Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.682
Filtrar
1.
J Hazard Mater ; 421: 126751, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34343880

RESUMO

One of the challenges in research into photoelectrocatalytic (PEC) degradation of pollutants is finding the appropriate photoanode material, which has a significant impact on the process efficiency. Among all others, photoelectrodes based on an ordered TiO2 nanotube arrays are a promising material due to well-developed surface area and efficient charge separation. To increase the PEC activity of this material, the SILAR method was used to decorate Ti/TiO2 nanotubes by PbS quantum dots (QD). The ifosfamide (IF) degradation rate constants was twice as higher for PbS-Ti/TiO2 (0.0148 min-1) than for Ti/TiO2 (0.0072 min-1). Our research showed the highest efficiency of PEC degradation of drugs using IIIPbS-Ti/TiO2 made with 3 SILAR cycles (PbS QD size mainly 2-4 nm). The 4 and 6 of SILAR cycles resulted in the aggregation of PbS nanoparticles on the Ti/TiO2 surface and decreased IF PEC degradation rate to 0.0043 and 0.0033 min-1, respectively. Research on PEC mechanism has shown that the drugs are degraded mainly by the activity of photogenerated holes and hydroxyl radicals. In addition, the identified drug intermediates made possible to propose a degradation pathways of anticancer drugs and the ecotoxicity test show no inhibition of Lemna minor growth of treated solutions.


Assuntos
Antineoplásicos , Nanotubos , Pontos Quânticos , Energia Solar , Titânio
2.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 56(10): 1045-1049, 2021 Oct 09.
Artigo em Chinês | MEDLINE | ID: mdl-34619902

RESUMO

Mitochondria, as the main site of cell metabolism and energy generation, contains the genome encoding the respiratory chain-associated complexes. Deletions or mutations of mitochondria will lead to mitochondrial respiratory chain deficiencies and these deficiencies play an important role in metabolic reprogramming which is considered as one of the important features of tumorigenesis and development. Many studies have found that tunneling nanotube (TNT), a well-established mitochondrial transfer pathway, is able to restore mitochondrial respiratory deficiencies. This review article focuses on the occurrence of mitochondrial transfer, the mechanism of TNT formation and the promising therapeutic targets acting on mitochondrial transfer.


Assuntos
Nanotubos , Neoplasias , Humanos , Mitocôndrias , Mutação
3.
Anal Chim Acta ; 1183: 338983, 2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34627504

RESUMO

Analysis of volatile organic compounds (VOCs) secreted in urine, blood, breath, etc. is a new method for monitoring the metabolism and biochemistry of the human body. However, due to the complexity of samples, a pre-concentration step is necessary before the final analysis with gas chromatography-mass spectroscopy (GC-MS). Therefore, miniaturized extraction methods such as solid-phase microextraction (SPME) can be a promising and simple pre-concentration technique. Different strategies have been adopted for the fabrication or modification of SPME fibers. This study presents the preparation and characterization of glass optical fibers coated with ZnO nanorods functionalized with gallic acid (ZnO@GA nanorod) as SPME adsorbent in GC-MS. ZnO@GA nanorods were synthesized separately and then coated onto the fibers. The coated fibers were characterized by using field emission scanning electron microscopy coupled with energy dispersive analysis of X-rays (FESEM/EDAX) and Fourier transform infrared spectroscopy (FTIR) techniques. Possessing a high surface to volume ratio of ZnO nanorods and functional groups of GA, the ZnO@GA nanorod-based SPME fibers exhibited good extraction performance for VOCs comparing with the commercial polydimethylsiloxane (PDMS) coated fibers. Under optimal conditions (NaCl concentration, 30% w/v; extraction time of 25 min; pH, 5-7 and stirring rate of 400 rpm) ZnO@GA nanorods coated fibers achieved low detection limits (0.32-4.8 µg/L), low quantification limits (1.8-16.3 µg/L) and good linearity (5-1000 µg/L) for selected VOCs. The repeatability (n = 3) for a single fiber was within the range of 4.1-7.9% (intra-day) and 5.7-9.6% (inter-day) while the reproducibility (n = 3) of fiber-to-fiber were in the range of 4.7% and 9.9%. This method was successfully used for the determination of six VOCs in water and urine with satisfactory recoveries of 90-112%. ZnO@GA nanorod coated fibers, despite possessing a much thinner coating compared to the commercial fibers, revealed a better overall extraction efficiency towards VOCs. These results indicated that the ZnO@GA provided a promising alternative in sample pretreatment and analysis in GC-MS.


