, chikungunya and dengue cases hotspots from 2015 to 2019 in the city of Rio de Janeiro. METHODS: To identify hotspots, Gi* statistics were calculated for the annual incidence rates of reported cases of dengue, Zika, and chikungunya by neighborhood. Kendall's W statistic was used to analyze the agreement between diseases hotspots. RESULTS: There was no agreement between the hotspots of the dengue fever historical series (2000-2014) and those of the emerging Zika fever and chikungunya fever (2015-2019). However, there was agreement between hotspots of the three arboviral diseases between 2015 and 2019. CONCLUSION: The results of this study show the existence of persistent hotspots that need to be prioritized in public policies for the prevention and control of these diseases. The techniques used with data from epidemiological surveillance services can help in better understanding of the dynamics of these diseases wherever they circulate in the world.


Assuntos
Infecções por Arbovirus , Febre de Chikungunya , Dengue , Infecção por Zika virus , Zika virus , Animais , Infecções por Arbovirus/epidemiologia , Brasil/epidemiologia , Dengue/epidemiologia , Humanos , Mosquitos Vetores
6.
Malar J ; 21(1): 258, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068530

RESUMO

BACKGROUND: Continuous vector surveillance and sustainable interventions are mandatory in order to prevent anopheline proliferation (or spread to new areas) and interrupt malaria transmission. Anopheline abundance and richness were evaluated in urban and peri-urban malaria foci at a medium-sized city in the Brazilian Amazon, comparing the protected human landing catch technique (PHLC) and alternative sampling methods over different seasonal periods. Additional information was assessed for female feeding behaviour and faunal composition. METHODS: Anophelines were sampled bimonthly in four urban and peri-urban sites in the city of Porto Velho, state of Rondônia, Brazil. The average number of captured mosquitoes was compared between an PHLC (gold standard), a tent trap (Gazetrap), and a barrier screen by means of generalized linear mixed models (GLMM), which also included season and environment (peri-urban/urban) as predictors. RESULTS: Overall, 2962 Anopheles individuals belonging to 12 species and one complex were caught; Anopheles darlingi represented 86% of the individuals. More mosquitoes were captured in the peri-urban setting, and the urban setting was more diverse. The model estimates that significantly more anophelines were collected by PHLC than by the Screen method, and Gazetrap captured fewer individuals. However, the Screen technique yielded more blood-engorged females. The peak hours of biting activity were from 6 to 7 p.m. in urban areas and from 7 to 8 p.m. in peri-urban areas. CONCLUSIONS: Although peri-urban settings presented a greater abundance of anophelines, Shannon and Simpson diversities were higher in urban sites. Each technique proved to be useful, depending on the purpose: PHLC was more effective in capturing the highest anopheline densities, Gazetrap caught the greatest number of species, and the barrier screen technique captured more engorged individuals. There was no seasonal effect on Anopheles assemblage structure; however, a more diverse fauna was caught in the transitional season. Biting activity was more intense from 6 to 8 p.m., with a predominance of An. darlingi.


Assuntos
Anopheles , Mordeduras e Picadas , Malária , Animais , Brasil/epidemiologia , Feminino , Humanos , Malária/epidemiologia , Mosquitos Vetores , Estações do Ano
7.
PLoS Negl Trop Dis ; 16(9): e0010701, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36074773

