Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.056
Filtrar
1.
Food Res Int ; 188: 114475, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823838

RESUMO

This work aimed to develop edible emulsion-based barriers in the form of chitosan composite films, with a focus on assessing the impacts of carnauba wax, rosin resin, and zinc oxide nanoparticles on their properties. Six films were produced by casting using chitosan as polymer base and glycerol as plasticizer. Acetic acid and polysorbate 80 were also used to facilitate the dissolution and mixing of the components. The six filmogenic solutions contained chitosan at 1.2% w/v, wax or resin content with 0 or 0.6% m/v and ZnO with 0 or 0.05% m/v. The dried films were characterized according to their chemical, barrier, mechanical, thermal and optical properties. All treatments resulted in flexible films. Chitosan films appeared smoother and more uniform under SEM imaging, while carnauba wax films displayed roughness due to their hydrophobic nature. Wax and resin films were less transparent and water soluble than the chitosan-only films. On the other hand, the addition of ZnO in the formulations increased the solubility of the films. The sorption degree was in line with the solubility results, i.e., films with ZnO presented higher sorption degree and solubility values. All treatments showed low or non-light UV transmission, indicating that the films provide good barrier to UV light. In the visible light region, films of resin with ZnO showed the lowest transmittance values, hence offering a good barrier to visible light. Among the evaluated films, chitosan, and resin films with ZnO nanoparticles were more rigid and resistant to deformation. Overall, films produced with rosin resin and ZnO nanoparticles showed potential improvements in barrier, mechanical, thermal, and optical properties, mainly due to their low water solubility, good UV protection and low permeability to water vapor and oxygen, which are suitable for using in formulations, intended to produce edible films and coatings.


Assuntos
Quitosana , Nanocompostos , Resinas Vegetais , Solubilidade , Ceras , Óxido de Zinco , Quitosana/química , Óxido de Zinco/química , Nanocompostos/química , Resinas Vegetais/química , Ceras/química , Nanopartículas/química , Embalagem de Alimentos/métodos , Permeabilidade
2.
Food Res Int ; 188: 114532, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823889

RESUMO

Luteolin has anti-inflammatory, antioxidant, and anti-tumor functions, but its poor water solubility and stability limit its applications in foods as a functional component. In this study, the nanocomposites loading luteolin (Lut) with soybean protein isolate (SPI), soluble soybean polysaccharide (SSPS) and/or rhamnolipid (Rha) were prepared by layer-by-layer shelf assembly method, and their properties were also evaluated. The results showed that Rha/SPI/Lut had the smallest particle size (206.24 nm) and highest loading ratio (8.03 µg/mg) while Rha/SSPS/SPI/Lut had the highest encapsulation efficiency (82.45 %). Rha interacted with SPI through hydrophobic interactions as the main driving force, while SSPS attached to SPI with only hydrogen bonding. Furthermore, the synergistic effect between Rha and SSPS was observed in Rha/SSPS/SPI/Lut complex, in consequence, it had the best thermal and storage stability, and the slowest release in gastrointestinal digestion. Thus, this approach provided an alternative way for the application of luteolin in functional foods.


Assuntos
Digestão , Luteolina , Tamanho da Partícula , Proteínas de Soja , Luteolina/química , Proteínas de Soja/química , Nanocompostos/química , Polissacarídeos/química , Interações Hidrofóbicas e Hidrofílicas , Glycine max/química , Solubilidade , Alimento Funcional , Trato Gastrointestinal/metabolismo
3.
Food Microbiol ; 122: 104559, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38839223

RESUMO

Listeria monocytogenes is a concerning foodborne pathogen incriminated in soft cheese and meat-related outbreaks, highlighting the significance of applying alternative techniques to control its growth in food. In the current study, eco-friendly zinc oxide nanoparticles (ZnO-NPs) were synthesized using Rosmarinus officinalis, Punica granatum, and Origanum marjoram extracts individually. The antimicrobial efficacy of the prepared ZnO-NPs against L. monocytogenes was assessed using the agar well diffusion technique. Data indicated that ZnO-NPs prepared using Origanum marjoram were the most effective; therefore, they were used for the preparation of gelatin-based bionanocomposite coatings. Furthermore, the antimicrobial efficacy of the prepared gelatin-based bionanocomposite coatings containing eco-friendly ZnO-NPs was evaluated against L. monocytogenes in Talaga cheese (an Egyptian soft cheese) and camel meat during refrigerated storage at 4 ± 1 oC. Talaga cheese and camel meat were inoculated with L. monocytogenes, then coated with gelatin (G), gelatin with ZnO-NPs 1% (G/ZnO-NPs 1%), and gelatin with ZnO-NPs 2% (G/ZnO-NPs 2%). Microbiological examination showed that the G/ZnO-NPs 2% coating reduced L. monocytogenes count in the coated Talaga cheese and camel meat by 2.76 ± 0.19 and 2.36 ± 0.51 log CFU/g, respectively, by the end of the storage period. Moreover, G/ZnO-NPs coatings controlled pH changes, reduced water losses, and improved the sensory characteristics of Talaga cheese and camel meat, thereby extending their shelf life. The obtained results from this study indicate that the application of gelatin/ZnO-NPs 2% bionanocomposite coating could be used in the food industry to control L. monocytogenes growth, improve quality, and extend the shelf life of Talaga cheese and camel meat.