Assuntos
Nanotubos , Neoplasias , Compostos Orgânicos Voláteis , Óxido de Zinco , Humanos , Reprodutibilidade dos Testes , Dióxido de Silício , Microextração em Fase Sólida , Água
4.
Nat Commun ; 12(1): 5729, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593818

RESUMO

Mesoscale molecular assemblies on the cell surface, such as cilia and filopodia, integrate information, control transport and amplify signals. Designer cell-surface assemblies could control these cellular functions. Such assemblies could be constructed from synthetic components ex vivo, making it possible to form such structures using modern nanoscale self-assembly and fabrication techniques, and then oriented on the cell surface. Here we integrate synthetic devices, micron-scale DNA nanotubes, with mammalian cells by anchoring them by their ends to specific cell surface receptors. These filaments can measure shear stresses between 0-2 dyn/cm2, a regime important for cell signaling. Nanotubes can also grow while anchored to cells, thus acting as dynamic cell components. This approach to cell surface engineering, in which synthetic biomolecular assemblies are organized with existing cellular architecture, could make it possible to build new types of sensors, machines and scaffolds that can interface with, control and measure properties of cells.


Assuntos
Técnicas Biossensoriais/métodos , Engenharia Celular/métodos , DNA/química , Microtecnologia/métodos , Nanotubos/química , Células HEK293 , Células HeLa , Humanos , Estresse Mecânico
5.
Anal Chim Acta ; 1180: 338860, 2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34538337

RESUMO

Mesopores silica nanotubes (MSNTs)-based chemical sensors for the rapid detection and of highly selective Fe2+ ions have been prepared. The novel nanosensors were prepared via immobilization of 1,10-phenanthroline-5-amine (PA) and bathophenanthroline (BP) onto the MSNTs. The resultant PA and BP sensors display high sensitivity for detection the Fe2+ ions in tap water, river water, sea water, two units in simple cycle power station, and biological samples. More interestingly, upon meeting ultra-trace amount of Fe2+ ions, a red complex appears at once. Color changes can be seen from the naked eye and tracked with a smartphone or spectrophotometric techniques. The response time that is necessary to achieve a stable signal was less than 15 s. The Univariate (Univar) calibration technique had been utilized for the determination of figures of merits. The detection limit obtained from the digital image analysis was 19 ppb (7.04 × 10-7 M) for Fe2+ ions, while the obtained from the spectrophotometric method was 6.7 ppb (2.48 × 10-7 M). Therefore, the two sensors had been successfully used in the determination of Fe2+ in several real samples with high sensitivity and selectivity. In addition, they can be used as a simple, rapid, and portable method to detect and quantify the pre rust in any cooler system.


Assuntos
Nanotubos , Águas Residuárias , Colorimetria , Íons , Dióxido de Silício
6.
Langmuir ; 37(37): 10934-10944, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34496213

RESUMO

Processing boron nitride nanotubes (BNNTs) for applications ranging from nanomedicine to electronics generally requires dispersions of nanotubes that are stable in various compounds and solvents. We show that alcohol/water cosolvents, particularly isopropyl alcohol (IPA), are essential for the complexation of BNNTs with DNA under mild bath sonication. The resulting DNA-wrapped BNNT complexes are highly stable during purification and solvent exchange from cosolvents to water, providing potential for the versatile liquid-phase processing of BNNTs. Via molecular dynamics simulations, we demonstrate that IPA assists in the solvation of BNNTs due to its pseudosurfactant nature by verifying that water is replaced in the solvation layer as IPA is added. We quantify the solvation free energy of BNNTs in various IPA/water mixtures and observe a nonmonotonic trend, highlighting the importance of utilizing solvent-nanotube interactions in nanomaterial dispersions. Additionally, we show that nanotube lengths can be characterized by rheology measurements via determining the viscosity of dilute dispersions of DNA-BNNTs. This represents the bulk sample property in the liquid state, as compared to conventional imaging techniques that require surface deposition and drying. Our results also demonstrate that BNNT dispersions exhibit the rheological behavior of dilute Brownian rigid rods, which can be further exploited for the controlled processing and property enhancement of BNNT-enabled assemblies such as films and fibers.


