Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
1.
Acta Cir Bras ; 40: e400725, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39813534

RESUMO

PURPOSE: To evaluate the molecular evolution of endoplasmic reticulum (ER) stress during colorectal cancer carcinogenesis. METHODS: Fifty-six hairless mice were divided into two groups: control (no intervention); and carcinogenesis (treated with two doses of azoxymethane at 10 mg/kg during the third and the fourth week and dextran sodium sulfate at 2.5% for seven days in the second, fifth, and eighth week). Euthanasia occurred at the fifth, 10th, 15th, and 20th week. Colons were collected, and gene expression of ER stress markers (IRE1-α, PERK, ATF6, and CHOP) was assessed via real-time quantitative polymerase chain reaction. RESULTS: ERN1 expression was significantly higher than the control at the 10th week (1.39 ± 0.16, p 0.05) and the 20th week (1.15 ± 0.04, p 0.01). ATF6 also showed elevated expression, significantly different at the 10th week (1.71 ± 0.29, p 0.05) and the 20th week (1.14 ± 0.06, p 0.05). PERK and CHOP expressions were significantly higher than the control in the 15th (PERK = 1.30 ± 0.12, CHOP = 1.48 ± 0.23) and 20th weeks (PERK = 1.63 ± 0.20, CHOP = 1.67 ± 0.22, p 0.05). CONCLUSION: Upregulation of IRN1, PERK, ATF6, and CHOP demonstrates a strong ER stress response during colorectal cancer development.


Assuntos
Carcinogênese , Neoplasias Colorretais , Progressão da Doença , Estresse do Retículo Endoplasmático , Resposta a Proteínas não Dobradas , Animais , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Resposta a Proteínas não Dobradas/fisiologia , Camundongos , Carcinogênese/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Masculino , Azoximetano , Fator de Transcrição CHOP/metabolismo , Fator de Transcrição CHOP/genética , Fatores de Tempo , Reação em Cadeia da Polimerase em Tempo Real
2.
Cells ; 13(21)2024 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-39513883

RESUMO

Colorectal cancer (CRC) is the third most commonly diagnosed type of cancer worldwide and is responsible for numerous deaths. 5-fluorouracil (5-FU) is an effective chemotherapy drug commonly used in the treatment of CRC, either as monotherapy or in combination with other drugs. However, half of CRC cases are resistant to 5-FU-based therapies. To contribute to the understanding of the mechanisms underlying CRC resistance or recurrence after 5-FU-based therapies, we performed a comprehensive study integrating in silico, in vitro, and in vivo approaches. We identified differentially expressed genes and enrichment of pathways associated with recurrence after 5-FU-based therapies. Using these bioinformatics data as a starting point, we selected a group of drugs that restored 5-FU sensitivity to 5-FU resistant cells. Interestingly, treatment with the novel Rac1 inhibitor, 1A-116, reversed morphological changes associated with 5-FU resistance.. Moreover, our in vivo studies have shown that 1A-116 affected tumor growth and the development of metastasis. All our data allowed us to postulate that targeting Rac1 represents a promising avenue for the development of new treatments for patients with CRC resistant to 5-FU-based therapies.


Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Fluoruracila , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Transdução de Sinais/efeitos dos fármacos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Animais , Linhagem Celular Tumoral , Camundongos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Proliferação de Células/efeitos dos fármacos
3.
Molecules ; 29(22)2024 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-39598733

RESUMO

Colorectal cancer remains a significant cause of mortality worldwide. A spiro-acridine derivative, (E)-1'-((4-bromobenzylidene)amino)-5'-oxo-1',5'-dihydro-10H-spiro[acridine-9,2'-pyrrole]-4'-carbonitrile (AMTAC-19), showed significant cytotoxicity in HCT-116 colorectal carcinoma cells (half maximal inhibitory concentration, IC50 = 10.35 ± 1.66 µM) and antioxidant effects after 48 h of treatment. In this study, Molegro Virtual Docker v.6.0.1 software was used to investigate the interactions between AMTAC-19 and the Extracellular Signal-Regulated Kinase 1 (ERK1), c-Jun N-terminal Kinase 1 (JNK1), and p38 Mitogen-Activated Protein Kinase α (p38α MAPK). In vitro assays were conducted in HCT-116 cells to evaluate the effect of AMTAC-19 on the modulation of these proteins' activities using flow cytometry. Furthermore, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in the presence or absence of ERK1/2, JNK, and p38 MAPK inhibitors was used to evaluate the involvement of these enzymes in AMTAC-19 cytotoxicity. ROS production was assessed using the 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) assay at various incubation times (30 min, 1 h, 6 h, 12 h, and 24 h), and the MTT assay using N-acetyl-L-cysteine (NAC) was performed. In silico results indicated that AMTAC-19 interacts with ERK1, JNK1, and p38α MAPK. Additionally, AMTAC-19 activated ERK1/2 and JNK1 in HCT-116 cells, and its cytotoxicity was significantly reduced in the presence of ERK1/2 and JNK inhibitors. AMTAC-19 also induced a significant increase in ROS production (30 min and 1 h), while NAC pretreatment reduced its cytotoxicity. These findings support AMTAC-19's in vitro antitumor effect through ROS-dependent activation of ERK and JNK pathways.


