Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.798
Filtrar
1.
Curr Issues Mol Biol ; 43(2): 932-940, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34449548

RESUMO

Prostate cancer (PCa) is addressed as the second most common form of onco-threat worldwide and is usually considered as the major cause of mortality in men. Recent times have seen a surge in exploration of plant-derived components for alternative therapeutical interventions against different oncological malignancies. Dammarolic acid or Asiatic acid (AsA) is an aglycone asiaticoside that has been reported for its efficacy in several ailments including cancer. The current study aimed to investigate the anti-proliferative potency of AsA against human prostate cancer PC-3 cells. Purified AsA was diluted and PC-3 cells were exposed to 20, 40, and 80 µM concentration and incubated for 24 h. Post-exposure, PC-3 cells showcased a substantial loss of their viability at 20 µM (p < 0.05), moreover, this reduction in cell viability escalated proportionally with an increase in AsA at concentrations of 40 and 80 µM (p < 0.01; p < 0.001) respectively. AsA-impelled loss of cellular viability was also evident from the acridine orange-stained photomicrographs, which was also used to quantify the viable and apoptotic cells using Image J software. Additionally, quantification of ROS within PC-3 cells also exhibited an increase in DCF-DA-mediated fluorescence intensity post-exposure to AsA in a dose-dependent manner. AsA-induced apoptosis in PC-3 cells was shown to be associated with augmented activity of caspase-3 proportionally to the AsA concentrations. Thus, initially, this exploratory study explicated that AsA treatment leads to anti-proliferative effects in PC-3 cells by enhancing oxidative stress and inciting apoptosis en route to onset of nuclear fragmentation.


Assuntos
NF-kappa B/antagonistas & inibidores , Triterpenos Pentacíclicos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Anti-Infecciosos/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Masculino , NF-kappa B/metabolismo , Células PC-3 , Neoplasias da Próstata/metabolismo , Triterpenos/farmacologia
2.
Cell Mol Life Sci ; 78(17-18): 6161-6200, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34333711

RESUMO

Despite advances in the understanding of the molecular mechanisms underlying the basic biology and pathogenesis of pediatric central nervous system (CNS) malignancies, patients still have an extremely unfavorable prognosis. Over the years, a plethora of natural and synthetic compounds has emerged for the pharmacologic intervention of the NF-kB pathway, one of the most frequently dysregulated signaling cascades in human cancer with key roles in cell growth, survival, and therapy resistance. Here, we provide a review about the state-of-the-art concerning the dysregulation of this hub transcription factor in the most prevalent pediatric CNS tumors: glioma, medulloblastoma, and ependymoma. Moreover, we compile the available literature on the anti-proliferative effects of varied NF-kB inhibitors acting alone or in combination with other therapies in vitro, in vivo, and clinical trials. As the wealth of basic research data continues to accumulate, recognizing NF-kB as a therapeutic target may provide important insights to treat these diseases, hopefully contributing to increase cure rates and lower side effects related to therapy.


Assuntos
Neoplasias do Sistema Nervoso Central/patologia , NF-kappa B/metabolismo , 2-Metoxiestradiol/química , 2-Metoxiestradiol/metabolismo , 2-Metoxiestradiol/uso terapêutico , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Neoplasias do Sistema Nervoso Central/metabolismo , Criança , Glioma/metabolismo , Glioma/patologia , Proteínas Hedgehog/antagonistas & inibidores , Proteínas Hedgehog/metabolismo , Humanos , Meduloblastoma/metabolismo , Meduloblastoma/patologia , NF-kappa B/antagonistas & inibidores , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/metabolismo
3.
Vet Microbiol ; 261: 109189, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34375914