RESUMO

BACKGROUND: The surveillance of vector mosquitoes is essential for prevention and control of mosquito-borne diseases. In this study, we developed an internet-based vector mosquito monitor, MS-300, and evaluated its efficiency for the capture of the important vector mosquitoes, Aedes albopictus and Culex quinquefasciatus, in laboratory and field trials. METHODOLOGY/PRINCIPAL FINDINGS: The linear sizes of adult Ae. albopictus and Cx. quinquefasciatus were measured and an infrared window was designed based on these data. A device to specifically attract these two species and automatically transmit the number of captured mosquitoes to the internet was developed. The efficiency of the device in capturing the two species was tested in laboratory, semi-field and open field trials. The efficiency results for MS-300 for catching and identifying Ae. albopictus in laboratory mosquito-net cages were 98.5% and 99.3%, and 95.8% and 98.6%, respectively, for Cx. quinquefasciatus. In a wire-gauze screened house in semi-field trials, the efficiencies of MS-300 baited with a lure in catching Ae. albopictus and Cx. quinquefasciatus were 54.2% and 51.3%, respectively, which were significantly higher than 4% and 4.2% without the lure. The real-time monitoring data revealed two daily activity peaks for Ae. albopictus (8:00-10:00 and 17:00-19:00), and one peak for Cx. quinquefasciatus (20:00-24:00). During a 98-day surveillance trial in the field, totals of 1,118 Ae. albopictus and 2,302 Cx. quinquefasciatus were captured by MS-300. There is a close correlation between the number of captured mosquitoes and the temperature in the field, and a positive correlation in the species composition of the captured samples among the mosquitoes using MS-300, BioGents Sentinel traps and human landing catches. CONCLUSIONS/SIGNIFICANCE: The data support the conclusion that MS-300 can specifically and efficiently capture Ae. albopictus and Cx. quinquefasciatus, and monitor their density automatically in real-time. Therefore, MS-300 has potential for use as a surveillance tool for prevention and control of vector mosquitoes.


Assuntos
Aedes , Culex , Animais , Vetores de Doenças , Humanos , Mosquitos Vetores
8.
Zootaxa ; 5134(2): 275-285, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36101065

RESUMO

Nyssorhynchus (Nyssorhynchus) jamariensis, a new species of the Nuneztovari Complex, previously known as Anopheles (Nyssorhynchus) nuneztovari A, is described and validated using morphological characters of the adult male and female, male genitalia and immature stages. The species is recorded from the western Brazilian Amazon, where it was collected in pastures in the vicinity of the Jamari River, municipality of Monte Negro, Rondnia State, Brazil. Illustrations of the male genitalia, fourth-instar larva and pupa are provided. Nyssorhynchus jamariensis may be involved in malaria transmission, but its vector status needs further investigation.


Assuntos
Anopheles , Malária , Animais , Brasil , Feminino , Masculino , Mosquitos Vetores , Pupa
9.
Zootaxa ; 5133(2): 182-200, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-36101104

RESUMO

It has been 34 years since the last update of the subgenus Anopheles Meigen, 1818 in the Afrotropical Region. Eleven species occur in the region, and of these, eight occur only on the African continent, two in both Africa and Madagascar, and one exclusively in Madagascar. Three species are implicated in the transmission of malarial parasites in localised areas: An. coustani Laveran, 1900 (Cameroon, Central African Republic, Democratic Republic of the Congo, Kenya, Madagascar, Tanzania and Zambia), An. paludis Theobald, 1900 (Cameroon, Democratic Republic of the Congo) and An. ziemanni Grnberg, 1902 (Cameroon, Chad, Ethiopia and Rwanda). Several arboviruses have been isolated from An. coustani in Kenya, Madagascar and Senegal. Recent molecular studies indicate possible undescribed species within An. coustani that could be resolved with integrated molecular, morphological and cytogenetic methods.


Assuntos
Anopheles , Malária , Animais , Anopheles/genética , Biologia , Mosquitos Vetores/genética
10.
J Infect Dev Ctries ; 16(8): 1351-1358, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36099380