Assuntos
Antineoplásicos , Sistema de Sinalização das MAP Quinases , Espécies Reativas de Oxigênio , Humanos , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Células HCT116 , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Acridinas/farmacologia , Acridinas/química , Compostos de Espiro/farmacologia , Compostos de Espiro/química , Simulação de Acoplamento Molecular , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia
4.
Int J Mol Sci ; 25(20)2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39456655

RESUMO

Aberrant signaling through damage-associated molecular patterns (DAMPs) has been linked to several health disorders, attracting considerable research interest over the last decade. Adenosine triphosphate (ATP), a key extracellular DAMP, activates the purinergic receptor P2X7, which acts as a danger sensor in immune cells and is implicated in distinct biological functions, including cell death, production of pro-inflammatory cytokines, and defense against microorganisms. In addition to driving inflammation mediated by immune and non-immune cells, the persistent release of endogenous DAMPs, including ATP, has been shown to result in epigenetic modifications. In intestinal diseases such as inflammatory bowel disease (IBD) and colorectal cancer (CRC), consequent amplification of the inflammatory response and the resulting epigenetic reprogramming may impact the development of pathological changes associated with specific disease phenotypes. P2X7 is overexpressed in the gut mucosa of patients with IBD, whereas the P2X7 blockade prevents the development of chemically induced experimental colitis. Recent data suggest a role for P2X7 in determining gut microbiota composition. Regulatory mechanisms downstream of the P2X7 receptor, combined with signals from dysbiotic microbiota, trigger intracellular signaling pathways and inflammasomes, intensify inflammation, and foster colitis-associated CRC development. Preliminary studies targeting the ATP-P2X7 pathway have shown favorable therapeutic effects in human IBD and experimental colitis.


Assuntos
Receptores Purinérgicos P2X7 , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética , Humanos , Animais , Inflamação/metabolismo , Inflamação/patologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Trifosfato de Adenosina/metabolismo , Microbioma Gastrointestinal , Transdução de Sinais , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/etiologia , Intestinos/patologia , Intestinos/microbiologia
5.
Int J Mol Sci ; 25(20)2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39456736

RESUMO

Colorectal cancer CRC remains one of the leading causes of cancer-related deaths worldwide, with chronic intestinal inflammation identified as a major risk factor. Notably, the tumor suppressor TP53 undergoes mutation at higher rates and earlier stages during human inflammation-driven colon tumorigenesis than in sporadic cases. We investigated whether deleting Trp53 affects inflammation-induced tumor growth and the expression of Lgr5+ cancer stem cells in mice. We examined azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colon tumorigenesis in wild-type Trp53 (+/+), heterozygous (+/-), and knockout (-/-) mice. Trp53-/- mice showed increased sensitivity to DSS colitis and earlier accelerated tumorigenesis with 100% incidence. All groups could develop invasive tumors, but knockouts displayed the most aggressive features. Unlike wild-type CRC, knockouts selectively showed increased populations of Lgr5+ colon cancer stem-like cells. Trp53 loss also boosted laminin, possibly facilitating the disruption of the tumor border. This study highlights how Trp53 deletion promotes the perfect storm of inflammation and stemness, driving colon cancer progression. Trp53 deletion dramatically shortened AOM/DSS latency and improved tumor induction efficiency, offering an excellent inflammation-driven CRC model.