RESUMO

Transmissible gastroenteritis (TGE) is an acute viral disease and characterized as severe acute inflammation response that leads to diarrhea, vomiting, and high lethality of piglets. Transmissible gastroenteritis virus (TGEV), a member of coronavirus, is the pathogen of TGE. We previously found NF-κB pathway was activated and 65 miRNAs were changed in response to inflammation caused by TGEV in cell line porcine intestinal epithelial cells-jejunum 2 (IPEC-J2). Bioinformatics results showed that these altered miRNAs were relevant to inflammation. In this study, the candidate targets of differentially expressed (DE) miRNAs were predicted and analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Based on the results of KEGG analysis, miR-885-3p might participate in regulating activation of NF-κB pathway and TNF pathway. To study the function of miR-885-3p, miR-885-3p mimics and inhibitors were artificially synthesized and respectively used for overexpression and silence of miR-885-3p in cells. Our results showed that miR-885-3p inhibited NF-κB signaling pathway and tumor necrosis factor-α (TNF-α) production. B-cell CLL/lymphoma 10 (Bcl-10) was identified as the target of miR-885-3p, and promoted NF-κB pathway activation and TNF-α production. It was found that TGEV open reading frame 3b (TGEV-ORF3b) suppressed Bcl-10 expression, activation of NF-κB pathway, and TNF-α production by uniquely up-regulated miR-885-3p expression. Overall, the results indicated that TGEV-ORF3b counteracted NF-κB pathway and TNF-α via regulating miR-885-3p and Bcl-10.


Assuntos
Proteína 10 de Linfoma CCL de Células B/metabolismo , Gastroenterite Suína Transmissível/virologia , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Vírus da Gastroenterite Transmissível/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Proteína 10 de Linfoma CCL de Células B/genética , Linhagem Celular , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Regulação da Expressão Gênica , Mucosa Intestinal/citologia , MicroRNAs/genética , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , Suínos , Regulação para Cima , Proteínas Virais
4.
Am J Physiol Renal Physiol ; 321(2): F225-F235, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34229478

RESUMO

Oxygen homeostasis disturbances play a critical role in the pathogenesis of acute kidney injury (AKI). The transcription factor hypoxia-inducible factor-1 (HIF-1) is a master regulator of adaptive responses to hypoxia. Aside from posttranslational hydroxylation, the mechanism of HIF-1 regulation in AKI remains largely unclear. In this study, the mechanism of HIF-α regulation in AKI was investigated. We found that tubular HIF-1α expression significantly increased at the transcriptional level in ischemia-reperfusion-, unilateral ureteral obstruction-, and sepsis-induced AKI models, which was closely associated with macrophage-dependent inflammation. Meanwhile, NF-κB, which plays a central role in the inflammation response, was involved in the increasing expression of HIF-1α in AKI, as evidenced by pharmacological modulation (NF-κB inhibitor BAY11-7082). Mechanistically, NF-κB directly bound to the HIF-1α promoter and enhanced its transcription, which occurred not only under hypoxic conditions but also under normoxic conditions. Moreover, the induced HIF-1α by inflammation protected against tubular injury in AKI. Thus, our findings not only provide novel insights into HIF-1 regulation in AKI but also offer to understand the pathophysiology of kidney diseases.NEW & NOTEWORTHY Here, the mechanism of hypoxia-inducible factor-α (HIF-α) regulation in acute kidney injury (AKI) was investigated. We found that tubular HIF-1α expression significantly increased at the transcriptional level, which was closely associated with macrophage-dependent inflammation. Meanwhile, NF-κB was involved in the increasing expression of HIF-1α in AKI. Mechanistically, NF-κB directly bound to the HIF-1α promoter and enhanced its transcription. Our findings not only provide novel insights into HIF-1 regulation in AKI but also offer to understand the pathophysiology of kidney diseases.


Assuntos
Injúria Renal Aguda/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Rim/metabolismo , NF-kappa B/metabolismo , Injúria Renal Aguda/genética , Animais , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Inflamação/genética , Inflamação/metabolismo , Rim/efeitos dos fármacos , Camundongos , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , Nitrilas/farmacologia , Sulfonas/farmacologia
5.
Molecules ; 26(14)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34299477

RESUMO

As a traditional Chinese medicine, Patrinia scabiosifolia Link has been used to treat various inflammatory-related diseases, and recent studies have shown that it possesses potent anti-inflammatory activity. Therefore, phytochemical investigation on whole plants of P. scabiosifolia were carried out, which led to the isolation of two new iridoid glucosides, patriniscabiosides A (1) and B (2), together with six known compounds (3-8). The structural elucidation of all compounds was performed by HRESIMS and extensive spectroscopic analyses including IR, 1D, 2D NMR, and electronic circular dichroism (ECD). All the isolated compounds were tested for their anti-inflammatory activity using the NF-κB-Dependent Reporter Gene Expression Assay, and compound 3 displayed anti-inflammatory activity through the inhibition of the NF-κB pathway, with an inhibitory rate of 73.44% at a concentration of 10 µM.