RESUMO

INTRODUCTION: To identify the specific Anopheles mosquito sibling species responsible for malaria transmission, determine their vectorial potential, and predict suitable control measures, this study investigated genetic identities, human blood feeding, and sporozoite infection rates of endophilic Anopheles mosquitoes in Gaa-Bolorunduro, a cattle rearing community in Kwara State, Nigeria. METHODOLOGY: Monthly pyrethrum spray collections of Anopheles mosquitoes were conducted for one year in addition to PCR characterization of sibling species and ELISA probing of human blood meal and sporozoite infections. Mean numbers and human blood indices (HBI) of the different Anopheles sibling species identified were compared. RESULTS: The total of 668 PCR-identified mosquitoes comprised 50.8% An. arabiensis, 46.7% An. gambiae, and 2.5% An. coluzzii. Annual mean numbers of An. arabiensis was significantly higher (p = 0.001) than An. coluzzii but not An. gambiae (p = 0.602). Proportions of An. arabiensis found with human blood (0.29) were lower compared to An. gambiae (0.72) and An. coluzzii (0.75). However, the annual mean HBI of An. arabiensis was not significantly higher than An. gambiae (p = 0.195) and An. coluzzii (p = 0.249). Plasmodium falciparum sporozoite infection rate was 1.6% in An. gambiae, 0.9% in An. arabiensis and 0% in An. coluzzii. CONCLUSIONS: The prevalent An. arabiensis and An. gambiae mosquitoes found indoors, despite the outdoor cattle population barrier, could be targeted by community-scale utilization of long-lasting insecticide-treated bed nets. Further studies on outdoor mosquito surveillance and bovine blood meal identification are required for the recommendation of suitable complementary vector control measures for the community.


Assuntos
Anopheles , Malária Falciparum , Malária , Animais , Anopheles/genética , Bovinos , Humanos , Malária/epidemiologia , Malária/prevenção & controle , Mosquitos Vetores , Nigéria/epidemiologia , Linhagem , Esporozoítos
11.
Vopr Virusol ; 67(4): 341-450, 2022 Sep 12.
Artigo em Russo | MEDLINE | ID: mdl-36097715

RESUMO

INTRODUCTION: Yellow fever (YF) remains one of the most common natural focal infectious diseases in the world. In connection with the increasing tourist flow to countries endemic for YF, the discovery of stable populations of Aedes aegypti and Ae. albopictus which are the main vectors of the yellow fever virus (YFV), in the southern regions of Russia, and the fact that in medical institutions in our country it is possible to obtain a live attenuated vaccine against YF, but there is no way to evaluate the effectiveness of vaccination, the question arises of the development and implementation of diagnostic kits for detecting antibodies (AB) to the pathogen by enzyme immunoassay (ELISA).The aim of this study was to develop a method for detecting specific IgG antibodies to the E protein of YFV by ELISA and assessing its diagnostic characteristics. MATERIALS AND METHODS: A specific cDNA was synthesized by reverse transcription on an RNA template of YFV isolated on a cell culture of Aedes albopictus clone C6/36, and a fragment of the genome coding the YFV E protein was amplified and subsequently cloned into the plasmid pET160 (Thermo Fisher Scientific, USA). The resulting gene fragment was used as a DNA template to obtain a recombinant analog of the third domain of the YFV E protein in Escherichia coli cells (BL-21(DE3)). Next, the immunogenicity of the obtained antigen was evaluated and the analysis conditions were optimized. RESULTS: The optimal conditions for the production of the obtained recombinant E protein of YFV were determined, its specificity was confirmed by immunological methods (Western blot and ELISA), sorption buffers and blocking solutions were selected, and sensitivity and specificity of detection of antibodies to YFV using the recombinant antigen were assessed. CONCLUSION: A method for the detection of specific IgG antibodies to the YFV E protein by ELISA was developed. This diagnostic kit can be used both to study the protective properties of the YF vaccine and to detect imported cases of infection in non-endemic areas.