Assuntos
Nanotubos , Compostos de Boro , DNA , Água
7.
Mater Sci Eng C Mater Biol Appl ; 128: 112236, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34474814

RESUMO

In the present study, the synergistic effect of the bioactive glass (BG) and halloysite nanotubes (HNTs) (i.e. BG@HNT) was evaluated on physicochemical and bioactive properties of polyacrylamide/poly (vinyl alcohol) (PMPV) based nanocomposite hydrogels. Here, a double-network hydrogel composed of organic-inorganic components was successfully developed by using in-situ free-radical polymerization and freeze-thawing process. Structural analyses confirmed the successful formation of the nanocomposite hydrogels through physical and chemical interactions. Morphological analysis showed that all hydrogel scaffolds are containing highly porous 3D microstructure and pore-interconnectivity. The equilibrium swelling ratio of the hydrogels was decreased by the addition of BG or BG@HNT and thereby the lower porosity and pore-size reduced the penetration of media and slow down the degradation process. Enhanced biomineralization ability of PMPV/BG@HNT was observed via apatite-forming ability (Ca/P: 1.21 ± 0.14) after immersion in the simulated body fluid as well as significantly enhanced dynamic mechanical properties (compressive strength: 102.1 kPa at 45% of strain and stiffness: 3115.0 N/m at 15% of strain). Furthermore, an enhanced attachment and growth of hFOB1.19 osteoblast cells on PMPV/BG@HNT was achieved compared to PMPV or PMPV/BG hydrogels over 14 days. The PMPV/BG@HNT nanocomposite hydrogel could have a promising application in low-load bearing bone tissue regeneration.


Assuntos
Biomineralização , Nanotubos , Regeneração Óssea , Argila , Vidro , Hidrogéis/farmacologia , Nanogéis , Engenharia Tecidual , Tecidos Suporte
8.
Mater Sci Eng C Mater Biol Appl ; 128: 112292, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34474843

RESUMO

The ever-growing threat of drug-resistant pathogens and their biofilms based persistent, chronic infections has created an urgent call for new strategies to deal with multidrug resistant bacteria (MDR). Near-infrared (NIR) laser-induced photothermal treatment (PTT) of gold nanorods (AuNRs) disinfects microbes by local heating with low possibility to develop resistant. However, PTT disinfection strategy of AuNRs alone shows less efficiency in killing multidrug resistant strains (i.e. Methicillin-resistant Staphylococcus aureus, MRSA) and their matured biofilms. Herein, a novel synergistic chemo-photothermal integrated antimicrobial platform (P(Cip-b-CB)-AuNRs) was fabricated which show enhanced killing efficiency against MRSA in both planktonic and biofilm phenotypes. Polymethacrylate copolymers with pendant ciprofloxacin (Cip) and the carboxyl betaine groups (P(Cip-b-CB)) were synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization. P(Cip-b-CB) was decorated onto AuNRs via gold-thiol bond which resulted in AuNRs with acidic-induced surface charge-switchable activities and lipase triggered Cip release properties (P(Cip-b-CB)-AuNRs). The lower pH value and overexpress of lipase are characteristics for microenvironment of microbial infections and their biofilms, which ensure the targeting on, penetration into and on-demand release of Cip from the nanocomposites in bacterial infection sites and their biofilms. The bacterial cell membrane was disrupt by photothermal therapy which could improve its permeability and sensitivity to antibiotics, meanwhile lipase-triggered release of Cip ensures a high concentration of antibiotics at the site of bacterial infection. Besides their NIR induced PTT disinfection activities, the increased local temperature generated by NIR light irradiation accelerated Cip release which further enhanced the antibacterial efficiency, leading to synergistic antibacterial activities of chemo-photothermal therapy. Taken together, the designed synergistic chemo-photothermal integrated antimicrobial platform is a promising antibacterial agent for fighting MDR bacterial infections and their biofilms.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Nanotubos , Preparações Farmacêuticas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Ciprofloxacina/farmacologia , Ouro , Concentração de Íons de Hidrogênio
9.
Mater Sci Eng C Mater Biol Appl ; 128: 112322, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34474873