Assuntos
Camelus , Queijo , Armazenamento de Alimentos , Gelatina , Listeria monocytogenes , Nanocompostos , Óxido de Zinco , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/crescimento & desenvolvimento , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Queijo/microbiologia , Gelatina/química , Gelatina/farmacologia , Animais , Nanocompostos/química , Conservação de Alimentos/métodos , Carne/microbiologia , Microbiologia de Alimentos , Nanopartículas/química , Antibacterianos/farmacologia , Antibacterianos/química , Punica granatum/química , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise , Rosmarinus/química , Refrigeração , Extratos Vegetais/farmacologia , Extratos Vegetais/química
4.
Environ Geochem Health ; 46(7): 221, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849635

RESUMO

This study reported the synthesis and assessment of zinc oxide/iron oxide (ZnO/Fe2O3) nanocomposite as photocatalysts for the degradation of a mixture of methylene red and methylene blue dyes. X-ray diffraction analysis confirms that the crystallite of zinc oxide (ZnO) has a hexagonal wurtzite phase and iron oxide (Fe2O3) has a rhombohedral phase. Fourier Transform Infra-Red spectrum confirms the presence of Zn-O vibration stretching at 428, 480 and 543 cm-1 stretching confirming Fe-O bond formation. Scanning Electron Microscope images exhibited a diverse size and shape of the nanocomposites. The ZnO-90%/Fe2O3-10% and ZnO-10%/Fe2O3-90% nanocomposites reveal good photocatalytic activity with reaction rate constants of 1.5 × 10-2 and 0.66 × 10-2; and 1.3 × 10-2 and 0.60 × 10-2 for methylene blue and methyl red dye respectively. The results revealed that the synthesized ZnO/Fe2O3 nanocomposite is the best catalyst for dye degradation and can be used for industrial applications in future.


Assuntos
Corantes , Compostos Férricos , Azul de Metileno , Nanocompostos , Óxido de Zinco , Óxido de Zinco/química , Nanocompostos/química , Azul de Metileno/química , Compostos Férricos/química , Catálise , Corantes/química , Difração de Raios X , Microscopia Eletrônica de Varredura , Compostos Azo/química , Poluentes Químicos da Água/química , Fotólise , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Int J Nanomedicine ; 19: 5227-5243, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855734

RESUMO

Purpose: This study aimed to construct targeting drug-loading nanocomposites (FA-FePt/DDP nanoliposomes) to explore their potential in ovarian cancer therapy and molecular magnetic resonance imaging (MMRI). Methods: FA-FePt-NPs were prepared by coupling folate (FA) with polyethylene-glycol (PEG)-coated ferroplatinum nanoparticles and characterized. Then cisplatin (DDP) was encapsulated in FA-FePt-NPs to synthesize FA-PEG-FePt/DDP nanoliposomes by thin film-ultrasonic method and high-speed stirring, of which MMRI potential, magnetothermal effect, and the other involved performance were analyzed. The therapeutic effect of FA-FePt/DDP nanoliposomes combined with magnetic fluid hyperthermia (MFH) on ovarian cancer in vitro and in vivo was evaluated. The expression levels of Bax and epithelial-mesenchymal transition related proteins were detected. The biosafety was also preliminarily observed. Results: The average diameter of FA-FePt-NPs was about 30 nm, FA-FePt/DDP nanoliposomes were about 70 nm in hydrated particle size, with drug slow-release and good cell-specific targeted uptake. In an alternating magnetic field (AMF), FA-FePt/DDP nanoliposomes could rapidly reach the ideal tumor hyperthermia temperature (42~44 °C). MRI scan showed that FA-FePt-NPs and FA-FePt/DDP nanoliposomes both could suppress the T2 signal, indicating a good potential for MMRI. The in vitro and in vivo experiments showed that FA-FePt/DDP-NPs in AMF could effectively inhibit the growth of ovarian cancer by inhibiting cancer cell proliferation, invasion, and migration, and inducing cancer cell apoptosis, much better than that of the other individual therapies; molecularly, E-cadherin and Bax proteins in ovarian cancer cells and tissues were significantly increased, while N-cadherin, Vimentin, and Bcl-2 proteins were inhibited, effectively inhibiting the malignant progression of ovarian cancer. In addition, no significant pathological injury and dysfunction was observed in major visceras. Conclusion: We successfully synthesized FA-FePt/DDP nanoliposomes and confirmed their good thermochemotherapeutic effect in AMF and MMRI potential on ovarian cancer, with no obvious side effects, providing a favorable strategy of integrated targeting therapy and diagnosis for ovarian cancer.


Assuntos
Antineoplásicos , Cisplatino , Ácido Fólico , Lipossomos , Imageamento por Ressonância Magnética , Neoplasias Ovarianas , Polietilenoglicóis , Feminino , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/terapia , Lipossomos/química , Cisplatino/farmacologia , Cisplatino/química , Cisplatino/administração & dosagem , Cisplatino/farmacocinética , Animais , Ácido Fólico/química , Ácido Fólico/farmacologia , Ácido Fólico/farmacocinética , Humanos , Imageamento por Ressonância Magnética/métodos , Polietilenoglicóis/química , Linhagem Celular Tumoral , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Camundongos , Platina/química , Platina/farmacologia , Hipertermia Induzida/métodos , Nanocompostos/química , Camundongos Nus , Camundongos Endogâmicos BALB C , Nanopartículas Metálicas/química , Campos Magnéticos , Tamanho da Partícula
6.
Carbohydr Polym ; 340: 122241, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38858016

RESUMO

Polyacrylamide (PAM) hydrogels are widely used in wide-ranging applications in biology, medicine, pharmaceuticals and environmental sectors. However, achieving the requisite mechanical properties, fatigue resistance, self-recovery, biocompatibility, and biodegradability remains a challenge. Herein, we present a facile method to construct a nanocomposite hydrogel by integrating short linear glucan (SLG), obtained by debranching waxy corn starch, into a PAM network through self-assembly. The resulting composite hydrogel with 10 % SLG content exhibited satisfactory stretchability (withstanding over 1200 % strain), along with maximum compressive and shear strengths of about 490 kPa and 39 kPa at 90 % deformation, respectively. The hydrogel demonstrated remarkable resilience and could endure repeated compression and stretching. Notably, the nanocomposite hydrogel with 10 % SLG content exhibited full stress recovery at 90 % compression deformation after 20 s, without requiring specific environmental conditions, achieving an energy dissipation recovery rate of 98 %. Meanwhile, these hydrogels exhibited strong adhesion to various soft and hard substrates, including skin, glasses and metals. Furthermore, they maintain solid integrity at both 37 °C and 50 °C after swelling equilibrium, unlike traditional PAM hydrogels, which exhibited softening under similar conditions. We hope that this PAM-SLG hydrogel will open up new avenues for the development of multifunctional electronic devices, offering enhanced performance and versatility.


Assuntos
Resinas Acrílicas , Glucanos , Hidrogéis , Nanocompostos , Nanocompostos/química , Hidrogéis/química , Glucanos/química , Resinas Acrílicas/química , Elasticidade , Materiais Biocompatíveis/química , Força Compressiva
7.
Biomed Eng Online ; 23(1): 53, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858706

RESUMO

BACKGROUND: Metastasis is one of the main factors leading to the high mortality rate of gastric cancer. The current monitoring methods are not able to accurately monitor gastric cancer metastasis. METHODS: In this paper, we constructed a new type of hollow Mn 3 O 4 nanocomposites, Mn 3 O 4 @HMSN-Cy7.5-FA, which had a size distribution of approximately 100 nm and showed good stability in different liquid environments. The in vitro magnetic resonance imaging (MRI) results show that the nanocomposite has good response effects to the acidic microenvironment of tumors. The acidic environment can significantly enhance the contrast of T 1 -weighted MRI. The cellular uptake and endocytosis results show that the nanocomposite has good targeting capabilities and exhibits good biosafety, both in vivo and in vitro. In a gastric cancer nude mouse orthotopic metastatic tumor model, with bioluminescence imaging's tumor location information, we realized in vivo MRI/fluorescence imaging (FLI) guided precise monitoring of the gastric cancer orthotopic and metastatic tumors with this nanocomposite. RESULTS: This report demonstrates that Mn 3 O 4 @HMSN-Cy7.5-FA nanocomposites is a promising nano-diagnostic platform for the precision diagnosis and therapy of gastric cancer metastasis in the future. CONCLUSIONS: In vivo MRI/FLI imaging results show that the nanocomposites can achieve accurate monitoring of gastric cancer tumors in situ and metastases. BLI's tumor location information further supports the good accuracy of MRI/FLI dual-modality imaging. The above results show that the MHCF NPs can serve as a good nano-diagnostic platform for precise in vivo monitoring of tumor metastasis. This nanocomposite provides more possibilities for the diagnosis and therapy of gastric cancer metastases.


Assuntos
Ácido Fólico , Imageamento por Ressonância Magnética , Nanocompostos , Metástase Neoplásica , Neoplasias Gástricas , Neoplasias Gástricas/diagnóstico por imagem , Neoplasias Gástricas/patologia , Animais , Nanocompostos/química , Camundongos , Linhagem Celular Tumoral , Humanos , Ácido Fólico/química , Compostos de Manganês/química , Imagem Óptica , Camundongos Nus , Óxidos
8.
Mikrochim Acta ; 191(7): 383, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861005

RESUMO

A competitive-type photoelectrochemical (PEC) aptasensor coupled with a novel Au@Cd:SnO2/SnS2 nanocomposite was designed for the detection of 17ß-estradiol (E2) in microfluidic devices. The designed Au@Cd:SnO2/SnS2 nanocomposites exhibit high photoelectrochemical activity owing to the good matching of cascade band-edge and the efficient separation of photo-generated e-/h+ pairs derived from the Cd-doped defects in the energy level. The Au@Cd:SnO2/SnS2 nanocomposites were loaded into carbon paste electrodes (CPEs) to immobilize complementary DNA (cDNA) and estradiol aptamer probe DNA (E2-Apt), forming a double-strand DNA structure on the CPE surface. As the target E2 interacts with the double-strand DNA, E2-Apt is sensitively released from the CPE, subsequently increasing the photocurrent intensity due to the reduced steric hindrance of the electrode surface. The competitive-type sensing mechanism, combined with high PEC activity of the Au@Cd:SnO2/SnS2 nanocomposites, contributed to the rapid and sensitive detection of E2 in a "signal on" manner. Under the optimized conditions, the PEC aptasensor exhibited a linear range from 1.0 × 10-13 mol L-1 to 3.2 × 10-6 mol L-1 and a detection limit of 1.2 × 10-14 mol L-1 (S/N = 3). Moreover, the integration of microfluidic device with smartphone controlled portable electrochemical workstation enables the on-site detection of E2. The small sample volume (10 µL) and short analysis time (40 min) demonstrated the great potential of this strategy for E2 detection in rat serum and river water. With these advantages, the PEC aptasensor can be utilized for point-of-care testing (POCT) in both clinical and environmental applications.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Estradiol , Ouro , Limite de Detecção , Nanocompostos , Sulfetos , Compostos de Estanho , Compostos de Estanho/química , Aptâmeros de Nucleotídeos/química , Nanocompostos/química , Ouro/química , Estradiol/análise , Estradiol/sangue , Estradiol/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Sulfetos/química , Cádmio/química , Cádmio/análise , Processos Fotoquímicos , Dispositivos Lab-On-A-Chip
9.
J Environ Manage ; 362: 121338, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38823296

RESUMO

A series of Fe3O4@CuCr-LDH hybrids decorated with different amount of ZIF-8 (FLZ, 10-40 wt%) was prepared using simple methods and characterized with different techniques. The activity of the synthesized nanocomposites was investigated in the sonocatalytic degradation of tetracycline (TC) antibiotic from wastewater. When the content of ZIF-8 in the nanocomposite structure was 20 wt%, the FLZ-20 sonocatalyst exhibited the high performance in the sonocatalytic removal of TC. At optimum conditions (0.7 g/L catalyst dosage, pH of 7, 50 mg/L initial concentration of antibiotic, and 15 min sonication time) of the sonocatalytic removal of TC approached to 91.4% under ultrasonic irradiation (USI) using FLZ-20. This efficiency was much higher than those of obtained results by Fe3O4@CuCr-LDH and pristine ZIF-8. The formed ●OH and ●O2- exhibited the major roles in the sonocatalytic TC degradation process. The excellent performance of FLZ-20 can be attributed to the heterojunctions created between composite components, which could improve the electron transfer ability and effectively separate e-/h+ pairs. In addition, FLZ-20 showed the superior reusability and stability during three successive recycling. Moreover, the facile magnetically separation of the sonocatalyst from the aqueous solution was another outstanding feature, which prevents the formation of secondary pollutants. It can be concluded that the fabrication of heterojunctions is an efficient procedure to promote the sonocatalytic acting of the catalyst.


Assuntos
Tetraciclina , Tetraciclina/química , Catálise , Hidróxidos/química , Águas Residuárias/química , Nanocompostos/química , Poluentes Químicos da Água/química
10.
BMC Plant Biol ; 24(1): 521, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853259

RESUMO

BACKGROUND: Tomato (Lycopersicon esculentum), a valuable economic crop worldwide, often goes to waste due to improper packaging and handling. In the present study, three types of low-density polyethylene nanocomposite films containing 3% clay (Closite 20A), 3% TiO2 nanoparticles, and their combination were synthesized using melt blending method, and evaluated on the quality parameters of tomato fruit during 42 days of storage at 4 °C. RESULTS: Transmission electron microscopy confirmed the degree of dispersion and exfoliation of the nanoparticles. The TiO2/clay-nanocomposite films exhibited notable enhancements in Young's modulus and tensile strength compared to conventional films. The addition of clay and TiO2 nanoparticles resulted in reduced permeability to CO2, O2, and water vapor. Fruits packed with clay/TiO2 nanocomposite films showed decreased ethylene production, mitigated weight loss, and maintained pH, titratable acidity, total soluble solids, and firmness. Furthermore, clay/TiO2 nanocomposite films enhanced membrane stability, decreased membrane lipid peroxidation, and enhanced catalase and ascorbate peroxidase enzyme activity in fruits. CONCLUSIONS: The relatively good exfoliation of clay nanoparticles and the proper dispersion of TiO2 nanoparticles, which were confirmed by TEM, led to an increase in mechanical and physical properties in the Clay/TiO2 nanocomposite. This film displayed more potential in maintaining the quality properties of tomato fruit during cold storage. Therefore, this film can be considered a practical solution for minimizing pathogen risks and contamination, and enhancing the overall quality of tomato fruit.


Assuntos
Argila , Temperatura Baixa , Embalagem de Alimentos , Conservação de Alimentos , Armazenamento de Alimentos , Frutas , Solanum lycopersicum , Titânio , Solanum lycopersicum/fisiologia , Titânio/química , Argila/química , Embalagem de Alimentos/métodos , Conservação de Alimentos/métodos , Nanocompostos/química , Silicatos de Alumínio/química
11.
Mikrochim Acta ; 191(7): 367, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832980

RESUMO

An electrochemical aptasensor was used for the fast and sensitive detection of zearalenone (ZEN) based on the combination of Co3O4/MoS2/Au nanocomposites and the hybrid chain reaction (HCR). The glassy carbon electrode was coated with Co3O4/MoS2/Au nanomaterials to immobilize the ZEN-cDNA that had been bound with ZEN-Apt by the principle of base complementary pairing. In the absence of ZEN, the HCR could not be triggered because the ZEN-cDNA could not be exposed. After ZEN was added to the surface of the electrode, a complex structure was produced on the modified electrode by the combination of ZEN and ZEN-Apt. Therefore, the ZEN-cDNA can raise the HCR to produce the long-strand dsDNA structure. Due to the formation of dsDNA, the methylene blue (MB) could be inserted into the superstructure of branched DNA and the peak currents of the MB redox signal dramatically increased. So the concentration of ZEN could be detected by the change of signal intensity. Under optimized conditions, the developed electrochemical biosensing strategy showed an outstanding linear detection range of 1.0×10-10 mol/L to 1.0×10-6 mol/L, a low detection limit (LOD) of 8.5×10-11 mol/L with desirable selectivity and stability. Therefore, the fabricated platform possessed a great application potential in fields of food safety, medical detection, and drug analysis.


Assuntos
Técnicas Eletroquímicas , Análise de Alimentos , Análise de Perigos e Pontos Críticos de Controle , Nanocompostos , Zearalenona , Zearalenona/análise , Análise de Perigos e Pontos Críticos de Controle/métodos , Análise de Alimentos/instrumentação , Análise de Alimentos/métodos , Nanocompostos/química , Nanocompostos/normas , Eletrodos , Ouro/química , Sensibilidade e Especificidade , Reprodutibilidade dos Testes
12.
Environ Geochem Health ; 46(7): 246, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864996

RESUMO

In the pursuit of efficient photocatalytic materials for environmental applications, a new series of g-C3N4/N-doped CeO2 nanocomposites (g-C3N4/N-CeO2 NCs) was synthesized using a straightforward dispersion method. These nanocomposites were systematically characterized to understand their structural, optical, and chemical properties. The photocatalytic performance of g-C3N4/N-CeO2 NCs was evaluated by investigating their ability to degrade methylene blue (MB) dye, a model organic pollutant. The results demonstrate that the integration of g-C3N4 with N-doped CeO2 NCs reduces the optical energy gap compared to pristine N-doped CeO2, leading to enhanced photocatalytic efficiency. It is benefited from the existence of g-C3N4/N-CeO2 NCs not only in promoting the charge separation and inhibits the fast charge recombination but also in improving photocatalytic oxidation performance. Hence, this study highlights the potential of g-C3N4/N-CeO2 NCs as promising candidates for various photocatalytic applications, contributing to the advancement of sustainable environmental remediation technologies.


Assuntos
Cério , Luz , Azul de Metileno , Nanocompostos , Azul de Metileno/química , Cério/química , Nanocompostos/química , Catálise , Poluentes Químicos da Água/química , Grafite/química , Processos Fotoquímicos , Fotólise , Compostos de Nitrogênio
13.
J Nanobiotechnology ; 22(1): 320, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38849820

RESUMO

Simultaneously modulating the inflammatory microenvironment and promoting local bone regeneration is one of the main challenges in treating bone defects. In recent years, osteoimmunology has revealed that the immune system plays an essential regulatory role in bone regeneration and that macrophages are critical components. In this work, a mussel-inspired immunomodulatory and osteoinductive dual-functional hydroxyapatite nano platform (Gold/hydroxyapatite nanocomposites functionalized with polydopamine - PDA@Au-HA) is developed to accelerate bone tissues regeneration by regulating the immune microenvironment. PDA coating endows nanomaterials with the ability to scavenge reactive oxygen species (ROS) and anti-inflammatory properties, and it also exhibits an immunomodulatory ability to inhibit M1 macrophage polarization and activate M2 macrophage secretion of osteogenesis-related cytokines. Most importantly, this nano platform promotes the polarization of M2 macrophages and regulates the crosstalk between macrophages and pre-osteoblast cells to achieve bone regeneration. Au-HA can synergistically promote vascularized bone regeneration through sustained release of Ca and P particles and gold nanoparticles (NPs). This nano platform has a synergistic effect of good compatibility, scavenging of ROS, and anti-inflammatory and immunomodulatory capability to accelerate the bone repair process. Thus, our research offers a possible therapeutic approach by exploring PDA@Au-HA nanocomposites as a bifunctional platform for tissue regeneration.


Assuntos
Bivalves , Regeneração Óssea , Durapatita , Ouro , Indóis , Macrófagos , Osteogênese , Regeneração Óssea/efeitos dos fármacos , Durapatita/química , Durapatita/farmacologia , Animais , Camundongos , Ouro/química , Ouro/farmacologia , Bivalves/química , Células RAW 264.7 , Macrófagos/efeitos dos fármacos , Indóis/química , Indóis/farmacologia , Osteogênese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Polímeros/química , Polímeros/farmacologia , Nanocompostos/química , Nanopartículas Metálicas/química , Osteoblastos/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Citocinas/metabolismo
14.
AAPS PharmSciTech ; 25(5): 130, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844611

RESUMO

Naringenin (NRG) inhibits the fungal 17ß-hydroxysteroid dehydrogenase accountable for ergosterol synthesis in Candida albicans (C. albicans), a causative agent for cutaneous candidiasis. In present research, NRG was complexed with ZnO nanomaterial (NRG-Zn2+) to synthesize NRG-Zn2+ nanocomposites. The particle size and ζ-potential of NRG-Zn2+ nanocomposites were respectively estimated to be 180.33 ± 1.22-nm and - 3.92 ± 0.35-mV. In silico data predicted the greater affinity of NRG-Zn2+ nanocomposite for 14α-demethylase and ceramide in comparison to NRG alone. Later, NRG-Zn2+ nanocomposites solution was transformed in to naringenin-zinc oxide nanocomposites loaded chitosan gel (NRG-Zn-CS-Gel) with viscosity and firmness of 854806.7 ± 52386.43 cP and 698.27 ± 10.35 g, respectively. The ex-vivo skin permeation demonstrated 70.49 ± 5.22% skin retention, significantly greater (P < 0.05) than 44.48 ± 3.06% of naringenin loaded chitosan gel (NRG-CS-Gel) and 31.24 ± 3.28% of naringenin solution (NRG Solution). NRG-Zn-CS-Gel demonstrated 6.71 ± 0.84% permeation of NRG with a flux value of 0.046 ± 0.01-µg/cm2/h. The MIC50 of NRG-Zn-CS-Gel against C. albicans was estimated to be 0.156-µg/mL with FICI (fractional inhibitory concentration index) of 0.018 that consequently exhibited synergistic efficacy. Further, NRG-Zn-CS-Gel demonstrated superior antifungal efficacy in C. albicans induced cutaneous candidiasis infection in Balb/c mice. The fungal burden in NRG-Zn-CS-Gel treated group was 109 ± 25 CFU/mL, significantly lower (P < 0.05) than positive control (2260 ± 446 CFU/mL), naringenin loaded chitosan gel (NRG-CS-Gel; 928 ± 127 CFU/mL) and chitosan gel (CS-Gel; 2116 ± 186 CFU/mL) treated mice. Further, histopathology examination and cytokine profiling of TNF-α, IL-1ß and IL-10 revealed the healing of skin and inflammation associated with cutaneous candidiasis infection. In conclusion, NRG-Zn-CS-Gel may be a potential candidate for translating in to a clinical viable topical nanotherapeutic.


Assuntos
Antifúngicos , Candida albicans , Quitosana , Flavanonas , Géis , Camundongos Endogâmicos BALB C , Nanocompostos , Óxido de Zinco , Animais , Flavanonas/administração & dosagem , Flavanonas/farmacologia , Camundongos , Candida albicans/efeitos dos fármacos , Quitosana/química , Quitosana/administração & dosagem , Nanocompostos/química , Nanocompostos/administração & dosagem , Antifúngicos/administração & dosagem , Antifúngicos/farmacologia , Antifúngicos/farmacocinética , Óxido de Zinco/administração & dosagem , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Sistemas de Liberação de Medicamentos/métodos , Pele/metabolismo , Pele/efeitos dos fármacos , Pele/microbiologia , Candidíase/tratamento farmacológico , Polímeros/química , Absorção Cutânea/efeitos dos fármacos , Tamanho da Partícula , Administração Cutânea
15.
Anal Chim Acta ; 1309: 342701, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38772662

RESUMO

BACKGROUND: Nanozymes, a new class of nanomaterials, have emerged as promising substitutes for enzymes in biosensor design due to their exceptional stability, affordability, and ready availability. While nanozymes address many limitations of natural enzymes, they still face challenges, particularly in achieving the catalytic activity levels of their natural counterparts. This indicates the need for enhancing the sensitivity of biosensors based on nanozymes. The catalytic activity of nanozyme can be significantly improved by regulating its size, morphology, and surface composition of nanomaterial. RESULTS: In this work, a kind of hollow core-shell structure was designed to enhance the catalytic activity of nanozymes. The hollow core-shell structure material consists of a nanozymes core layer, a hollow layer, and a MOF shell layer. Taking the classic peroxidase like Fe3O4 as an example, the development of a novel nanozyme@MOF, specifically p-Fe3O4@PDA@ZIF-67, is detailed, showcasing its application in enhancing the sensitivity of sensors based on Fe3O4 nanozymes. This innovative nanocomposite, featuring that MOF layer was designed to adsorb the signal molecules of the sensor to improve the utilization rate of reactive oxygen species generated by the nanozymes catalyzed reactions and the hollow layer was designed to prevent the active sites of nanozymes from being cover by the MOF layer. The manuscript emphasizes the nanocomposite's remarkable sensitivity in detecting hydrogen peroxide (H2O2), coupled with high specificity and reproducibility, even in complex environments like milk samples. SIGNIFICANCE AND NOVELTY: This work firstly proposed and proved that Fe3O4 nanozyme@MOF with hollow layer structure was designed to improve the catalytic activity of the Fe3O4 nanozyme and the sensitivity of the sensors based on Fe3O4 nanozyme. This research marks a significant advancement in nanozyme technology, demonstrating the potential of structural innovation in creating high-performance, sensitive, and stable biosensors for various applications.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Técnicas Biossensoriais/métodos , Estruturas Metalorgânicas/química , Óxido Ferroso-Férrico/química , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Indóis/química , Catálise , Limite de Detecção , Nanoestruturas/química , Nanocompostos/química , Imidazóis , Polímeros , Zeolitas
16.
Neoplasma ; 71(2): 153-163, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38766856