Assuntos
Azoximetano , Carcinogênese , Colite , Neoplasias Colorretais , Sulfato de Dextrana , Camundongos Knockout , Células-Tronco Neoplásicas , Receptores Acoplados a Proteínas G , Proteína Supressora de Tumor p53 , Animais , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Camundongos , Azoximetano/toxicidade , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Colite/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/etiologia , Carcinogênese/genética , Carcinogênese/patologia , Carcinogênese/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Deleção de Genes
6.
Cells ; 13(19)2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39404412

RESUMO

LAH, an acetogenin from the Annonaceae family, has demonstrated antitumor activity in several cancer cell lines and in vivo models, where it reduced the tumor size and induced programmed cell death. We focused on the effects of LAH on mitochondrial dynamics, mTOR signaling, autophagy, and apoptosis in colorectal cancer (CRC) cells to explore its anticancer potential. METHODS: CRC cells were treated with LAH, and its effects on mitochondrial respiration and glycolysis were measured using Seahorse XF technology. The changes in mitochondrial dynamics were observed through fluorescent imaging, while Western blot analysis was used to examine key autophagy and apoptosis markers. RESULTS: LAH significantly inhibited mitochondrial complex I activity, inducing ATP depletion and a compensatory increase in glycolysis. This disruption caused mitochondrial fragmentation, a trigger for autophagy, as shown by increased LC3-II expression and mTOR suppression. Apoptosis was also confirmed through the cleavage of caspase-3, contributing to reduced cancer cell viability. CONCLUSIONS: LAH's anticancer effects in CRC cells are driven by its disruption of mitochondrial function, triggering both autophagy and apoptosis. These findings highlight its potential as a therapeutic compound for further exploration in cancer treatment.


Assuntos
Apoptose , Autofagia , Proliferação de Células , Neoplasias Colorretais , Mitocôndrias , Humanos , Autofagia/efeitos dos fármacos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Acetogeninas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
7.
Sci Rep ; 14(1): 23928, 2024 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-39397093

RESUMO

PIWI proteins, traditionally associated with germline development, have recently gained attention for their expression in various cancers, including colorectal cancer. However, the molecular mechanisms underlying their reactivation and impact on cancer initiation and progression remain elusive. Here, we found that PIWIL1 is expressed at relatively high levels in CRC-derived samples and cell lines, where it undergoes a dynamic relocalization to the centrosome during mitosis. Knockdown of PIWIL1 induces G2/M arrest associated with disruption of the mitotic spindle and aberrant metaphase events, highlighting its role in cell cycle progression. We also found that the expression of PIWIL1 is lost during the differentiation of Caco-2 cells into enterocytes and that PIWIL1 is expressed in cells at the base of the intestinal crypts in normal human colon tissue, where intestinal stem cells are known to reside. Thus, it is possible that the presence of PIWIL1 in cancer cells reflects a physiological role of this protein in stem cell maintenance, which would argue in favor of the proposed stem cell origin of CRC. Supporting this view, dedifferentiation of human fibroblasts into induced pluripotent stem cells (iPSCs) involves the reactivation of PIWIL2 expression, another member of the PIWI protein family. Overall, our findings suggest a role of PIWIL1 in mediating cell cycle dynamics, both in colorectal cancer cells and possibly also in intestinal stem cells. In a broader aspect, we provide evidence supporting an involvement of PIWI proteins in somatic stem cell maintenance, thus expanding the known non-gonadal functions of this protein family.


Assuntos
Proteínas Argonautas , Centrossomo , Neoplasias Colorretais , Mitose , Humanos , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Centrossomo/metabolismo , Células CACO-2 , Ciclo Celular , Diferenciação Celular , Linhagem Celular Tumoral
8.
Molecules ; 29(16)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39202999

RESUMO

Colorectal cancer (CRC) is the third most common type of cancer worldwide. Its treatment options have had a limited impact on cancer remission prognosis. Therefore, there is an ongoing need to discover novel anti-cancer agents. Medicinal plants have gained recognition as a source of anti-cancer bioactive compounds. Recently, ethanolic extract of L. virginicum stems ameliorated dinitrobenzene sulfonic acid (DNBS)-induced colitis by modulating the intestinal immune response. However, no scientific study has demonstrated this potential cytotoxic impact on colon cancer cells. The objective of this study was to evaluate the cytotoxic effect of the methanolic extract of L. virginicum (ELv) on a human colorectal adenocarcinoma cell line (Caco-2) and to identify and quantify the phenolic compounds present in ELv extracts by liquid chromatography-mass spectrometry analysis. The cytotoxic activity was assessed using cell viability assays by reduction in the compound 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH). MTT and LDH assays revealed that the ELv decreases cell viability in the Caco-2 cell line in a concentration-dependent manner. Cell death was a result of DNA fragmentation and p53-mediated apoptosis. Eight phenolic acids and five flavonoids were identified and quantified in the stems. In conclusion, our findings demonstrate that the extract of L. virginicum possesses cytotoxic properties on Caco-2 cell line, suggesting that it could be a potential source of new drugs against CRC.