RESUMO

Many studies were conducted to change the surface morphology and chemical composition of Ti implants for the improvement of antibacterial ability and osseointegration between medical Ti and surrounding bone tissue. In this study, we successfully prepared a novel dual-function coating on pure Ti surface, i.e. Cu and Mg-co-doped TiO2 nanotube (TN) coating, by combining anodisation and hydrothermal treatment (HT), which could act as a delivery platform for the sustained release of Cu and Mg ions. Results showed that the amounts of Cu and Mg were about 5.43 wt%-6.55 wt% and 0.69 wt%-0.73 wt%, respectively. In addition, the surface morphology of Cu and Mg-co-doped TN (CuMTN) coatings transformed into nanoneedles after HT for 1 h. Compared with TN, CuMTN had no change in roughness and remarkable improved hydrophilicity. Antibacterial tests revealed that CuMTN had an antibacterial rate of more than 93% against Escherichia coli and Staphylococcus aureus, thereby showing excellent antibacterial properties. In addition, CuMTN could induce the formation of apatite well after being immersed in simulated body fluid, showing good biological activity. Preosteoblasts (MC3T3-E1) cultured on CuMTN-coated Ti demonstrated better proliferation and osteogenic differentiation than pristine and as-anodised specimens. To the best of our best knowledge, this study had successfully attempted to combine anodisation and HT, introduce Cu/Mg elements and functionalise Ti-based implant surfaces with enhanced hydrophilicity, osteogenesis and antimicrobial properties that can meet clinical needs for the first time.


Assuntos
Nanotubos , Osteogênese , Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Íons/farmacologia , Propriedades de Superfície , Titânio/farmacologia
10.
Mater Sci Eng C Mater Biol Appl ; 128: 112357, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34474904

RESUMO

Bioprinting technology offers layer-by-layer positioning of cells within 3D space with complexity and a defined architecture. Cancer models based in this biofabrication technique are important tools to achieve representative and realistic in vivo conditions of the tumor microenvironment. Here, we show the development of a proof-of-concept three-dimensional bioprinted cancer model that successfully recapitulates the intercellular communication via the assembly of functional tunneling nanotube (TNT)-like cell projections. Different combinations of collagen-containing culture medium, sodium alginate and gelatin were initially prepared and rheologically evaluated. The optimized mixture was used to print two preliminary 3D models for cancer cell seeding. Favourable results in cell viability and proliferation led to the inclusion of 786-O renal cancer cells into the biomaterial mixture to directly bioprint the most suitable 3D model with embedded cells. Bioprinted cells remained viable for at least 15 days of culture and proliferated. More importantly, these cancer cells were able to build TNT-like cellular projections inside the hydrogel that established direct contacts between distant cells. We show that these structures were used as channels for the scrolling and intercellular transfer of mitochondria thus reproducing TNT's function in 2D culture systems. This 3D bioprinted renal cancer model provides a novel alternative tool for studying the functional relevance of TNT-like structures in tumorigenesis and anticancer drug susceptibility in a highly controlled and reproducible tumor microenvironment.


Assuntos
Bioimpressão , Nanotubos , Neoplasias , Gelatina , Hidrogéis , Impressão Tridimensional
11.
Anal Chim Acta ; 1181: 338926, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34556211

RESUMO

A multicolor and photothermal dual-mode assay for sensitive alkaline phosphatase (ALP) determination was realized based on the 3,3',5,5'-tetramethylbenzidine (TMB)-induced etching of gold nanorods (AuNRs). TMB was oxidized under ultraviolet light irradiation to form TMB+. In the presence of ALP, ascorbic acid phosphate (AAP) is converted to ascorbic acid, which can then reduce the levels of TMB+, resulting in lower concentrations of TMB+. The remaining TMB+ was transformed into TMB2+ after the addition of HCl solution. AuNRs were etched by TMB2+ to produce a multicolor and photothermal change. Based on the degree of AuNRs etching, this highly sensitive dual-mode assay provided a linear range of 1.0-8.0 mU/mL, with detection limits of 0.34 mU/mL for the multicolor assay and 0.11 mU/mL for the photothermal assay. This method was successfully applied to the determination of ALP in serum samples.