Assuntos
Anti-Inflamatórios/farmacologia , Glucosídeos Iridoides/farmacologia , NF-kappa B/antagonistas & inibidores , Patrinia/química , Anti-Inflamatórios/química , Células HEK293 , Humanos , Estrutura Molecular
6.
Clin Immunol ; 230: 108793, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34242749

RESUMO

Rheumatoid arthritis (RA) is characterized by systemic synovitis leading to joint destruction in which imbalances in pro-inflammatory and anti-inflammatory cytokines promote the induction of autoimmunity. Some pro-inflammatory cytokines can trigger the signaling pathways which responsible for immune-mediated inflammation in RA, and the activated signaling pathways produce pro-inflammatory cytokines, resulting in aggravation of RA. Hence, understanding of the signaling pathways and their inhibitors might be advantageous in the development of therapeutic targets and new drugs for RA. In the current review, we summarize the signaling pathways involved in the pathogenesis of RA as well as the potential role of specific inhibitors in its management. We hope this paper may serve a reference for future studies on signaling pathways implicated in the pathogenesis of RA and benefit the treatment of RA.


Assuntos
Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Transdução de Sinais/imunologia , Artrite Reumatoide/etiologia , Citocinas/imunologia , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Inibidores de Janus Quinases/farmacologia , Janus Quinases/imunologia , Janus Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/imunologia , Modelos Imunológicos , NF-kappa B/antagonistas & inibidores , NF-kappa B/imunologia , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Proteínas Proto-Oncogênicas c-akt/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
J Enzyme Inhib Med Chem ; 36(1): 1622-1631, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34284695

RESUMO

Some methoxy-, hydroxyl-, pyridyl-, or fluoro-substituted 3,5-bis(arylidene)-4-piperidones (BAPs) could reduce inflammation and promote hepatoma cell apoptosis by inhibiting activation of NF-κB, especially after introduction of trifluoromethyl. Herein, a series of trifluoromethyl-substituted BAPs (4-30) were synthesised and the biological activities were evaluated. We successfully found the most potential 16, which contains three trifluoromethyl substituents and exhibits the best anti-tumour and anti-inflammatory activities. Preliminary mechanism research revealed that 16 could promote HepG2 cell apoptosis in a dose-dependent manner by down-regulating the expression of Bcl-2 and up-regulating the expression of Bax, C-caspase-3. Meanwhile, 16 inhibited activation of NF-κB by directly inhibiting the phosphorylation of p65 and IκBα induced by LPS, together with indirectly inhibiting MAPK pathway, thereby exhibiting both anti-hepatoma and anti-inflammatory activities. Molecular docking confirmed that 16 could bind to the active sites of Bcl-2, p65, and p38 reasonably. The above results suggested that 16 has enormous potential to be developed as a multifunctional agent for the clinical treatment of liver cancers and inflammatory diseases.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , NF-kappa B/antagonistas & inibidores , Piperidonas/farmacologia , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Simulação de Acoplamento Molecular , Estrutura Molecular , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Piperidonas/síntese química , Piperidonas/química , Relação Estrutura-Atividade
8.
Int J Mol Sci ; 22(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200709

RESUMO

Sepsis is characterized by multiple-organ dysfunction caused by the dysregulated host response to infection. Until now, however, the role of the Wnt signaling has not been fully characterized in multiple organs during sepsis. This study assessed the suppressive effect of a Wnt signaling inhibitor, Wnt-C59, in the kidney, lung, and liver of lipopolysaccharide-induced endotoxemic mice, serving as an animal model of sepsis. We found that Wnt-C59 elevated the survival rate of these mice and decreased their plasma levels of proinflammatory cytokines and organ-damage biomarkers, such as BUN, ALT, and AST. The Wnt/ß-catenin and NF-κB pathways were stimulated and proinflammatory cytokines were upregulated in the kidney, lung, and liver of endotoxemic mice. Wnt-C59, as a Wnt signaling inhibitor, inhibited the Wnt/ß-catenin pathway, and its interaction with the NF-κB pathway, which resulted in the inhibition of NF-κB activity and proinflammatory cytokine expression. In multiple organs of endotoxemic mice, Wnt-C59 significantly reduced the ß-catenin level and interaction with NF-κB. Our findings suggest that the anti-endotoxemic effect of Wnt-C59 is mediated via reducing the interaction between ß-catenin and NF-κB, consequently suppressing the associated cytokine upregulation in multiple organs. Thus, Wnt-C59 may be useful for the suppression of the multiple-organ dysfunction during sepsis.