Assuntos
Aedes , Flaviviridae , Flavivirus , Febre Amarela , Animais , Ensaio de Imunoadsorção Enzimática , Imunoglobulina G , Mosquitos Vetores , Vacinas Atenuadas , Febre Amarela/diagnóstico , Vírus da Febre Amarela/genética
12.
PLoS One ; 17(9): e0273568, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36048823

RESUMO

Mosquitoes transmit many pathogens responsible for human diseases, such as malaria which is caused by parasites in the genus Plasmodium. Current strategies to control vector-transmitted diseases are increasingly undermined by mosquito and pathogen resistance, so additional methods of control are required. Paratransgenesis is a method whereby symbiotic bacteria are genetically modified to affect the mosquito's phenotype by engineering them to deliver effector molecules into the midgut to kill parasites. One paratransgenesis candidate is Asaia bogorensis, a Gram-negative bacterium colonizing the midgut, ovaries, and salivary glands of Anopheles sp. mosquitoes. Previously, engineered Asaia strains using native signals to drive the release of the antimicrobial peptide, scorpine, fused to alkaline phosphatase were successful in significantly suppressing the number of oocysts formed after a blood meal containing P. berghei. However, these strains saw high fitness costs associated with the production of the recombinant protein. Here, we report evaluation of five different partner proteins fused to scorpine that were evaluated for effects on the growth and fitness of the transgenic bacteria. Three of the new partner proteins resulted in significant levels of protein released from the Asaia bacterium while also significantly reducing the prevalence of mosquitoes infected with P. berghei. Two partners performed as well as the previously tested Asaia strain that used alkaline phosphatase in the fitness analyses, but neither exceeded it. It may be that there is a maximum level of fitness and parasite inhibition that can be achieved with scorpine being driven constitutively, and that use of a Plasmodium specific effector molecule in place of scorpine would help to mitigate the stress on the symbionts.


Assuntos
Acetobacteraceae , Agentes de Controle Biológico , Mosquitos Vetores , Plasmodium , Acetobacteraceae/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Agentes de Controle Biológico/metabolismo , Defensinas , Malária/prevenção & controle , Mosquitos Vetores/parasitologia , Plasmodium/microbiologia , Plasmodium/fisiologia , Proteínas Recombinantes/metabolismo
13.
PLoS One ; 17(9): e0270882, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36107865

RESUMO

Characterizing persistent malaria transmission that occurs after the combined deployment of indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) is critical to guide malaria control and elimination efforts. This requires a detailed understanding of both human and vector behaviors at the same temporal and spatial scale. Cross-sectional human behavior evaluations and mosquito collections were performed in parallel in Magude district, Mozambique. Net use and the exact time when participant moved into each of five environments (outdoor, indoor before bed, indoor in bed, indoor after getting up, and outdoor after getting up) were recorded for individuals from three different age groups and both sexes during a dry and a rainy season. Malaria mosquitoes were collected with CDC light traps in combination with collection bottle rotators. The percentage of residual exposure to host-seeking vectors that occurred in each environment was calculated for five local malaria vectors with different biting behaviors, and the actual (at observed levels of LLIN use) and potential (i.e. if all residents had used an LLIN) personal protection conferred by LLINs was estimated. Anopheles arabiensis was responsible for more than 74% of residents' residual exposure to host-seeking vectors during the Magude project. The other four vector species (An. funestus s.s., An. parensis, An. squamosus and An. merus) were responsible for less than 10% each. The personal protection conferred by LLINs prevented only 39.2% of the exposure to host-seeking vectors that survived the implementation of both IRS and LLINs, and it differed significantly across seasons, vector species and age groups. At the observed levels of bednet use, 12.5% of all residual exposure to host-seeking vectors occurred outdoor during the evening, 21.9% indoor before going to bed, almost two thirds (64%) while people were in bed, 1.4% indoors after getting up and 0.2% outdoor after leaving the house. Almost a third of the residual exposure to host-seeking vectors (32.4%) occurred during the low transmission season. The residual bites of An. funestus s.s. and An. parensis outdoors and indoor before bedtime, of An. arabiensis indoors when people are in bed, and of An. squamosus both indoors and outdoors, are likely to have sustained malaria transmission throughout the Magude project. By increasing LLIN use, an additional 24.1% of exposure to the remaining hosts-seeking vectors could have been prevented. Since An. arabiensis, the most abundant vector, feeds primarily while people are in bed, increasing net use and net feeding inhibition (through e.g. community awareness activities and the selection of more effective LLINs) could significantly reduce the exposure to remaining host-seeking mosquitoes. Nonetheless, supplementary interventions aiming to reduce human-vector contact outdoors and/or indoors before people go to bed (e.g. through larval source management, window and eave screening, eave tubes, and spatial repellents) will be needed to reduce residual exposure to the outdoor and early biting An. funestus s.s. and An. parensis.