Assuntos
Ouro , Nanotubos , Fosfatase Alcalina , Colorimetria , Raios Ultravioleta
12.
Anal Chem ; 93(38): 12954-12965, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34520166

RESUMO

Surface-enhanced Raman scattering (SERS) probes offer considerable opportunities in label-based biosensing and analysis. However, achieving specific and reproducible performance, where low detection limits are needed in complex media, remains a challenge. Herein, we present a general strategy employing gold nanorod SERS probes and rationally designed surface chemistry involving protein resistant layers and antibodies to allow for the selective detection of species in complex media. By utilizing the ability of gold nanorods for selective surface modification, Raman reporters (4-mercaptobenzoic acid) were attached to the tips. Importantly, the sides of the nanorods were modified using a mixed layer of two different length stabilizing ligands (carboxyl-terminated oligo ethylene glycols) to ensure colloidal stability, while antibodies were attached to the stabilizing ligands. The nanoparticle interfacial design improves the colloidal stability, unlocks the capability of the probes for targeting biomolecules in complex matrices, and gives the probes the high SERS efficiency. The utility of this probe is demonstrated herein via the detection of Salmonella bacteria at the single bacterium level in complex food matrices using an anti-Salmonella IgG antibody-conjugated probe. The modular nature of the surface chemistry enables the SERS probes to be employed with a molecularly diverse range of biorecognition species (e.g., antibodies and peptides) for many different analytes, thus opening up new opportunities for efficient biosensing applications.


Assuntos
Nanopartículas Metálicas , Nanotubos , Ouro , Imunoensaio , Imunoglobulina G , Análise Espectral Raman
13.
Chem Commun (Camb) ; 57(71): 8961-8964, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34486587

RESUMO

Optical properties of anisotropic gold nanorod arrays inside anodic aluminium oxide substrates enhance the longitudinal absorption intensities and the hyperthermia cancer cell killing at 42.1 °C under photothermal laser exposures at 671 nm.


Assuntos
Antineoplásicos/farmacologia , Nanotubos/química , Terapia Fototérmica/métodos , Óxido de Alumínio/química , Óxido de Alumínio/farmacologia , Óxido de Alumínio/efeitos da radiação , Antineoplásicos/química , Antineoplásicos/efeitos da radiação , Morte Celular/fisiologia , Ouro/química , Ouro/farmacologia , Ouro/efeitos da radiação , Células HeLa , Humanos , Nanotubos/efeitos da radiação
14.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502098

RESUMO

Clinical effects induced by arrhythmogenic cardiomyopathy (ACM) originate from a large spectrum of genetic variations, including the missense mutation of the lamin A/C gene (LMNA), LMNA D192G. The aim of our study was to investigate the biophysical and biomechanical impact of the LMNA D192G mutation on neonatal rat ventricular fibroblasts (NRVF). The main findings in mutated NRVFs were: (i) cytoskeleton disorganization (actin and intermediate filaments); (ii) decreased elasticity of NRVFs; (iii) altered cell-cell adhesion properties, that highlighted a strong effect on cellular communication, in particular on tunneling nanotubes (TNTs). In mutant-expressing fibroblasts, these nanotubes were weakened with altered mechanical properties as shown by atomic force microscopy (AFM) and optical tweezers. These outcomes complement prior investigations on LMNA mutant cardiomyocytes and suggest that the LMNA D192G mutation impacts the biomechanical properties of both cardiomyocytes and cardiac fibroblasts. These observations could explain how this mutation influences cardiac biomechanical pathology and the severity of ACM in LMNA-cardiomyopathy.


Assuntos
Adesão Celular , Lamina Tipo A/metabolismo , Miofibroblastos/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Células Cultivadas , Lamina Tipo A/genética , Microscopia de Força Atômica , Mutação de Sentido Incorreto , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Miofibroblastos/fisiologia , Nanotubos/química , Pinças Ópticas , Ratos , Ratos Sprague-Dawley
15.
Sensors (Basel) ; 21(18)2021 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-34577327

RESUMO

Toxic and nontoxic volatile organic compound (VOC) gases are emitted into the atmosphere from certain solids and liquids as a consequence of wastage and some common daily activities. Inhalation of toxic VOCs has an adverse effect on human health, so it is necessary to monitor their concentration in the atmosphere. In this work, we report on the fabrication of inorganic nanotube (INT)-tungsten disulfide, paper-based graphene-PEDOT:PSS sheet and WS2 nanotube-modified conductive paper-based chemiresistors for VOC gas sensing. The WS2 nanotubes were fabricated by a two-step reaction, that is oxide reduction and sulfurization, carried out at 900 °C. The synthesized nanotubes were characterized by FE-SEM, EDS, XRD, Raman spectroscopy, and TEM. The synthesized nanotubes were 206-267 nm in diameter. The FE-SEM results show the length of the nanotubes to be 4.5-8 µm. The graphene-PEDOT:PSS hybrid conductive paper sheet was fabricated by a continuous coating process. Then, WS2 nanotubes were drop-cast onto conductive paper for fabrication of the chemiresistors. The feasibility and sensitivity of the WS2 nanotube-modified paper-based chemiresistor were tested in four VOC gases at different concentrations at room temperature (RT). Experimental results show the proposed sensor to be more sensitive to butanol gas when the concentration ranges from 50 to 1000 ppm. The limit of detection (LOD) of this chemiresistor for butanol gas was 44.92 ppm. The WS2 nanotube-modified paper-based chemiresistor exhibits good potential as a VOC sensor with the advantages of flexibility, easy fabrication, and low fabrication cost.


Assuntos
Nanotubos , Compostos Orgânicos Voláteis , Dissulfetos , Humanos , Limite de Detecção , Tungstênio
16.
Nat Commun ; 12(1): 5132, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446724

RESUMO

Concatenation and communication between chemically distinct chemical reaction networks (CRNs) is an essential principle in biology for controlling dynamics of hierarchical structures. Here, to provide a model system for such biological systems, we demonstrate autonomous lifecycles of DNA nanotubes (DNTs) by two concatenated CRNs using different thermodynamic principles: (1) ATP-powered ligation/restriction of DNA components and (2) input strand-mediated DNA strand displacement (DSD) using energy gains provided in DNA toeholds. This allows to achieve hierarchical non-equilibrium systems by concurrent ATP-powered ligation-induced DSD for activating DNT self-assembly and restriction-induced backward DSD reactions for triggering DNT degradation. We introduce indirect and direct activation of DNT self-assemblies, and orthogonal molecular recognition allows ATP-fueled self-sorting of transient multicomponent DNTs. Coupling ATP dissipation to DNA nanostructures via programmable DSD is a generic concept which should be widely applicable to organize other DNA nanostructures, and enable the design of automatons and life-like systems of higher structural complexity.


Assuntos
DNA/química , Nanotubos/química , Trifosfato de Adenosina/química , DNA/genética , Termodinâmica
17.
Int J Pharm ; 607: 121048, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34454027

RESUMO

In this study, halloysite nanotubes (HNTs) were subjected to surface functionalization using sodium alginate and incorporated into poly(caprolactone) (PCL) to fabricate nanocomposites for potential wound healing applications. The nanocomposite films were fabricated through the solution casting technique and characterized using various instrumental methods. The films exhibited enhanced thermal and mechanical properties. FE-SEM and AFM analyses confirmed the uniform dispersion of the HNTs and increased roughness of the films, respectively. The swelling properties, in-vitro enzymatic degradation, and anti-inflammatory activity of the films were also analyzed. The MTT assay performed using NIH3T3 cell lines revealed enhanced cell proliferation (126 ± 1.38) of 5 wt% film. Besides, the cell adhesion tests of the films revealed their cytocompatibility. The scratch assay tests conducted for observing the effectiveness of the films for wound closure showed that the 5 wt% film offered a higher rate of fibroblast cell migration (32.24 ± 0.49) than the pristine PCL film. The HRBCMS assay demonstrated the hemocompatibility of these films. The biological test results indicated the delayed enzymatic degradability and haemocompatiblity of nanocomposites with enhanced cell adhesion, cell proliferation, and cell migration capabilities with respect to fibroblast cells. In summary, the synthesized nanocomposite films can be effectively used in wound healing applications after further clinical trials.


Assuntos
Nanocompostos , Nanotubos , Alginatos , Animais , Materiais Biocompatíveis , Caproatos , Argila , Lactonas , Camundongos , Células NIH 3T3 , Sódio , Cicatrização
18.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360735

RESUMO

As a cellular interface between the blood and tissues, the endothelial cell (EC) monolayer is involved in the control of key functions including vascular tone, permeability and homeostasis, leucocyte trafficking and hemostasis. EC regulatory functions require long-distance communications between ECs, circulating hematopoietic cells and other vascular cells for efficient adjusting thrombosis, angiogenesis, inflammation, infection and immunity. This intercellular crosstalk operates through the extracellular space and is orchestrated in part by the secretory pathway and the exocytosis of Weibel Palade Bodies (WPBs), secretory granules and extracellular vesicles (EVs). WPBs and secretory granules allow both immediate release and regulated exocytosis of messengers such as cytokines, chemokines, extracellular membrane proteins, coagulation or growth factors. The ectodomain shedding of transmembrane protein further provide the release of both receptor and ligands with key regulatory activities on target cells. Thin tubular membranous channels termed tunneling nanotubes (TNTs) may also connect EC with distant cells. EVs, in particular exosomes, and TNTs may contain and transfer different biomolecules (e.g., signaling mediators, proteins, lipids, and microRNAs) or pathogens and have emerged as a major triggers of horizontal intercellular transfer of information.


Assuntos
Comunicação Celular , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Nanotubos/química , Vesículas Secretórias/metabolismo , Animais , Humanos
19.
Colloids Surf B Biointerfaces ; 207: 112019, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34388611

RESUMO

Titanium and titanium alloys have broad applications in orthopedic implants due to their excellent mechanical properties and biocompatibility. The biological activity of the metallic implants can be improved by implementing a nano-hydroxyapatite (nano-HA) coating, while it is still challenging to synthesize uniform and stable nano-HA on the metallic materials. The characterization results confirmed that the nanotube array with a diameter of 87 ± 21 nm and a length of 8.1 ± 1.3 µm is achieved by using double anodic oxidation, and then microsphere-like nano-HA crystals are formed on the TiO2 nanotube arrays. Through X-ray diffraction (XRD) and Fourier Transform Infrared Spectrometer (FT-IR) analysis, it is determined that the chemical composition of the coating is hydroxyapatite. in vitro cell experiments, compared to the TZNF metal surface, the TZNF-NTs/HA is beneficial to the proliferation and adhesion of osteoblasts, and the activity of ALP was 6.93 ± 0.47 DEA unit and the content of OCN was 7.04 ± 0.51 ng/L. In terms of the expression of osteogenic gene information as osterix, osteopontin, and osteonectin, the mRNA levels of TZNF-NTs/HA were 2.6-fold, 1.6-fold, and 4.3-fold higher than that of TZNF samples, respectively, at 14 days. The results suggested that the introduction of nano-HA improves osteoblast differentiation and local factor production, as well as indicates the potential for improved implant osseointegration.


Assuntos
Durapatita , Nanotubos , Ligas/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Osteoblastos , Osteogênese , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Titânio/farmacologia
20.
Colloids Surf B Biointerfaces ; 207: 112014, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34391166

RESUMO

Combined chemo-photothermal therapy of gold nanorods (GNRs) for cancer treatment shows better therapeutic efficiency than mono-chemotherapy, which has gained worldwide interests of scientists and clinician in both laboratory and clinic application. However, high cytotoxicity, declined delivery efficiency, and unsatisfactory therapy effect of the GNRs are still challenging in anti-cancer treatment. Herein, a series of pH-sensitively zwitterionic polypeptide conjugated GNRs were synthesized via a gold-thiol interaction for combination of chemo-photothermal therapy in cervical cancer treatment. The acid-labile hydrazone bond was utilized to incorporate the doxorubicin (DOX) for pH-sensitive drug release under tumoral environment. The as prepared GNRs conjugates demonstrated pH-triggered surface charge conversion from negative to positive when transporting from blood circulation to tumor extracellular environment, which can facilitate the cellular uptake via electrostatic interaction. After cellular internalization, the drug release was promoted by cleavage of the hydrazone in GNRs conjugates under cancer intracellular acid environment. As the effective near-infrared (NIR) photothermal materials, the as prepared GNRs conjugates can absorb NIR photo energy and convert it into heat under irradiation, which can efficiently kill the tumor cells. In cell assay, the GNRs conjugates displayed excellent biocompatibility against normal cell, enhanced cancer cell uptake, and remarkable cancer cell killing effects. In HeLa tumor-bearing mice, the GNRs conjugates demonstrated enhanced tumor inhibition efficacy by combination of chemo-photothermal therapy.


Assuntos
Nanotubos , Neoplasias do Colo do Útero , Animais , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Feminino , Ouro , Humanos , Camundongos , Peptídeos , Fototerapia , Terapia Fototérmica , Neoplasias do Colo do Útero/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...