Assuntos
Apoptose , Sobrevivência Celular , Lepidium , Metanol , Extratos Vegetais , Proteína Supressora de Tumor p53 , Humanos , Células CACO-2 , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Apoptose/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Metanol/química , Lepidium/química , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Fenóis/farmacologia , Fenóis/química
9.
Arq Gastroenterol ; 61: e24016, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38775586

RESUMO

BACKGROUND: Colorectal carcinoma (CRC) is one of the common carcinomas with a rising incidence of metastasis due to its advanced stage of presentation. The existing biomarkers such as CEA (Carcinoembryonic antigen) etc., for prognosis, have low sensitivity and specificity. Hence a need for a newer definitive biomarker. Obesity is the leading cause of CRC. Leptin and adiponectin secreted by adipose tissue have been studied as potential biomarkers in the field of CRC. The present study helps to understand the association of leptin and adiponectin receptors with clinicopathological parameters. OBJECTIVE: To correlate the various clinicopathological parameters with the tissue expression of leptin and adiponectin receptors in CRC. METHODS: It is a cross-sectional prospective study conducted at a tertiary care hospital. Formalin fixed paraffin blocks of all radical resection CRC cases were collected and immunohistochemistry (IHC)was carried out on tumor tissue for leptin and adiponectin receptor. Tumor characteristics and clinical parameters were collected from the hospital medical records. Pearson's correlation coefficient test was used. RESULTS: Immunohistochemistry was performed on 60 cases of CRC. Significant positive correlation of leptin was observed with size, lymph node metastasis, advanced stage, and grade of tumor (P<0.05). A significant correlation between adiponectin receptor and CRC was observed concerning age, stage, lymph node metastasis, distant metastasis and grade of tumor. CONCLUSION: Positive expression of leptin and negative expression of adiponectin receptors in CRC helps to predict the risk of metastasis.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais , Imuno-Histoquímica , Leptina , Estadiamento de Neoplasias , Receptores de Adiponectina , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Estudos Transversais , Estudos Prospectivos , Masculino , Feminino , Pessoa de Meia-Idade , Leptina/metabolismo , Leptina/análise , Receptores de Adiponectina/análise , Receptores de Adiponectina/metabolismo , Idoso , Biomarcadores Tumorais/metabolismo , Adulto , Receptores para Leptina/metabolismo , Receptores para Leptina/análise , Gradação de Tumores , Metástase Linfática
10.
Clin Transl Oncol ; 26(4): 891-904, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37697139

RESUMO

BACKGROUND: Recently, enhancer RNAs (eRNAs) have garnered attention as pivotal biomarkers for the onset and progression of cancer. However, the landscape of eRNAs and the implications of eRNA-based molecular subtypes in stage II/III colorectal cancer (CRC) remain largely unexplored. METHODS: Comprehensive profiling of eRNAs was conducted on a public stage II/III CRC cohort with total RNA-seq data. We used unsupervised clustering of prognostic eRNAs to establish an eRNA-based subtyping system. Further evaluations included molecular characteristics, immune infiltration, clinical outcomes, and drug responses. Finally, we validated the eRNA-based subtyping system in The Cancer Genome Atlas (TCGA) CRC cohort. RESULTS: We identified a total of 6453 expressed eRNAs, among which 237 were prognostic. A global upregulation of eRNAs was observed in microsatellite-stable (MSS) CRCs when compared to microsatellite instability-high (MSI-H) CRCs. Through consensus clustering, two novel molecular subtypes, termed Cluster 1(C1) and Cluster 2(C2), were further identified. C1, associated with the activation of epithelial-mesenchymal transition (EMT), hypoxia, and KRAS signaling pathways, showed poorer prognosis. C2, correlated with the canonical CRC subtype, exhibited superior survival outcomes. In addition, C1 showed enrichment with immune infiltration and more sensitivity to immune checkpoint inhibitors. CONCLUSION: Our study unravels the molecular heterogeneity of stage II/III CRC at the eRNA level and highlights the potential applications of the novel eRNA-based subtyping system in predicting prognosis and guiding immunotherapy.