Assuntos
Benzenoacetamidas/farmacologia , Citocinas/metabolismo , Endotoxemia/tratamento farmacológico , Lipopolissacarídeos/toxicidade , NF-kappa B/antagonistas & inibidores , Piridinas/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/antagonistas & inibidores , Animais , Citocinas/genética , Endotoxemia/induzido quimicamente , Endotoxemia/metabolismo , Endotoxemia/patologia , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Domínios e Motivos de Interação entre Proteínas , beta Catenina/metabolismo
9.
Chem Biodivers ; 18(7): e2100130, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34080308

RESUMO

The polysaccharides of the Chinese herbal medicine Dendrobium huoshanense exhibit anti-inflammatory effects in multiple organs through regulating the immune responses. In the present study, we constructed ulcerative colitis (UC) model rats using dextran sulfate sodium to investigate the anti-inflammatory effects of D. huoshanense polysaccharides (DHP). After oral administration of DHP for two weeks, the indices of UC symptoms, including the ratio of colon weight to length, Disease Activity Index (DAI), and Colon Mucosal Damage Index (CMDI), all decreased significantly compared with the UC model group. The histological sections also revealed better cell orders in DHP treatments than in the UC model rats. Moreover, in treatment with high dose of DHP (200 mg/kg), the treatment efficacy arrived the similar levels to those in the treatment with 300 mg/kg sulfasalazine, which is a typical medicine to treat UC. These results indicated that DHP has a high efficacy to treat UC in model rats. Furthermore, serum levels of interleukin-1ß, tumor necrosis factor-α, interleukin-17, and transforming growth factor-ß were assessed using the enzyme linked immunosorbent assay (ELISA) method, and the levels of nuclear factor-κB in colon tissue sections were determined using the immunohistochemical method. The results showed that all these indices decreased significantly after administration of DHP in UC model rats, which might be the mechanisms underlying the DHP-suppressed UC inflammation. Overall, this study indicated that DHP might be directly used to treat UC and is a promising source to develop novel drugs against UC.


Assuntos
Colite Ulcerativa/tratamento farmacológico , Dendrobium/química , Inflamação/prevenção & controle , NF-kappa B/antagonistas & inibidores , Polissacarídeos/farmacologia , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/metabolismo , Sulfato de Dextrana/administração & dosagem , Modelos Animais de Doenças , Feminino , Masculino , NF-kappa B/metabolismo , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
10.
Mol Med Rep ; 24(2)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34080024

RESUMO

Fibroblast­like synoviocytes (FLS) in the synovial lining play a key role in the pathological process of rheumatoid arthritis (RA), which produce pro­inflammatory mediators to perpetuate inflammation and proteases to contribute to cartilage destruction. Ginkgolide J (GJ) is a subclass of ginkgolides (GGs) that exhibits anti­inflammatory activity. In the present study, the protective effect of GJ on lipopolysaccharide (LPS)­treated human synovial cells SW982 and its related mechanisms were investigated using various methods, including ELISA, Griess assay, western blotting, immunofluorescence analysis and p38 kinase activity assay. The results revealed that GJ pretreatment significantly attenuated LPS­induced excess production of pro­inflammatory mediators in SW982 cells via suppression of tumor necrosis factor­α/interleukin (IL)­1ß/IL­18/NF­κB/NLR family pyrin domain containing 3, prostaglandin E2/cyclooxygenase­2 and inducible nitric oxide synthase/nitric oxide signaling. Mechanistic studies revealed that p38 activation contributed to the LPS­induced inflammatory response, and GJ pretreatment dose­dependently attenuated p38 activation, indicating that the suppressive effect of GJ was achieved by targeting p38 signaling. These findings may contribute to the prevention and treatment of RA.