Assuntos
Anopheles , Inseticidas , Malária , Animais , Anopheles/fisiologia , Estudos Transversais , Progressão da Doença , Feminino , Humanos , Malária/prevenção & controle , Masculino , Mosquitos Vetores , Receptores Proteína Tirosina Quinases
15.
PLoS One ; 17(9): e0271427, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36084031

RESUMO

The "Magude project" aimed but failed to interrupt local malaria transmission in Magude district, southern Mozambique, by using a comprehensive package of interventions, including indoor residual spraying (IRS), pyrethroid-only long-lasting insecticide treated nets (LLINs) and mass-drug administration (MDA). Here we present detailed information on the vector species that sustained malaria transmission, their association with malaria incidence and behaviors, and their amenability to the implemented control interventions. Mosquitoes were collected monthly between May 2015 and October 2017 in six sentinel sites in Magude district, using CDC light traps both indoors and outdoors. Anopheles arabiensis was the main vector during the project, while An. funestus s.s., An. merus, An. parensis and An. squamosus likely played a secondary role. The latter two species have never previously been found positive for Plasmodium falciparum in southern Mozambique. The intervention package successfully reduced vector sporozoite rates in all species throughout the project. IRS was effective in controlling An. funestus s.s. and An. parensis, which virtually disappeared after its first implementation, but less effective at controlling An. arabiensis. Despite suboptimal use, LLINs likely provided significant protection against An. arabiensis and An. merus that sought their host largely indoors when people where in bed. Adding IRS on top of LLINs and MDA likely added value to the control of malaria vectors during the Magude project. Future malaria elimination attempts in the area could benefit from i) increasing the use of LLINs, ii) using longer-lasting IRS products to counteract the increase in vector densities observed towards the end of the high transmission season, and iii) a higher coverage with MDA to reduce the likelihood of human infection. However, additional interventions targeting vectors that survive IRS and LLINs by biting outdoors or indoors before people go to bed, will be likely needed to achieve local malaria elimination.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Piretrinas , Animais , Humanos , Inseticidas/farmacologia , Malária/epidemiologia , Malária/prevenção & controle , Controle de Mosquitos , Mosquitos Vetores
16.
Parasite ; 29: 42, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36111976

RESUMO

Control of invasive species relies partly on permanent surveillance at international points of entry. We report the exceptional trapping of one adult mosquito (Diptera: Culicidae) in the port of Marseille, France, in July 2018, during a routine survey conducted according to International Health Regulations. Morphological and molecular identification classified the specimen as a female Aedes (Stegomyia) aegypti (L.), vector of many arboviruses, absent from Europe and the Mediterranean rim since the 1950s. A world reference panel of approximately 23,000 genome-wide single nucleotide polymorphisms determined that the mosquito originated from Cameroon, west Africa. Cross-reference of this geographic location with boats traveling from Central Africa to Marseille during the trapping period suggests that the mosquito travelled within an identified merchant ship, a vehicles carrier connecting Douala, Cameroon to Marseille, France. This ship left Douala on June 25, 2018 and arrived 20 days later in Marseille on July 15. The mosquito was captured 350 m away from the dock. The interception of a propagule of an invasive species is a rare event that must be considered a priority to prevent its successful establishment.