RESUMO

Skin cancer is one of the most common malignancies in white populations. The therapy strategy is important in skin cancer treatment, depending on several criteria such as stage, size, and localization. Removal of cancerous tissue following anticancer therapeutic administration is considered as gold standard in skin cancer treatment. However, annually rising drug resistance, local inflammation, and ineffective treatment result in a reduction in the effectiveness of the patient's treatment. Nanotechnology has emerged as a prospective in the field of skin cancer medicine, offering innovative, promising solutions for therapeutic procedures and targeted drug delivery. Different nanomaterials are investigated for their potential in skin cancer treatment. Nanohydrogels as a hybrid material, have gained considerable attention due to their unique biomedical and pharmaceutical properties, such as biocompatibility, high water content, and tunable physicochemical characteristics. The principal problem with common skin melanoma chemotherapy is the strong side effects because therapeutics used for treatment do not distinguish cancer cells from healthy cells. Nanohydrogels, as a new-generation, versatile system with the possession of dual characteristics of hydrogels and nanoparticles have shown great potential in targeted delivery in cancer therapy thanks to the possibility of their various modifications, and by that overcome problems with side effects of treatment. This scientific review provides an analysis of the current state of research on nanohydrogels in skin cancer medicine, highlighting their design principles, synthesis methods, and applications in drug delivery, imaging, and combination therapies.


Assuntos
Hidrogéis , Neoplasias Cutâneas , Humanos , Neoplasias Cutâneas/tratamento farmacológico , Hidrogéis/química , Sistemas de Liberação de Medicamentos , Nanocompostos/uso terapêutico , Nanocompostos/química , Antineoplásicos/uso terapêutico
17.
J Environ Manage ; 359: 120987, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38692029

RESUMO

The removal of organic pollutants in water environments and the resource utilization of solid waste are two pressing issues around the world. Facing the increasing pollution induced by discharge of mining effluents containing sodium isopropyl xanthate (SIPX), in this work, municipal solid waste incineration fly ash (MSWI FA) was pretreated by hydrothermal method to produce stabilized FA, which was then innovatively used as support for the construction of FA/TiO2/BiOCl nanocomposite (FTB) with promoted photocatalytic activity under visible light and natural sunlight. When the content of FA was 20 wt% and the mass ratio of TiO2 to BiOCl was 4:6, a remarkable performance for the optimal FTB (20-FTB-2) was achieved. Characterizations demonstrated that TiO2 and BiOCl uniformly dispersed on FA contributing to high surface area and broad light adsorption of FTB, which exhibits excellent adsorption capacity and light response ability. Build in electric field formed in the interface of TiO2/BiOCl heterojunction revealed by density functional theory calculations accelerated the separation of photoinduced e- and h+, leading to high efficiency for SIPX degradation. The synergetic effect combined with adsorption and photocatalytic degradation endowed 20-FTB-2 superior SIPX removal efficiency over 99% within 30 min under visible light and natural sunlight irradiation. The photocatalytic degradation pathways of SIPX were determined through theoretical calculations and characterizations, and the toxic byproduct CS2 was effectively eliminated through oxidation of •O2-. For 20-FTB-2, reusability of photocatalyst was showed by cycle tests, also the concentrations of main heavy metals (Pb, Zn, Cu, Cr, and Cd) in the liquid phases released during photocatalyst preparation process (< 1 mg/L) and photodegradation process (< 8.5 µg/L) proved the satisfactory stability with low toxicity. This work proposed a novel strategy to develop efficient and stable support-based photocatalysts by utilizing MSWI FA and realize its resource utilization.


Assuntos
Cinza de Carvão , Nanocompostos , Titânio , Nanocompostos/química , Titânio/química , Cinza de Carvão/química , Catálise , Adsorção , Resíduos Sólidos , Poluentes Químicos da Água/química
18.
Int J Biol Macromol ; 268(Pt 1): 131769, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38692999

RESUMO

This study investigates the synthesis of selenium nanoparticles (SeNPs), owing to the low cost and abundance of selenium. However, the toxicity of SeNP prompts the development of a selenium nanocomposite (SeNC) containing pectin, keratin, and ferulic acid to improve the bioactivity of Se[0]. Further, incorporating the SeNC in a suitable formulation for drug delivery as a transdermal patch was worth studying. Accordingly, various analytical techniques were used to characterize the SeNPs and the SeNC, confirming successful synthesis and encapsulation. The SeNC exhibited notable particle size of 448.2 ± 50.2 nm, high encapsulation efficiency (98.90 % ± 2.4 %), 28.1 ± 0.45 drug loading, and sustained drug release at pH 5.5. Zeta potential and XPS confirmed the zero-oxidation state. The supramolecular structure was evident from spectral analysis endorsing the semi-crystalline nature of the SeNC and SEM images showcasing flower-shaped structures. Further, the SeNC demonstrated sustained drug release (approx. 22 % at 48 h) and wound-healing potential in L929 fibroblast cells. Subsequently, the SeNC loaded into a gelling agent exhibited shear thinning properties and improved drug release by nearly 58 %. A 3D printed reservoir-type transdermal patch was developed utilizing the SeNC-loaded gel, surpassing commercially available patches in characteristics such as % moisture uptake, tensile strength, and hydrophobicity. The patch, evaluated through permeation studies and CAM assay, exhibited controlled drug release and angiogenic properties for enhanced wound healing. The study concludes that this patch can serve as a smart dressing with tailored functionality for different wound stages, offering a promising novel drug delivery system for wound healing.


Assuntos
Liberação Controlada de Fármacos , Queratinas , Nanogéis , Pectinas , Impressão Tridimensional , Selênio , Adesivo Transdérmico , Selênio/química , Pectinas/química , Queratinas/química , Animais , Nanogéis/química , Camundongos , Oxirredução , Cicatrização/efeitos dos fármacos , Linhagem Celular , Nanocompostos/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Tamanho da Partícula
19.
Chemosphere ; 358: 142237, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705406

RESUMO

In this study, a novel Ce2MgMoO6/CNFs (cerium magnesium molybdite double perovskite decorated on carbon nanofibers) nanocomposite was developed for selective and ultra-sensitive detection of ciprofloxacin (CFX). Physical characterization and analytical techniques were used to explore the morphology, structure, and electrocatalytic characteristics of the Ce2MgMoO6/CNFs nanocomposite. The sensor has a wide linear range (0.005-7.71 µM and 9.75-77.71 µM), a low limit of detection (0.012 µM), high sensitivity (0.807 µA µM-1 cm-2 nM), remarkable repeatability, and an appreciable storage stability. Here, we used density functional theory to investigate CFX and oxidized CFX as well as the locations of the energy levels and electron transfer sites. Furthermore, the Ce2MgMoO6/CNFs-modified electrode was successfully tested in food samples (milk and honey), indicating an acceptable response with a recovery percentage and relative standard deviation of less than 4%, which is comparable to that of GC-MS. Finally, the developed sensor exhibited high selectivity and stability for CFX detection.


Assuntos
Carbono , Ciprofloxacina , Mel , Leite , Nanocompostos , Nanofibras , Óxidos , Nanocompostos/química , Ciprofloxacina/análise , Ciprofloxacina/química , Óxidos/química , Leite/química , Nanofibras/química , Animais , Mel/análise , Carbono/química , Molibdênio/química , Limite de Detecção , Compostos de Cálcio/química , Titânio/química , Teoria da Densidade Funcional , Técnicas Eletroquímicas/métodos , Cério/química , Contaminação de Alimentos/análise , Eletrodos , Magnésio/química , Magnésio/análise
20.
Biosens Bioelectron ; 258: 116358, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718634

RESUMO

Wearable sensors for sweat glucose monitoring are gaining massive interest as a patient-friendly and non-invasive way to manage diabetes. The present work offers an alternative on-body method employing an all-printed flexible electrochemical sensor to quantify the amount of glucose in human sweat. The working electrode of the glucose sensor was printed using a custom-formulated ink containing multi-walled carbon nanotube (MWCNT), poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOPT: PSS), and iron (II, III) oxide (Fe3O4) nanoparticles. This novel ink composition has good conductivity, enhanced catalytic activity, and excellent selectivity. The working electrode was modified using Prussian blue (PB) nanoparticles and glucose oxidase enzyme (GOx). The sensor displayed a linear chronoamperometric response to glucose from 1 µM to 400 µM, with a precise detection limit of ∼0.38 µM and an impressive sensitivity of ∼4.495 µAµM-1cm-2. The sensor stored at 4 °C exhibited excellent stability over 60 days, high selectivity, and greater reproducibility. The glucose detection via the standard addition method in human sweat samples acquired a high recovery rate of 96.0-98.6%. Examining human sweat during physical activity also attested to the biosensor's real-time viability. The results also show an impressive correlation between glucose levels obtained from a commercial blood glucose meter and sweat glucose concentrations. Remarkably, the present results outperform previously published printed glucose sensors in terms of detection range, low cost, ease of manufacturing, stability, selectivity, and wearability.


Assuntos
Técnicas Biossensoriais , Glucose Oxidase , Glucose , Limite de Detecção , Nanocompostos , Nanotubos de Carbono , Suor , Dispositivos Eletrônicos Vestíveis , Humanos , Técnicas Biossensoriais/instrumentação , Nanotubos de Carbono/química , Suor/química , Nanocompostos/química , Glucose/análise , Glucose Oxidase/química , Tinta , Técnicas Eletroquímicas , Compostos Férricos/química , Ferrocianetos/química , Polímeros/química , Reprodutibilidade dos Testes , Compostos Bicíclicos Heterocíclicos com Pontes/química , Poliestirenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...