Assuntos
Neoplasias Colorretais , RNAs Intensificadores , Humanos , Prognóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Neoplasias Colorretais/metabolismo , Instabilidade de Microssatélites , Imunoterapia
11.
Cell Death Dis ; 14(12): 832, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102125

RESUMO

In this work, we describe a novel ruthenium-xanthoxylin complex, [Ru(phen)2(xant)](PF6) (RXC), that can eliminate colorectal cancer (CRC) stem cells by targeting the chaperone Hsp90. RXC exhibits potent cytotoxicity in cancer cell lines and primary cancer cells, causing apoptosis in HCT116 CRC cells, as observed by cell morphology, YO-PRO-1/PI staining, internucleosomal DNA fragmentation, mitochondrial depolarization, and PARP cleavage (Asp214). Additionally, RXC can downregulate the HSP90AA1 and HSP90B1 genes and the expression of HSP90 protein, as well as the expression levels of its downstream/client elements Akt1, Akt (pS473), mTOR (pS2448), 4EBP1 (pT36/pT45), GSK-3ß (pS9), and NF-κB p65 (pS529), implying that these molecular chaperones can be molecular targets for RXC. Moreover, this compound inhibited clonogenic survival, the percentage of the CRC stem cell subpopulation, and colonosphere formation, indicating that RXC can eliminate CRC stem cells. RXC reduced cell migration and invasion, decreased vimentin and increased E-cadherin expression, and induced an autophagic process that appeared to be cytoprotective, as autophagy inhibitors enhanced RXC-induced cell death. In vivo studies showed that RXC inhibits tumor progression and experimental metastasis in mice with CRC HCT116 cell xenografts. Taken together, these results highlight the potential of the ruthenium complex RXC in CRC therapy with the ability to eliminate CRC stem cells by targeting the chaperone Hsp90.


Assuntos
Neoplasias Colorretais , Rutênio , Humanos , Animais , Camundongos , Transdução de Sinais , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HCT116 , Proteínas de Choque Térmico HSP90/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Proliferação de Células , Linhagem Celular Tumoral
12.
Clin Transl Oncol ; 25(11): 3217-3229, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37184781

RESUMO

BACKGROUND: Radiotherapy is widely employed in colorectal cancer (CRC) treatment but is often compromised by developed radioresistance. This study explored the mechanism of long non-coding RNA ovarian tumor domain containing 6B-antisense RNA1 (lncRNA OTUD6B-AS1) in CRC radioresistance through tripartite motif 16 (TRIM16). METHODS: CRC and non-cancerous tissues were collected and radioresistant CRC cells were established, with real-time quantitative polymerase chain reaction to determine gene expression in tissues and cells. Radioresistance was evaluated by cell counting kit-8 assay and immunofluorescence (γ-H2AX) and ferroptosis was tested by Western blot assay (ACSL4/GPX4) and assay kits (Fe2+/ROS/MDA/GSH). The association between ferroptosis and lncRNA OTUD6B-AS1-inhibited radioresistance was testified using ferroptosis inhibitor. The subcellular localization of lncRNA OTUD6B-AS1 was tested by the nuclear/cytoplasmic fractionation assay, with RNA immunoprecipitation assay to validate gene interactions. Rescue experiments were conducted to analyze the role of TRIM16 in CRC radioresistance. RESULTS: LncRNA OTUD6B-AS1 and TRIM16 were poorly expressed (P < 0.01) in CRC tissues and cells and further decreased (P < 0.01) in radioresistant CRC cells. OTUD6B-AS1 overexpression decreased cell survival (P < 0.01), increased γ-H2AX levels (P < 0.01), and elevated ferroptosis and oxidative stress (P < 0.01) after X-ray radiation. Ferroptosis inhibitor attenuated radioresistance (P < 0.01) caused by lncRNA OTUD6B-AS1 overexpression. LncRNA OTUD6B-AS1 stabilized TRIM16 mRNA via binding to HuR. TRIM16 knockdown reduced ferroptosis and increased radioresistance (P < 0.05). CONCLUSION: OTUD6B-AS1 overexpression stabilized TRIM16 via binding to HuR and increased GPX4-mediated ferroptosis, thus attenuating CRC radioresistance. Our study provided a new rationale for the treatment of CRC.