Assuntos
Anti-Inflamatórios/farmacologia , Artrite Reumatoide/prevenção & controle , Ginkgolídeos/farmacologia , Inflamação/prevenção & controle , Lactonas/farmacologia , Substâncias Protetoras/farmacologia , Sinoviócitos/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Citocinas/metabolismo , Dinoprostona/antagonistas & inibidores , Dinoprostona/metabolismo , Humanos , Inflamação/induzido quimicamente , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sinoviócitos/citologia , Sinoviócitos/metabolismo
11.
J Med Chem ; 64(13): 9193-9216, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34138563

RESUMO

Failure to resolve inflammation underlies many prevalent pathologies. Recent insights have identified lipid mediators, typified by lipoxins (LXs), as drivers of inflammation resolution, suggesting potential therapeutic benefit. We report the asymmetric preparation of novel quinoxaline-containing synthetic-LXA4-mimetics (QNX-sLXms). Eight novel compounds were screened for their impact on inflammatory responses. Structure-activity relationship (SAR) studies showed that (R)-6 (also referred to as AT-02-CT) was the most efficacious and potent anti-inflammatory compound of those tested. (R)-6 significantly attenuated lipopolysaccharide (LPS)- and tumor-necrosis-factor-α (TNF-α)-induced NF-κB activity in monocytes and vascular smooth muscle cells. The molecular target of (R)-6 was investigated. (R)-6 activated the endogenous LX receptor formyl peptide receptor 2 (ALX/FPR2). The anti-inflammatory properties of (R)-6 were further investigated in vivo in murine models of acute inflammation. Consistent with in vitro observations, (R)-6 attenuated inflammatory responses. These results support the therapeutic potential of the lead QNX-sLXm (R)-6 in the context of novel inflammatory regulators.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Quinoxalinas/farmacologia , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/metabolismo , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Estrutura Molecular , Monócitos/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Quinoxalinas/síntese química , Quinoxalinas/química , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
12.
J Med Chem ; 64(13): 9217-9237, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34181850

RESUMO

Development of mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) inhibitors is of great value and significance in the treatment of neoplastic disorders and inflammatory and autoimmune diseases. However, there is a lack of effective MALT1 inhibitors in clinic. Herein, a novel class of potent 5-oxo-1-thioxo-4,5-dihydro-1H-thiazolo[3,4-a]quinazoline-based MALT1 inhibitors and their covalent derivatives were first identified and designed through high-throughput screening. We demonstrated that compounds 15c, 15e, and 20c effectively inhibited the MALT1 protease and displayed selective cytotoxicity to activated B cell-like diffuse large B cell lymphoma with low single-digit micromolar potency. Furthermore, compound 20c specifically repressed NF-κB signaling and induced cell apoptosis in MALT1-dependent TMD8 cells in a dose-dependent manner. More importantly, 20c showed good pharmacokinetic properties and antitumor efficacy with no significant toxicity in the TMD8 xenograft tumor model. Collectively, this study provides valuable lead compounds of MALT1 inhibitors for further structural optimization and antitumor mechanism study.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Estrutura Molecular , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
13.
Eur J Med Chem ; 223: 113576, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34153577

RESUMO

Using cheminformatics tools RDKit and literature investigation, four series of 24 thienopyrimidine/N-methylpicolinamide derivatives substituted with pyrimidine were designed, synthesized and evaluated for activities against three cancer cell lines (MDA-MB-231, HCT116 and A549), TAK1 kinase and NF-κB signaling pathway. Almost all compounds showed selectivity toward the A549 cell lines and the most promising compound 38 could inhibit TAK1 kinase and NF-κB signaling pathway with the IC50 values of 0.58 and 0.84 µM. Moreover, 38 can induce cell cycle arrest of A549 cells at the G2/M checkpoint with 30.57% and induce apoptosis (34.94%) in a concentration-dependent manner. And western blot showed that compound 38 could inhibit TNF-α-induced IκBα phosphorylation, IκBα degradation, p65 phosphorylation and TAK1 phosphorylation, and reduce the expression of p65. What's more, the studies of docking, molecular dynamics, MM/PBSA and frequency analysis theoretically supported the conclusions of the bioevaluation.