Title: Un alien à Marseille : enquêtes sur un seul moustique Aedes aegypti vraisemblablement introduit par un navire marchand de l'Afrique tropicale vers l'Europe. Abstract: La lutte contre les espèces invasives repose en partie sur une surveillance permanente aux points d'entrée internationaux. Nous rapportons ici le piégeage exceptionnel d'un moustique adulte (Diptera: Culicidae) dans le port de Marseille, France, en juillet 2018, au cours d'une enquête de routine menée selon les recommandations du Règlement Sanitaire International. L'identification morphologique et moléculaire a désigné ce spécimen comme étant une femelle d'Aedes (Stegomyia) aegypti (L.), vecteur de nombreux arbovirus, absent d'Europe et du pourtour Méditerranéen depuis les années 1950. Une base de référence mondiale du polymorphisme des nucléotides individuels pour ~23 000 génomes complets a permis de déterminer que ce moustique était originaire du Cameroun. Le croisement de cette information de localisation géographique avec celle de la circulation des bateaux entre l'Afrique Centrale et Marseille au cours de la période de piégeage suggère que le moustique a voyagé à l'intérieur d'un navire de commerce identifié, un transporteur de véhicules reliant Douala (Cameroun) à Marseille (France). Ce navire a quitté Douala le 25 juin 2018 pour arriver à Marseille 20 jours plus tard, le 15 juillet 2018. Le moustique a été capturé à 350 mètres du dock. L'interception d'un propagule d'une espèce invasive est un évènement rare qui doit être considéré de façon prioritaire afin d'empêcher la réussite de son installation.


Assuntos
Aedes , Aedes/genética , Animais , Camarões , Europa (Continente) , Feminino , Espécies Introduzidas , Mosquitos Vetores/genética , Navios
17.
Pak J Biol Sci ; 25(9): 816-821, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36098083

RESUMO

<b>Background and Objective:</b> Dengue cases have increased while the spread is getting broader worldwide. Temephos has been frequently used to control the larvae of the <i>Aedes aegypti</i> L., the primary vector of dengue. The intensive use of this larvicide has given rise to resistance. This study aims to determine the susceptibility status of <i>Ae. aegypti</i> to temephos and examine the two mutations (F290V and F455W) that possibly occur in the <i>Ace-1</i> gene of <i>Ae. aegypti</i> from Salido Sub-District, IV Jurai District, Pesisir Selatan Regency. <b>Materials and Methods:</b> The susceptibility test was performed referring to a standard method of the World Health Organization, followed by a molecular test (polymerase chain reaction) and sequencing. <b>Results:</b> The results showed that the larvae of <i>Ae. aegypti</i> have been tolerant to temephos (0.012 mg L<sup></sup><sup>1</sup>) with a percentage of larval mortality of 91.67%. The sequencing analysis in the <i>Ace-1</i> gene revealed the absence of F290V and F455W mutation in temephos-resistant <i>Ae. aegypti</i>, but a point mutation was detected at codon 506. This mutation shifts the ACA codon to ACT, but still codes for the same amino acid, threonine. <b>Conclusion:</b> Our study indicates the presence of other resistance mechanisms in the major dengue vector of the Salido District. Implementation of the alternative population control strategy is required to prevent the temephos resistance further.


Assuntos
Aedes , Dengue , Inseticidas , Aedes/genética , Animais , Indonésia , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Larva/genética , Mosquitos Vetores/genética , Mutação , Temefós
18.
Zootaxa ; 5175(5): 559-569, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36095342

RESUMO

Nyssorhynchus (Nyssorhynchus) rondoniensis, a new species of the Arthuri Complex of the Strodei Subgroup, is described and validated using morphological characters of the adult male and female, male genitalia, fourth-instar larva and pupa. The new species is recorded in the municipalities of Campo Novo de Rondnia and Monte Negro, Rondnia State, Brazil. Based on DNA sequence data, the new species (as Ny. arthuri species C) was found to belong to a separate lineage within the Arthuri Complex. Morphological characteristics of the male genitalia and fourth-instar larva confirmed that the new species shared morphological similarities with other species of the Arthuri Complex, but it can be distinguished by characteristics of the male genitalia, adult female and larva. Nyssorhynchus rondoniensis may be involved in malaria transmission because females can be easily misidentified as Ny. oswaldoi (Peryass, 1922) s.l. or Ny. konderi (Galvo Damasceno, 1942) s.l. Both species were previously hypothesized to be local vectors in Acre and Rondnia States.


Assuntos
Anopheles , Malária , Animais , Anopheles/genética , Feminino , Larva , Masculino , Mosquitos Vetores , Pupa
19.
J Insect Sci ; 22(5)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36082679

RESUMO

Insecticide resistance is a significant challenge facing the successful control of mosquito vectors globally. Bioassays are currently the only method for phenotyping resistance. They require large numbers of mosquitoes for testing, the availability of a susceptible comparator strain, and often insectary facilities. This study aimed to trial the novel use of rapid evaporative ionization mass spectrometry (REIMS) for the identification of insecticide resistance in mosquitoes. No sample preparation is required for REIMS and analysis can be rapidly conducted within hours. Temephos resistant Aedes aegypti (Linnaeus) larvae from Cúcuta, Colombia and temephos susceptible larvae from two origins (Bello, Colombia, and the lab reference strain New Orleans) were analyzed using REIMS. We tested the ability of REIMS to differentiate three relevant variants: population source, lab versus field origin, and response to insecticide. The classification of these data was undertaken using linear discriminant analysis (LDA) and random forest. Classification models built using REIMS data were able to differentiate between Ae. aegypti larvae from different populations with 82% (±0.01) accuracy, between mosquitoes of field and lab origin with 89% (±0.01) accuracy and between susceptible and resistant larvae with 85% (±0.01) accuracy. LDA classifiers had higher efficiency than random forest with this data set. The high accuracy observed here identifies REIMS as a potential new tool for rapid identification of resistance in mosquitoes. We argue that REIMS and similar modern phenotyping alternatives should complement existing insecticide resistance management tools.


Assuntos
Aedes , Inseticidas , Animais , Resistência a Inseticidas , Inseticidas/farmacologia , Larva , Espectrometria de Massas , Mosquitos Vetores , Temefós
20.
PLoS One ; 17(9): e0274320, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36083983

RESUMO

Outdoor and early biting by mosquitoes challenge the efficacy of bed nets and indoor residual spraying against malaria in the Greater Mekong Subregion. The objective of this study was to assess the efficacy of outdoor residual spraying (ORS) for malaria vector-control in this region. A cluster randomized controlled trial was conducted between July 2018 and April 2019 in twelve villages in Karen (Kayin) state, Myanmar. Villages were randomly assigned to receive either a single round of ORS with a capsule suspension of lambda-cyhalothrin for two days in October or no intervention (six villages per group). The primary endpoint was the biting rate of malaria mosquitoes assessed with human-landing catch and cow-baited trap collection methods, and was analyzed with a Bayesian multi-level model. In the intervention villages, the proportion of households located within the sprayed area ranged between 42 and 100% and the application rate ranged between 63 and 559 g of active ingredient per hectare. At baseline, the median of Anopheles biting rate estimates in the twelve villages was 2 bites per person per night (inter-quartile range [IQR] 0-5, range 0-48) indoors, 6 bites per person per night (IQR 2-16, range 0-342) outdoors and 206 bites per cow per night (IQR 83-380, range 19-1149) in the cow-baited trap. In intention-to-treat analysis, it was estimated that ORS reduced biting rate by 72% (95% confidence interval [CI] 63-79) from Month 0 to Month 3 and by 79% (95% CI 62-88) from Month 4 to Month 6, considering control villages as the reference. In conclusion, ORS rapidly reduces the biting rates of malaria mosquitoes in a Southeast Asian setting where the vectors bite mostly outdoors and at a time when people are not protected by mosquito bed nets.


Assuntos
Anopheles , Malária , Animais , Teorema de Bayes , Bovinos , Comportamento Alimentar , Feminino , Humanos , Malária/epidemiologia , Malária/prevenção & controle , Controle de Mosquitos/métodos , Mosquitos Vetores , Mianmar/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...