Assuntos
Neoplasias Colorretais , Ferroptose , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/radioterapia , Neoplasias Colorretais/metabolismo , MicroRNAs/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/metabolismo
13.
Genes (Basel) ; 14(4)2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37107652

RESUMO

BACKGROUND: The incidence of sporadic colorectal cancer (CRC) among individuals <50 years (early-onset CRC) has been increasing in the United States (U.S.) and Puerto Rico. CRC is currently the leading cause of cancer death among Hispanic men and women living in Puerto Rico (PRH). The objective of this study was to characterize the molecular markers and clinicopathologic features of colorectal tumors from PRH to better understand the molecular pathways leading to CRC in this Hispanic subpopulation. METHODS: Microsatellite instability (MSI), CpG island methylator phenotype (CIMP), and KRAS and BRAF mutation status were analyzed. Sociodemographic and clinicopathological characteristics were evaluated using Chi-squared and Fisher's exact tests. RESULTS: Of the 718 tumors analyzed, 34.2% (n = 245) were early-onset CRC, and 51.7% were males. Among the tumors with molecular data available (n = 192), 3.2% had MSI, 9.7% had BRAF, and 31.9% had KRAS mutations. The most common KRAS mutations observed were G12D (26.6%) and G13D (20.0%); G12C was present in 4.4% of tumors. A higher percentage of Amerindian admixture was significantly associated with early-onset CRC. CONCLUSIONS: The differences observed in the prevalence of the molecular markers among PRH tumors compared to other racial/ethnic groups suggest a distinct molecular carcinogenic pathway among Hispanics. Additional studies are warranted.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas B-raf , Masculino , Feminino , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Metilação de DNA , Porto Rico/epidemiologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Instabilidade de Microssatélites , Biomarcadores/metabolismo , Hispânico ou Latino/genética
14.
Clin Transl Oncol ; 25(7): 1949-1962, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36790675

RESUMO

Gut microbes are widely considered to be closely associated with colorectal cancer (CRC) development. The microbiota is regarded as a potential identifier of CRC, as several studies have found great significant changes in CRC patients' microbiota and metabolic groups. Changes in microbiota, like Fusobacterium nucleatum and Bacteroides fragilis, also alter the metabolic activity of the host, promoting CRC development. In contrast, the metabolome is an intuitive discriminative biomarker as a small molecular bridge to distinguish CRC from healthy individuals due to the direct action of microbes on the host. More diagnostic microbial markers have been found, and the potential discriminatory power of microorganisms in CRC has been investigated through the combined use of biomic genomic metabolomics, bringing new ideas for screening fecal microbial markers. In this paper, we discuss the potential of microorganisms and their metabolites as biomarkers in CRC screening, hoping to provide thoughts and references for non-invasive screening of CRC.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Microbiota , Humanos , Detecção Precoce de Câncer , Metabolômica , Biomarcadores , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/metabolismo
15.
Clin Transl Oncol ; 25(2): 491-502, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36273060

RESUMO

BACKGROUND: Most studies on subtype identification of colorectal cancer (CRC) were based on expressions of either genes or immune cells. However, few studies have hitherto used the combination of genes with immune and stroma cells for subtype identification. METHODS: Dataset GSE17536 was obtained from the Gene Expression Omnibus (GEO) database. The xCell algorithm was used to estimate the composition and density of 64 cell types, including immune and stroma cell types. Clustering analysis was then conducted on the top 3000 most variable genes from a total of 20,174 genes for CRC subtype identification. We employed the ensemble method of Similarity network fusion and 112 Consensus Clustering (SNF-CC) for cancer subtype identification. Reactome pathway analysis was conducted to identify the impact of the representative genes on prognosis. The results were validated in independent gene expression data from dataset GSE17537. RESULTS: In this study, we identified 3 clinically relevant subtypes and their representative genes, immune and stroma cells. Moreover, we confirmed the correlation of these subtypes with their clinical characteristics. The representative genes of the subtype with poor prognosis correlated with extracellular matrix structural constituent, while the subtype with good prognosis correlated with Toll-like receptor signaling pathway or chemokine signaling pathway. However, different subtypes were associated with distinct cell subtypes; the subtype with poor prognosis had a high abundance of fibroblasts and endothelial cells; the subtype with median prognosis had a higher abundance of immune cells, such as CD4 + T-cell, Th2 cells and aDC; the subtype with good prognosis had a higher abundance of NKT. CONCLUSION: This study highlights the utility of immune and innate cells, especially during gene analysis, to provide the theoretical basis for personalized treatment in colorectal cancer patients.