Assuntos
Antineoplásicos/farmacologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Ácidos Picolínicos/farmacologia , Pirimidinas/farmacologia , Tiofenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , MAP Quinase Quinase Quinases/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , NF-kappa B/metabolismo , Ácidos Picolínicos/síntese química , Ácidos Picolínicos/metabolismo , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/síntese química , Pirimidinas/metabolismo , Tiofenos/síntese química , Tiofenos/metabolismo
14.
Anticancer Res ; 41(6): 2867-2874, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34083277

RESUMO

BACKGROUND/AIM: Non-small cell lung cancer (NSCLC) is the most common type of lung cancer with poor prognosis. Lenvatinib is a multi-kinase inhibitor that has the potential to suppress tumor progression. Our previous study suggested that lenvatinib induces cytotoxicity and apoptosis in CL-1-5-F4 cells in vitro. However, whether lenvatinib suppresses NSCLC progression in vivo remains unclear. MATERIALS AND METHODS: Tumor growth inhibition and normal tissue toxicity evaluation following lenvatinib treatment were performed on CL-1-5-F4-bearing mice. RESULTS: Tumor growth calculated by caliper and living cell intensity decreased by lenvatinib treatment as analysed by bioluminescence imaging. Phosphorylation of AKT, NF-κB, and NF-κB downstream proteins involved in tumor progression were reduced by lenvatinib in the tumor tissue. No pathological changes were found in the liver, kidney, and spleen after lenvatinib treatment. CONCLUSION: Induction of apoptosis and suppression of AKT/NF-κB were associated with lenvatinib-induced inhibition of the progression of NSCLC in vivo.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , NF-kappa B/antagonistas & inibidores , Compostos de Fenilureia/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Quinolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Progressão da Doença , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Molecules ; 26(11)2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-34071080

RESUMO

The main purpose of this study was to investigate whether the blockade of the interaction between the receptor activator of nuclear factor-κB (NF-ĸB) ligand (RANKL) and its receptor RANK as well as the blockade of NF-κB inhibitor kinase (IKK) and of NF-κB translocation have the potential to suppress the pathogenesis of allergic asthma by inhibition and/or enhancement of the production by CD4+ and CD8+ T cells of important cytokines promoting (i.e., IL-4 and IL-17) and/or inhibiting (i.e., IL-10 and TGF-ß), respectively, the development of allergic asthma. Studies using ovalbumin(OVA)-immunized mice have demonstrated that all the tested therapeutic strategies prevented the OVA-induced increase in the absolute number of IL-4- and IL-17-producing CD4+ T cells (i.e., Th2 and Th17 cells, respectively) indirectly, i.e., through the inhibition of the clonal expansion of these cells in the mediastinal lymph nodes. Additionally, the blockade of NF-κB translocation and RANKL/RANK interaction, but not IKK, prevented the OVA-induced increase in the percentage of IL-4-, IL-10- and IL-17-producing CD4+ T cells. These latter results strongly suggest that both therapeutic strategies can directly decrease IL-4 and IL-17 production by Th2 and Th17 cells, respectively. This action may constitute an important mechanism underlying the anti-asthmatic effect induced by the blockade of NF-κB translocation and of RANKL/RANK interaction. Thus, in this context, both these therapeutic strategies seem to have an advantage over the blockade of IKK. None of the tested therapeutic strategies increased both the absolute number and frequency of IL-10- and TGF-ß-producing Treg cells, and hence they lacked the potential to inhibit the development of the disease via this mechanism.


Assuntos
Asma/imunologia , Asma/metabolismo , Animais , Asma/fisiopatologia , Linfócitos T CD8-Positivos/imunologia , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Hipersensibilidade/fisiopatologia , Imunoglobulina E/imunologia , Interleucina-17/imunologia , Interleucina-4/imunologia , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Células Th17/efeitos dos fármacos , Células Th2/efeitos dos fármacos
16.
Int J Mol Sci ; 22(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068193

RESUMO

In this study, we investigate the immunomodulatory effects of a novel antimicrobial peptide, YD1, isolated from Kimchi, in both in vitro and in vivo models. We establish that YD1 exerts its anti-inflammatory effects via up-regulation of the Nrf2 pathway, resulting in the production of HO-1, which suppresses activation of the NF-κB pathway, including the subsequent proinflammatory cytokines IL-1ß, IL-6, and TNF-α. We also found that YD1 robustly suppresses nitric oxide (NO) and prostaglandin E2 (PGE2) production by down-regulating the expression of the upstream genes, iNOS and COX-2, acting as a strong antioxidant. Collectively, YD1 exhibits vigorous anti-inflammatory and antioxidant activity, presenting it as an interesting potential therapeutic agent.


Assuntos
Anti-Inflamatórios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Inflamação/prevenção & controle , Proteínas de Membrana/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Animais , Citocinas/metabolismo , Edema/induzido quimicamente , Edema/metabolismo , Edema/patologia , Edema/prevenção & controle , Heme Oxigenase-1/genética , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Proteínas de Membrana/genética , Camundongos , Fator 88 de Diferenciação Mieloide/antagonistas & inibidores , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
17.
FASEB J ; 35(7): e21497, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34152015

RESUMO

Despite the increasing understanding of the pathophysiology of hepatic fibrosis, the therapies to combat it remain inadequate. Fluorofenidone (AKF-PD) is a novel pyridone agent able to ameliorate hepatic fibrosis in an experimental hepatic fibrosis model induced by dimethylnitrosamine. However, the underlying mechanism remains to be further elucidated. In light of the critical role of the NF-κB pathway in inflammation and hepatic fibrosis, together with the preliminary finding that AKF-PD decreases the release of proinflammatory cytokines in the endotoxemia and unilateral ureteral occlusion model, the aim of this study was to explore whether AKF-PD exerts an antifibrotic effect in hepatic fibrosis by inhibiting inflammation and suppressing the activation of the NF-κB pathway in vivo and in vitro. To test this possibility, the effect of AKF-PD on hepatic fibrosis models induced by both carbon tetrachloride (CCL4 ) and porcine serum (PS) was investigated. Our results showed that AKF-PD treatment ameliorated hepatic injury and fibrosis in both models. Furthermore, the administration of AKF-PD induced a robust anti-inflammatory reaction revealed by the downregulation of the proinflammatory cytokines as well as the suppression of the infiltration of inflammatory cells in the fibrotic liver. The analysis of the mechanism of action demonstrated that the attenuation of the production of proinflammatory cytokines and chemokines mediated by AKF-PD in vivo and in vitro were accompanied by the suppression in the activation of the NF-κB signaling pathway. In conclusion, AKF-PD might be considered as an antifibrotic agent attenuating hepatic inflammation and fibrosis potentially through the suppression of the NF-κB pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Fibrose/tratamento farmacológico , Inflamação/tratamento farmacológico , Hepatopatias/prevenção & controle , NF-kappa B/antagonistas & inibidores , Substâncias Protetoras/farmacologia , Piridonas/farmacologia , Animais , Células Cultivadas , Fibrose/metabolismo , Fibrose/patologia , Inflamação/metabolismo , Inflamação/patologia , Hepatopatias/metabolismo , Hepatopatias/patologia , Masculino , Ratos , Ratos Sprague-Dawley
18.
Life Sci ; 280: 119752, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34171382

RESUMO

AIMS: Angiotensin-converting enzyme 2 (ACE2) is a key negative regulator of the renin-angiotensin system and also a major receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Here, we reveal a role for NF-κB in human lung cell expression of ACE2, and we further explore the potential utility of repurposing NF-κB inhibitors to downregulate ACE2. MAIN METHODS: Expression of ACE2 was assessed by Western blotting and RT-qPCR in multiple human lung cell lines with or without NF-κB inhibitor treatment. Surface ACE2 expression and intracellular reactive oxygen species (ROS) levels were measured with flow cytometry. p50 was knocked down with siRNA. Cytotoxicity was monitored by PARP cleavage and MTS assay. KEY FINDINGS: Pyrrolidine dithiocarbamate (PDTC), an NF-κB inhibitor, suppressed endogenous ACE2 mRNA and protein expression in H322M and Calu-3 cells. The ROS level in H322M cells was increased after PDTC treatment, and pretreatment with N-acetyl-cysteine (NAC) reversed PDTC-induced ACE2 suppression. Meanwhile, treatment with hydrogen peroxide augmented ACE2 suppression in H322M cells with p50 knockdown. Two repurposed NF-κB inhibitors, the anthelmintic drug triclabendazole and the antiprotozoal drug emetine, also reduced ACE2 mRNA and protein levels. Moreover, zinc supplementation augmented the suppressive effects of triclabendazole and emetine on ACE2 expression in H322M and Calu-3 cells. SIGNIFICANCE: These results suggest that ACE2 expression is modulated by ROS and NF-κB signaling in human lung cells, and the combination of zinc with triclabendazole or emetine shows promise for clinical treatment of ACE2-related disease.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , Antiparasitários/farmacologia , Regulação para Baixo/efeitos dos fármacos , Emetina/farmacologia , NF-kappa B/antagonistas & inibidores , Triclabendazol/farmacologia , Zinco/farmacologia , COVID-19/tratamento farmacológico , COVID-19/genética , Linhagem Celular , Reposicionamento de Medicamentos , Humanos , Pulmão/citologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pirrolidinas/farmacologia , Tiocarbamatos/farmacologia
19.
Toxicol Lett ; 349: 12-29, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34089816

RESUMO

The cholestatic liver injury could occur in response to a variety of diseases or xenobiotics. Although cholestasis primarily affects liver function, it has been well-known that other organs such as the kidney could be influenced in cholestatic patients. Severe cholestasis could lead to tissue fibrosis and organ failure. Unfortunately, there is no specific therapeutic option against cholestasis-induced organ injury. Hence, finding the mechanism of organ injury during cholestasis could lead to therapeutic options against this complication. The accumulation of potentially cytotoxic compounds such as hydrophobic bile acids is the most suspected mechanism involved in the pathogenesis of cholestasis-induced organ injury. A plethora of evidence indicates a role for the inflammatory response in the pathogenesis of several human diseases. Here, the role of nuclear factor-kB (NFkB)-mediated inflammatory response is investigated in an animal model of cholestasis. Bile duct ligated (BDL) animals were treated with sulfasalazine (SSLZ, 10 and 100 mg/kg, i.p) as a potent inhibitor of NFkB signaling. The NFkB proteins family activity in the liver and kidney, serum and tissue levels of pro-inflammatory cytokines, tissue biomarkers of oxidative stress, serum markers of organ injury, and the liver and kidney histopathological alterations and fibrotic changes. The oxidative stress-mediated inflammatory-related indices were monitored in the kidney and liver at scheduled time intervals (3, 7, and 14 days after BDL operation). Significant increase in serum and urine markers of organ injury, besides changes in biomarkers of oxidative stress and tissue histopathology, were evident in the liver and kidney of BDL animals. The activity of NFkB proteins (p65, p50, p52, c-Rel, and RelB) was significantly increased in the liver and kidney of cholestatic animals. Serum and tissue levels of pro-inflammatory cytokines (IL-1ß, IL-2, IL-6, IL-7, IL-12, IL-17, IL-18, IL-23, TNF-α, and INF-γ) were also higher than sham-operated animals. Moreover, TGF- ß, α-SMA, and tissue fibrosis (Trichrome stain) were evident in cholestatic animals' liver and kidneys. It was found that SSLZ (10 and 100 mg/kg/day, i.p) alleviated cholestasis-induced hepatic and renal injury. The effect of SSLZ on NFkB signaling and suppression of pro-inflammatory cytokines could play a significant role in its protective role in cholestasis. Based on these data, NFkB signaling could receive special attention to develop therapeutic options to blunt cholestasis-induced organ injury.


Assuntos
Anti-Inflamatórios/farmacologia , Colestase/tratamento farmacológico , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Nefropatias/prevenção & controle , Rim/efeitos dos fármacos , Cirrose Hepática/prevenção & controle , Fígado/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Sulfassalazina/farmacologia , Animais , Colestase/metabolismo , Colestase/patologia , Ducto Colédoco/cirurgia , Modelos Animais de Doenças , Regulação para Baixo , Rim/metabolismo , Rim/patologia , Nefropatias/metabolismo , Nefropatias/patologia , Ligadura , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...