Assuntos
Neoplasias Colorretais , Humanos , Neoplasias Colorretais/metabolismo , Células Endoteliais/metabolismo , Prognóstico , Transdução de Sinais , Análise por Conglomerados , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral/genética
16.
J Cell Biochem ; 124(1): 31-45, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36565460

RESUMO

Radiotherapy is one of the most common modalities for the treatment of a wide range of tumors, including colorectal cancer (CRC); however, radioresistance of cancer cells remains a major limitation for this treatment. Following radiotherapy, the activities of various cellular mechanisms and cell signaling pathways are altered, resulting in the development of radioresistance, which leads to therapeutic failure and poor prognosis in patients with cancer. Furthermore, even though several inhibitors have been developed to target tumor resistance, these molecules can induce side effects in nontumor cells due to low specificity and efficiency. However, the role of these mechanisms in CRC has not been extensively studied. This review discusses recent studies regarding the relationship between radioresistance and the alterations in a series of cellular mechanisms and cell signaling pathways that lead to therapeutic failure and tumor recurrence. Our review also presents recent advances in the in vitro/in vivo study models aimed at investigating the radioresistance mechanism in CRC. Furthermore, it provides a relevant biochemical basis in theory, which can be useful to improve radiotherapy sensitivity and prolong patient survival.


Assuntos
Neoplasias Colorretais , Transdução de Sinais , Humanos , Tolerância a Radiação , Neoplasias Colorretais/metabolismo , Linhagem Celular Tumoral
17.
Nutrients ; 14(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36432565

RESUMO

The Wnt/ß-Catenin pathway alterations present in colorectal cancer (CRC) are of special interest in the development of new therapeutic strategies to impact carcinogenesis and the progression of CRC. In this context, different polyphenols present in natural products have been reported to have modulatory effects against the Wnt pathway in CRC. In this study, we evaluate the effect of two polyphenol-rich coffee extracts and chlorogenic acid (CGA) against SW480 and HT-29 CRC cells. This involved the use of MTT and SRB techniques for cell viability; wound healing and invasion assay for the evaluation of the migration and invasion process; T cell factor (TCF) reporter plasmid for the evaluation of transciption factor (TCF) transcriptional activity; polymerase chain reaction (PCR) of target genes and confocal fluorescence microscopy for ß-Catenin and E-Cadherin protein fluorescence levels; and subcellular localization. Our results showed a potential modulatory effect of the Wnt pathway on CRC cells, and we observed a reduction in the transcriptional activity of ß-catenin. All the results were prominent in SW480 cells, where the Wnt pathway deregulation has more relevance and implies a constitutive activation of the signaling pathway. These results establish a starting point for the discovery of a mechanism of action associated with these effects and corroborate the anticancer potential of polyphenols present in coffee, which could be explored as chemopreventive molecules or as adjunctive therapy in CRC.


Assuntos
Neoplasias Colorretais , beta Catenina , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Via de Sinalização Wnt , Ácido Clorogênico/farmacologia , Ácido Clorogênico/uso terapêutico , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Neoplasias Colorretais/metabolismo
18.
Genet Test Mol Biomarkers ; 26(10): 468-475, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36219734

RESUMO

Background: The process of proliferation and invasion of tumor cells depends on changes in the extracellular matrix (ECM) through the activation of enzymes and alterations in the profile of ECM components. Our aims were to investigate the mRNA and protein expression profiles of the ECM components, heparanase-1 (HPSE), heparanase-2 (HPSE2), matrix metalloproteinase-9 (MMP-9), and syndecan-1 (SDC1) in neoplastic and nonneoplastic tissues of 24 patients with colorectal carcinoma (CRC) and to test for associations between the expression patterns of these genes with the presence or absence of lymph node metastases. Materials and Methods: This was a cross-sectional study in which 24 adult patients with CRC were admitted for resectional surgery. We analyzed the mRNA and protein expression patterns of the HPSE, HPSE2, MMP-9, and SDC1 genes by quantitative reverse transcription PCR and immunohistochemistry, respectively. Additionally, we investigated whether variations exist in the expression of the ECM components between the affected tissue and nontumoral tissue collected from the same patient. Tissue samples were collected during the surgical resection. Results and Conclusions: The data showed higher mRNA and protein expression levels of HPSE2 (p = 0.0058), MMP-9 (p = 0.0268), and SDC1 (p = 0.0002) in tumor samples when compared to the adjacent non-neoplastic tissues. There was, however, only an increase in the HPSE protein levels in the tumoral tissues. Increased expression of HPSE2 was observed in patients with lymph node metastasis (p = 0.031). This elevation in HPSE2 mRNA expression in patients with lymph node metastases potentially indicates that it may participate in driving colorectal carcinoma progression.


Assuntos
Neoplasias Colorretais , Metaloproteinase 9 da Matriz , Adulto , Humanos , Metástase Linfática/genética , Metaloproteinase 9 da Matriz/genética , Estudos Transversais , Neoplasias Colorretais/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , RNA Mensageiro/genética
19.
Eur J Pharmacol ; 933: 175253, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36067803

RESUMO

The drug, 5-fluorouracil (5FU) is a standard first-line treatment for colorectal cancer (CRC) patients. However, drug resistance acquisition remains an important challenge for effective clinical outcomes. Here, we established a long-term drug-resistant CRC model and explored the cellular events underlying 5FU resistance. We showed that 5FU-treated cells (HCT-116 5FUR) using a prolonged treatment protocol were significantly more resistant than parental cells. Likewise, cell viability and IC50 values were also observed to increase in HCT-116 5FUR cells when treated with increasing doses of oxaliplatin, indicating a cross-resistance mechanism to other cytotoxic agents. Moreover, HCT-116 5FUR cells exhibited metabolic and molecular changes, as evidenced by increased thymidylate synthase levels and upregulated mRNA levels of ABCB1. HCT-116 5FUR cells were able to overcome S phase arrest and evade apoptosis, as well as activate autophagy, as indicated by increased LC3B levels. Cells treated with low and high doses displayed epithelial-mesenchymal transition (EMT) features, as observed by decreased E-cadherin and claudin-3 levels, increased vimentin protein levels, and increased SLUG, ZEB2 and TWIST1 mRNA levels. Furthermore, HCT-116 5FUR cells displayed enhanced migration and invasion capabilities. Interestingly, we found that the 5FU drug-resistance gene signature is positively associated with the mesenchymal signature in CRC samples, and that ABCB1 and ZEB2 co-expressed at high levels could predict poor outcomes in CRC patients. Overall, the 5FU long-term drug-resistance model established here induced various cellular events, and highlighted the importance of further efforts to identify promising targets involved in more than one cellular event to successfully overcome drug-resistance.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Apoptose , Autofagia , Caderinas/genética , Linhagem Celular Tumoral , Proliferação de Células , Claudina-3 , Neoplasias do Colo/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Citotoxinas , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Fluoruracila/farmacologia , Humanos , Oxaliplatina/farmacologia , RNA Mensageiro , Timidilato Sintase , Vimentina
20.
World J Gastroenterol ; 28(26): 3027-3046, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-36051330

RESUMO

Colorectal cancer (CRC) continues to be one of the main causes of death from cancer because patients progress unfavorably due to resistance to current therapies. Dysregulation of the Wnt/ß-catenin pathway plays a fundamental role in the genesis and progression of several types of cancer, including CRC. In many subtypes of CRC, hyperactivation of the ß-catenin pathway is associated with mutations of the adenomatous polyposis coli gene. However, it can also be associated with other causes. In recent years, studies of the tumor microenvironment (TME) have demonstrated its importance in the development and progression of CRC. In this tumor nest, several cell types, structures, and biomolecules interact with neoplastic cells to pave the way for the spread of the disease. Cross-communications between tumor cells and the TME are then established primarily through paracrine factors, which trigger the activation of numerous signaling pathways. Crucial advances in the field of oncology have been made in the last decade. This Minireview aims to actualize what is known about the central role of the Wnt/ß-catenin pathway in CRC chemoresistance and aggressiveness, focusing on cross-communication between CRC cells and the TME. Through this analysis, our main objective was to increase the understanding of this complex disease considering a more global context. Since many treatments for advanced CRC fail due to mechanisms involving chemoresistance, the data here exposed and analyzed are of great interest for the development of novel and effective therapies.


Assuntos
Neoplasias Colorretais , beta Catenina , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Microambiente Tumoral , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA