RESUMO
Data evaluating change in body composition during treatment of advanced cancer are limited. Here we evaluated computed tomography (CT)-based changes in muscle mass during treatment for advanced ovarian cancer (OC) and association with outcomes. We analyzed the preoperative and posttreatment skeletal muscle index (SMI), skeletal muscle area normalized for height of 109 patients with advanced OC who underwent primary surgery and platinum-based chemotherapy from 2006 to 2016. Based on an SMI less than 39 cm2/m2, 54.1% of patients were never sarcopenic, 24.8% were sarcopenic on both CT scans, and 21.1% were newly sarcopenic upon treatment completion. Patients who lost muscle during treatment had the worst survival of the 3 groups identified: median survival 2.6 years vs 4.6 years if sarcopenic on both CT scans and 4.8 years if never sarcopenic. Loss of muscle portends a poor prognosis among patients with OC. Additional research is needed to better understand and best mitigate these changes.
Assuntos
Neoplasias Ovarianas , Sarcopenia , Humanos , Feminino , Sarcopenia/diagnóstico por imagem , Sarcopenia/epidemiologia , Prognóstico , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias Ovarianas/complicações , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/epidemiologia , Estudos RetrospectivosRESUMO
BACKGROUND: Uterine leiomyosarcoma (uLMS) is a rare and aggressive gynaecological malignancy, with individuals with advanced uLMS having a five-year survival of < 10%. Mutations in the homologous recombination (HR) DNA repair pathway have been observed in ~ 10% of uLMS cases, with reports of some individuals benefiting from poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi) therapy, which targets this DNA repair defect. In this report, we screened individuals with uLMS, accrued nationally, for mutations in the HR repair pathway and explored new approaches to therapeutic targeting. METHODS: A cohort of 58 individuals with uLMS were screened for HR Deficiency (HRD) using whole genome sequencing (WGS), whole exome sequencing (WES) or NGS panel testing. Individuals identified to have HRD uLMS were offered PARPi therapy and clinical outcome details collected. Patient-derived xenografts (PDX) were generated for therapeutic targeting. RESULTS: All 13 uLMS samples analysed by WGS had a dominant COSMIC mutational signature 3; 11 of these had high genome-wide loss of heterozygosity (LOH) (> 0.2) but only two samples had a CHORD score > 50%, one of which had a homozygous pathogenic alteration in an HR gene (deletion in BRCA2). A further three samples harboured homozygous HRD alterations (all deletions in BRCA2), detected by WES or panel sequencing, with 5/58 (9%) individuals having HRD uLMS. All five individuals gained access to PARPi therapy. Two of three individuals with mature clinical follow up achieved a complete response or durable partial response (PR) with the subsequent addition of platinum to PARPi upon minor progression during initial PR on PARPi. Corresponding PDX responses were most rapid, complete and sustained with the PARP1-specific PARPi, AZD5305, compared with either olaparib alone or olaparib plus cisplatin, even in a paired sample of a BRCA2-deleted PDX, derived following PARPi therapy in the patient, which had developed PARPi-resistance mutations in PRKDC, encoding DNA-PKcs. CONCLUSIONS: Our work demonstrates the value of identifying HRD for therapeutic targeting by PARPi and platinum in individuals with the aggressive rare malignancy, uLMS and suggests that individuals with HRD uLMS should be included in trials of PARP1-specific PARPi.
Assuntos
Leiomiossarcoma , Neoplasias Ovarianas , Neoplasias Uterinas , Feminino , Humanos , Leiomiossarcoma/tratamento farmacológico , Leiomiossarcoma/genética , Leiomiossarcoma/patologia , Platina , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Neoplasias Uterinas/tratamento farmacológico , Neoplasias Uterinas/genética , Poli(ADP-Ribose) Polimerases , Reparo de DNA por Recombinação , Neoplasias Ovarianas/patologia , Recombinação HomólogaRESUMO
Our case is a 24-year-old woman who has had abdominal enlargement for eleven months. She had an abdominal mass with an elevated level of CA-125 and imaging studies showed a pelvic cystic mass with a solid part, and thus malignancy was considered in the differential diagnosis. A laparotomy myomectomy was performed. Postoperative histopathological examination results revealed no signs of malignancy. In this case, both ultrasonography and magnetic resonance imaging could not visualize both ovaries and the stalk of the pedunculated fibroid on the posterior uterine corpus. On physical examination and imaging, cystic degeneration of uterine fibroid may present like an ovarian mass. Preoperative diagnosis is challenging. A definitive diagnosis is only feasible postoperatively following histological examination.
Assuntos
Leiomioma , Neoplasias Ovarianas , Neoplasias Uterinas , Feminino , Humanos , Adulto Jovem , Adulto , Neoplasias Uterinas/diagnóstico por imagem , Neoplasias Uterinas/cirurgia , Leiomioma/diagnóstico por imagem , Leiomioma/cirurgia , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/cirurgia , Útero , Imageamento por Ressonância MagnéticaRESUMO
Background: As an innate immune system effector, natural killer cells (NK cells) play a significant role in tumor immunotherapy response and clinical outcomes. Methods: In our investigation, we collected ovarian cancer samples from TCGA and GEO cohorts, and a total of 1793 samples were included. In addition, four high-grade serous ovarian cancer scRNA-seq data were included for screening NK cell marker genes. Weighted gene coexpression network analysis (WGCNA) identified core modules and central genes associated with NK cells. The "TIMER," "CIBERSORT," "MCPcounter," "xCell," and "EPIC" algorithms were performed to predict the infiltration characteristics of different immune cell types in each sample. The LASSO-COX algorithm was employed to build risk models to predict prognosis. Finally, drug sensitivity screening was performed. Results: We first scored the NK cell infiltration of each sample and found that the level of NK cell infiltration affected the clinical outcome of ovarian cancer patients. Therefore, we analyzed four high-grade serous ovarian cancer scRNA-seq data, screening NK cell marker genes at the single-cell level. The WGCNA algorithm screens NK cell marker genes based on bulk RNA transcriptome patterns. Finally, a total of 42 NK cell marker genes were included in our investigation. Among which, 14 NK cell marker genes were then used to develop a 14-gene prognostic model for the meta-GPL570 cohort, dividing patients into high-risk and low-risk subgroups. The predictive performance of this model has been well-verified in different external cohorts. Tumor immune microenvironment analysis showed that the high-risk score of the prognostic model was positively correlated with M2 macrophages, cancer-associated fibroblast, hematopoietic stem cell, stromal score, and negatively correlated with NK cell, cytotoxicity score, B cell, and T cell CD4+Th1. In addition, we found that bleomycin, cisplatin, docetaxel, doxorubicin, gemcitabine, and etoposide were more effective in the high-risk group, while paclitaxel had a better therapeutic effect on patients in the low-risk group. Conclusion: By utilizing NK cell marker genes in our investigation, we developed a new feature that is capable of predicting patients' clinical outcomes and treatment strategies.
Assuntos
Neoplasias Ovarianas , Análise da Expressão Gênica de Célula Única , Humanos , Feminino , Neoplasias Ovarianas/genética , Cisplatino , Algoritmos , Prognóstico , Microambiente Tumoral/genéticaRESUMO
Ovarian cancer (OC) has the worst prognosis among gynecological malignancies. Cisplatin (CDDP) is one of the most commonly used treatments for OC, but recurrence and metastasis are common due to endogenous or acquired resistance. High expression of ATP-binding cassette (ABC) transporters is an important mechanism of resistance to OC chemotherapy, but targeting ABC transporters in OC therapy remains a challenge. The expression of sortilin-related receptor 1 (SORL1; SorLA) in the response of OC to CDDP was determined by analysis of TCGA and GEO public datasets. Immunohistochemistry and western blotting were utilized to evaluate the expression levels of SORL1 in OC tissues and cells that were sensitive or resistant to CDDP treatment. The in vitro effect of SORL1 on OC cisplatin resistance was proven by CCK-8 and cell apoptosis assays. The subcutaneous xenotransplantation model verified the in vivo significance of SORL1 in OC. Finally, the molecular mechanism by which SORL1 regulates OC cisplatin resistance was revealed by coimmunoprecipitation, gene set enrichment analysis and immunofluorescence analysis. This study demonstrated that SORL1 is closely related to CDDP resistance and predicts a poor prognosis in OC. In vivo xenograft experiments showed that SORL1 knockdown significantly enhanced the effect of CDDP on CDDP-resistant OC cells. Mechanistically, silencing of SORL1 inhibits the early endosomal antigen 1 (EEA1) pathway, which impedes the stability of ATP-binding cassette B subfamily member 1 (ABCB1), sensitizing CDDP-resistant OC cells to CDDP. The findings of this study suggest that targeting SORL1 may represent a promising therapeutic approach for overcoming CDDP resistance in OC.
Assuntos
Cisplatino , Neoplasias Ovarianas , Humanos , Feminino , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Cisplatino/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Transportadores de Cassetes de Ligação de ATP/genética , Trifosfato de Adenosina , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteínas Relacionadas a Receptor de LDL/farmacologia , Proteínas Relacionadas a Receptor de LDL/uso terapêutico , Proteínas de Membrana Transportadoras , Subfamília B de Transportador de Cassetes de Ligação de ATP/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/uso terapêuticoRESUMO
Ovarian cancer (OC) is the fifth most common cause of death in women and accounts for more deaths than any other cancer of the female reproductive tract. OC usually spreads through peritoneal dissemination and direct invasion. Optimal cytoreduction (no macroscopic residual disease) and adjuvant platinum-based chemotherapy are the fundaments of OC treatment. OC is usually diagnosed at advanced stages, hence the obliteration of the Douglas pouch by the tumor as well as disseminated pelvic peritoneal carcinomatosis are commonly seen. Radical surgical cytoreduction typically requires a retroperitoneal approach to the pelvic masses and multivisceral resections in the upper abdomen. In 1968, Christopher Hudson introduced a new retroperitoneal surgical technique ("radical oophorectomy") for fixed ovarian tumors. Since then, numerous modifications have been described, including visceral peritonectomy, the "cocoon" technique, Bat-shaped en-bloc total peritonectomy (Sarta-Bat approach), or en-bloc resection of the pelvis. Although these modifications expanded the classical description in many ways, the concepts and key surgical steps are derived from the Hudson procedure. However, there are some gaps or disagreements regarding the anatomical or practical rationale for certain surgical steps. The purpose of this article is to outline the critical steps of radical pelvic cytoreduction ("Hudson procedure"), and to delineate the anatomical basis for the procedure in the proposed form. In addition, we discuss the controversies and address the perioperative morbidity associated with the procedure.
Assuntos
Carcinoma , Quirópteros , Neoplasias Ovarianas , Feminino , Humanos , Animais , Procedimentos Cirúrgicos de Citorredução , Resultado do Tratamento , Neoplasias Ovarianas/cirurgia , Neoplasias Ovarianas/patologia , Pelve/cirurgia , Carcinoma/cirurgiaRESUMO
Background: "Liquid biopsy," where body fluids are screened for biomarkers, is gathering substantial research. We aimed to examine women with suspected ovarian cancer for the presence of circulating tumor cells (CTCs) and study its role in prediction of chemoresistance and survival. Methods: Magnetic powder labeled monoclonal antibodies for epithelial cell adhesion molecule (EpCAM), mucin 1 cell surface associated, mucin 16 cell surface associated, or carbohydrate antigen 125 (CA125), were prepared according to the manufacturer's protocol. Expression of three ovarian cancer related genes was detected in CTCs using multiplex reverse transcriptase-polymerase chain reaction. CTCs and serum CA125 were measured in 100 patients with suspected ovarian cancer. Correlations with clinicopathological parameters and treatment were analyzed. Results: CTCs were detected in 18/70 (25.7%) of women with malignancy compared to 0/30 (0.0%) in those with benign gynecologic diseases (P = 0.001). The sensitivity and specificity of the CTC test for predicting a malignant histology in pelvic masses were 27.7% (95% CI: 16.3%, 37.7%) and 100% (95% CI: 85.8%, 100%), respectively. The number of CTCs correlated with stage of ovarian cancer (P = 0.030). The presence of EpCAM + CTC at primary diagnosis in ovarian cancer was found to be an independent predictor of a poor progression free survival (HR, 3.3; 95% CI, 1.3-8.4; P = 0.010), overall survival (HR, 2.6; 95% CI,1.1-5.6; P = 0.019), and resistance to chemotherapy (OR 8.6; 95% CI, 1.8-43.7; P = 0.009). Conclusion: Expression of EpCAM + CTC in ovarian cancer predicts platinum resistance and poor prognosis. This information could be further used in investigating anti-EpCAM-targeted therapies in ovarian cancer.
Assuntos
Células Neoplásicas Circulantes , Neoplasias Ovarianas , Feminino , Humanos , Prognóstico , Células Neoplásicas Circulantes/patologia , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/tratamento farmacológico , Molécula de Adesão da Célula Epitelial/genética , Molécula de Adesão da Célula Epitelial/metabolismo , Sensibilidade e Especificidade , Biomarcadores Tumorais/genéticaRESUMO
Exosomes, a subtype of extracellular vesicles, ranging from 50 to 200 nm in diameter, and mediate cell-to-cell communication in normal biological and pathological processes. Exosomes derived from tumors have multiple functions in cancer progression, resistance, and metastasis through cancer exosome-derived tropism. However, there is no quantitative information on cancer exosome-derived tropism. Such data would be highly beneficial to guide cancer therapy by inhibiting exosome release and/or uptake. Using two fluorescent protein (mKate2) transfected ovarian cancer cell lines (OVCA4 and OVCA8), cancer exosome tropism was quantified by measuring the released exosome from ovarian cancer cells and determining the uptake of exosomes into parental ovarian cancer cells, 3D spheroids, and tumors in tumor-bearing mice. The OVCA4 cells release 50 to 200 exosomes per cell, and the OVCA8 cells do 300 to 560 per cell. The uptake of exosomes by parental ovarian cancer cells is many-fold higher than by non-parental cells. In tumor-bearing mice, most exosomes are homing to the parent cancer rather than other tissues. We successfully quantified exosome release and uptake by the parent cancer cells, further proving the tropism of cancer cell-derived exosomes. The results implied that cancer exosome tropism could provide useful information for future cancer therapeutic applications.
Assuntos
Exossomos , Neoplasias Ovarianas , Humanos , Feminino , Animais , Camundongos , Exossomos/metabolismo , Linhagem Celular Tumoral , Neoplasias Ovarianas/metabolismo , TropismoRESUMO
OBJECTIVE: The present study purposed to determine characteristics of ovarian carcinoma and to analyze predictors of survival in patients with ovarian carcinoma. METHOD: A retrospective cohort study was conducted including the patients with diagnosed ovarian carcinoma treated at the Clinic for Operative Oncology, Oncology Institute of Vojvodina in the period from January 2012 to December 2016. Seventy-two women with ovarian carcinoma were included in the analysis. The data about the histological type of tumor, disease stage, treatment, lymphatic infiltration, and surgical procedure were collected retrospectively, using the database of the institution where the research was conducted (BirPis 21 SRC Infonet DOO â Information System Oncology Institute of Vojvodina). Descriptive statistics and multivariate analysis using Cox proportional hazards model were performed. RESULTS: The univariate Cox regression analysis identified histology, tumor grade, FIGO (International Federation of Gynecology and Obstetrics) stage, NACT (Neoadjuvant Chemotherapy), number of therapy cycles, type of surgery, and chemotherapy response as independent predictors of mortality. Finally, the type of tumor and chemotherapy response had an increased hazard ratio for mortality in the multivariate Cox regression model. Herewith, the percentage of high-grade, advanced-stage ovarian cancer patients with complete response to chemotherapy, absence of recurrent disease, and lymphovascular space invasion were significant predictors of survival in patients with ovarian carcinoma. CONCLUSIONS: Herein, emerging data regarding precision medicine and molecular-based personalized treatments are promising and will likely modify the way the authors provide multiple lines of treatments in the near future.
Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Estudos Retrospectivos , Sérvia/epidemiologia , Estadiamento de Neoplasias , Carcinoma Epitelial do Ovário , Terapia Neoadjuvante , Quimioterapia AdjuvanteRESUMO
BACKGROUND: The most common subtype of ovarian cancer (OC) showing immunogenic potential is represented by the high-grade serous ovarian cancer (HGSOC), which is characterized by the presence of tumor-infiltrating immune cells able to modulate immune response. Because several studies showed a close correlation between OC patient's clinical outcome and expression of programmed cell death protein-1 or its ligand (PD-1/PD-L1), the aim of our study was to investigate if plasma levels of immunomodulatory proteins may predict prognosis of advanced HGSOC women. PATIENTS AND METHODS: Through specific ELISA tests, we analyzed plasma concentrations of PD-L1, PD-1, butyrophilin sub-family 3A/CD277 receptor (BTN3A1), pan-BTN3As, butyrophilin sub-family 2 member A1 (BTN2A1), and B- and T-lymphocyte attenuator (BTLA) in one hundred patients affected by advanced HGSOC, before surgery and therapy. The Kaplan-Meier method was used to generate the survival curves, while univariate and multivariate analysis were performed using Cox proportional hazard regression models. RESULTS: For each analyzed circulating biomarker, advanced HGSOC women were discriminated based on long (≥ 30 months) versus short progression-free survival (PFS < 30 months). The concentration cut-offs, obtained by receiver operating characteristic (ROC) analysis, allowed to observe that poor clinical outcome and median PFS ranging between 6 and 16 months were associated with higher baseline levels of PD-L1 (> 0.42 ng/mL), PD-1 (> 2.48 ng/mL), BTN3A1 (> 4.75 ng/mL), pan-BTN3As (> 13.06 ng/mL), BTN2A1 (> 5.59 ng/mL) and BTLA (> 2.78 ng/mL). Furthermore, a lower median PFS was associated with peritoneal carcinomatosis, age at diagnosis > 60 years or Body Mass Index (BMI) > 25. A multivariate analysis also suggested that plasma concentrations of PD-L1 ≤ 0.42 ng/mL (HR: 2.23; 95% CI: 1.34 to 3.73; p = 0.002), age at diagnosis ≤ 60 years (HR: 1.70; 95% CI: 1.07 to 2.70; p = 0.024) and absence of peritoneal carcinomatosis (HR: 1.87; 95% CI: 1.23 to 2.85; p = 0.003) were significant prognostic marker for a longer PFS in advanced HGSOC patients. CONCLUSIONS: The identification of high-risk HGSOC women could be improved through determination of the plasma PD-L1, PD-1, BTN3A1, pan-BTN3As, BTN2A1 and BTLA levels.
Assuntos
Neoplasias Ovarianas , Neoplasias Peritoneais , Humanos , Feminino , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/uso terapêutico , Antígeno B7-H1/metabolismo , Prognóstico , Neoplasias Ovarianas/metabolismo , Butirofilinas , Antígenos CDRESUMO
BACKGROUND: Histological analysis has revealed the need for new treatment techniques for epithelial ovarian cancer. Immune checkpoint inhibitors may be a new therapeutic strategy for ovarian clear cell carcinoma (OCCC). Lymphocyte-activation gene 3 (LAG-3), an immune checkpoint, is a poor prognostic factor and a new therapeutic target for several malignancies. In this study, we demonstrated the correlation between LAG-3 expression and the clinicopathological features of OCCC. We evaluated LAG-3 expression in tumor-infiltrating lymphocytes (TILs) via immunohistochemical analysis using tissue microarrays containing surgically resected specimens from 171 patients with OCCC. RESULTS: The number of LAG-3-positive cases was 48 (28.1%), whereas the number of LAG-3-negative cases was 123 (71.9%). LAG-3 expression significantly increased in patients with advanced stages (P = 0.036) and recurrence (P = 0.012); however, its expression did not correlate with age (P = 0.613), residual tumor (P = 0.156), or death (P = 0.086). Using the Kaplan - Meier method, LAG-3 expression was found to be correlated with poor overall survival (P = 0.020) and progression-free survival (P = 0.019). Multivariate analysis revealed LAG-3 expression (hazard ratio [HR] = 1.86; 95% confidence interval [CI], 1.00 - 3.44, P = 0.049) and residual tumor (HR = 9.71; 95% CI, 5.13 - 18.52, P < 0.001) as independent prognostic factors. CONCLUSION: Our study demonstrated that LAG-3 expression in patients with OCCC may be a useful biomarker for the prognosis of OCCC and could serve as a new therapeutic target.
Assuntos
Adenocarcinoma de Células Claras , Neoplasias Ovarianas , Feminino , Humanos , Linfócitos do Interstício Tumoral/metabolismo , Neoplasia Residual/metabolismo , Neoplasia Residual/patologia , Carcinoma Epitelial do Ovário/patologia , Prognóstico , Adenocarcinoma de Células Claras/genética , Adenocarcinoma de Células Claras/patologia , Neoplasias Ovarianas/patologiaRESUMO
BACKGROUND: Ovarian cancer has the worst outcome among gynecological malignancies; therefore, biomarkers that could contribute to the early diagnosis and/or prognosis prediction are urgently required. In the present study, we focused on the secreted protein spondin-1 (SPON1) and clarified the prognostic relevance in ovarian cancer. METHODS: We developed a monoclonal antibody (mAb) that selectively recognizes SPON1. Using this specific mAb, we determined the expression of SPON1 protein in the normal ovary, serous tubal intraepithelial carcinoma (STIC), and ovarian cancer tissues, as well as in various normal adult tissues by immunohistochemistry, and verified its clinicopathological significance in ovarian cancer. RESULTS: The normal ovarian tissue was barely positive for SPON1, and no immunoreactive signals were detected in other healthy tissues examined, which was in good agreement with data obtained from gene expression databases. By contrast, upon semi-quantification, 22 of 242 ovarian cancer cases (9.1%) exhibited high SPON1 expression, whereas 64 (26.4%), 87 (36.0%), and 69 (28.5%) cases, which were designated as SPON1-low, possessed the moderate, weak, and negative SPON1 expression, respectively. The STIC tissues also possessed SPON1-positive signals. The 5-year recurrence-free survival (RFS) rate in the SPON1-high group (13.6%) was significantly lower than that in the SPON1-low group (51.2%). In addition, high SPON1 expression was significantly associated with several clinicopathological variables. Multivariable analysis revealed that high SPON1 was an independent prognostic factor for RFS of ovarian cancer. CONCLUSIONS: SPON1 represents a prognostic biomarker for ovarian cancer, and the anti-SPON1 mAb could be valuable as an outcome predictor.
Assuntos
Cistadenocarcinoma Seroso , Neoplasias das Tubas Uterinas , Neoplasias Ovarianas , Adulto , Feminino , Humanos , Neoplasias Ovarianas/genética , Prognóstico , Cistadenocarcinoma Seroso/patologia , Neoplasias das Tubas Uterinas/patologia , Biomarcadores , Biomarcadores Tumorais/metabolismoRESUMO
Exosomal miRNAs are known to play important roles in ovarian cancer and chemotherapeutic resistance. However, a systematic evaluation of characteristics of exosomal miRNAs involved in cisplatin resistance in ovarian cancer remains totally unclear. Exosomes (Exo-A2780, Exo-A2780/DDP) were extracted from cisplatin-sensitive cells (A2780) and cisplatin-resistant cells (A2780/DDP). Differential exosomal miRNA expression profiles were found by high-throughput sequencing (HTS). Target genes of the exo-miRNAs were predicted by using two online databases to increase the prediction accuracy. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were utilized to find biological relationships with chemoresistance. RTâqPCR of three exosomal miRNAs was performed, and a proteinâprotein interaction (PPI) network was established to identify the hub genes. The GDSC database was used to prove the association between hsa-miR-675-3p expression and the IC50 value. An integrated miRNA-mRNA network was constructed to predict miRNA-mRNA associations. The connection between hsa-miR-675-3p and ovarian cancer was discovered by immune microenvironment analyses. The upregulated exosomal miRNAs could regulate gene targets through signalling pathways such as the Ras, PI3K/Akt, Wnt, and ErbB pathways. GO and KEGG analyses indicated that the target genes were involved in protein binding, transcription regulator activity and DNA binding. The RTâqPCR results were consistent with the HTS data, and the results of PPI network analysis suggested that FMR1 and CD86 were the hub genes. GDSC database analysis and construction of the integrated miRNA-mRNA network suggested that hsa-miR-675-3p was associated with drug resistance. Immune microenvironment analyses showed that hsa-miR-675-3p was crucial in ovarian cancer. The study suggested that exosomal hsa-miR-675-3p is a potential target for treating ovarian cancer and overcoming cisplatin resistance.
Assuntos
MicroRNAs , Neoplasias Ovarianas , Humanos , Feminino , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/tratamento farmacológico , Linhagem Celular Tumoral , Fosfatidilinositol 3-Quinases/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , Microambiente Tumoral , Proteína do X Frágil de Retardo MentalRESUMO
Tumour DNA sequencing is essential for precision medicine since it guides therapeutic decisions but also fosters the identification of patients who may benefit from germline testing. Notwithstanding, the tumour-to-germline testing workflow presents a few caveats. The low sensitivity for indels at loci with sequences of identical bases (homopolymers) of ion semiconductor-based sequencing techniques represents a well-known limitation, but the prevalence of indels overlooked by these techniques in high-risk populations has not been investigated. In our study, we addressed this issue at the homopolymeric regions of BRCA1/2 in a retrospectively selected cohort of 157 patients affected with high-grade ovarian cancer and negative at tumour testing by ION Torrent sequencing. Variant allele frequency (VAF) of indels at each of the 29 investigated homopolymers was systematically revised with the IGV software. Thresholds to discriminate putative germline variants were defined by scaling the VAF to a normal distribution and calculating the outliers that exceeded the mean + 3 median-adjusted deviations of a control population. Sanger sequencing of the outliers confirmed the occurrence of only one of the five putative indels in both tumour and blood from a patient with a family history of breast cancer. Our results indicated that the prevalence of homopolymeric indels overlooked by ion semiconductor techniques is seemingly low. A careful evaluation of clinical and family history data would further help minimise this technique-bound limitation, highlighting cases in which a deeper look at these regions would be recommended.
Assuntos
Proteína BRCA1 , Neoplasias Ovarianas , Feminino , Humanos , Proteína BRCA1/genética , Proteína BRCA2/genética , Estudos Retrospectivos , Prevalência , Fluxo de Trabalho , Neoplasias Ovarianas/epidemiologia , Neoplasias Ovarianas/genética , Carcinoma Epitelial do Ovário , Mutação em Linhagem GerminativaRESUMO
Ovarian cancer metastasis occurs primarily in the peritoneal cavity. Orchestration of cancer cells with various cell types, particularly macrophages, in the peritoneal cavity creates a metastasis-favorable environment. In the past decade, macrophage heterogeneities in different organs as well as their diverse roles in tumor settings have been an emerging field. This review highlights the unique microenvironment of the peritoneal cavity, consisting of the peritoneal fluid, peritoneum, and omentum, as well as their own resident macrophage populations. Contributions of resident macrophages in ovarian cancer metastasis are summarized; potential therapeutic strategies by targeting such cells are discussed. A better understanding of the immunological microenvironment in the peritoneal cavity will provide a stepping-stone to new strategies for developing macrophage-based therapies and is a key step toward the unattainable eradication of intraperitoneal metastasis of ovarian cancer.
Assuntos
Neoplasias Ovarianas , Cavidade Peritoneal , Humanos , Feminino , Neoplasias Ovarianas/metabolismo , Peritônio/patologia , Omento , Macrófagos/metabolismo , Microambiente TumoralRESUMO
Recent studies have shown that the tumor extracellular matrix (ECM) associates with immunosuppression, and that targeting the ECM can improve immune infiltration and responsiveness to immunotherapy. A question that remains unresolved is whether the ECM directly educates the immune phenotypes seen in tumors. Here, we identify a tumor-associated macrophage (TAM) population associated with poor prognosis, interruption of the cancer immunity cycle, and tumor ECM composition. To investigate whether the ECM was capable of generating this TAM phenotype, we developed a decellularized tissue model that retains the native ECM architecture and composition. Macrophages cultured on decellularized ovarian metastasis shared transcriptional profiles with the TAMs found in human tissue. ECM-educated macrophages have a tissue-remodeling and immunoregulatory phenotype, inducing altered T cell marker expression and proliferation. We conclude that the tumor ECM directly educates this macrophage population found in cancer tissues. Therefore, current and emerging cancer therapies that target the tumor ECM may be tailored to improve macrophage phenotype and their downstream regulation of immunity.
Assuntos
Macrófagos , Neoplasias Ovarianas , Humanos , Feminino , Macrófagos/metabolismo , Matriz Extracelular/metabolismo , Neoplasias Ovarianas/patologia , Fenótipo , Microambiente TumoralRESUMO
Ovarian cancer (OC) is the leading cause of death from gynecological malignancies worldwide. Fortunately, recent advances in OC biology and the discovery of novel therapeutic targets have led to the development of novel therapeutic agents that may improve the outcome of OC patients. The glucocorticoid receptor (GR) is a ligand-dependent transcriptional factor known for its role in body stress reactions, energy homeostasis and immune regulation. Notably, evidence suggests that GR may play a relevant role in tumor progression and may affect treatment response. In cell culture models, administration of low levels of glucocorticoids (GCs) suppresses OC growth and metastasis. Conversely, high GR expression has been associated with poor prognostic features and long-term outcomes in patients with OC. Moreover, both preclinical and clinical data have shown that GR activation impairs the effectiveness of chemotherapy by inducing the apoptotic pathways and cell differentiation. In this narrative review, we summarize data related to the function and role of GR in OC. To this aim, we reorganized the controversial and fragmented data regarding GR activity in OC and herein describe its potential use as a prognostic and predictive biomarker. Moreover, we explored the interplay between GR and BRCA expression and reviewed the latest therapeutic strategies such as non-selective GR antagonists and selective GR modulators to enhance chemotherapy sensitivity, and to finally provide new treatment options in OC patients.
Assuntos
Neoplasias Ovarianas , Receptores de Glucocorticoides , Humanos , Feminino , Receptores de Glucocorticoides/metabolismo , Glucocorticoides/uso terapêutico , Glucocorticoides/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Transdução de SinaisRESUMO
The integration of transcriptome and proteome analysis can lead to the discovery of a myriad of biological insights into ovarian cancer. Proteome, clinical, and transcriptome data about ovarian cancer were downloaded from TCGA's database. A LASSO-Cox regression was used to uncover prognostic-related proteins and develop a new protein prognostic signature for patients with ovarian cancer to predict their prognosis. Patients were brought together in subgroups using a consensus clustering analysis of prognostic-related proteins. To further investigate the role of proteins and protein-coding genes in ovarian cancer, additional analyses were performed using multiple online databases (HPA, Sangerbox, TIMER, cBioPortal, TISCH, and CancerSEA). The final resulting prognosis factors consisted of seven protective factors (P38MAPK, RAB11, FOXO3A, AR, BETACATENIN, Sox2, and IGFRb) and two risk factors (AKT_pS473 and ERCC5), which can be used to construct a prognosis-related protein model. A significant difference in overall survival (OS), disease-free interval (DFI), disease-specific survival (DSS), and progression-free interval (PFI) curves were found in the training, testing, and whole sets when analyzing the protein-based risk score (p < 0.05). We also illustrated a wide range of functions, immune checkpoints, and tumor-infiltrating immune cells in prognosis-related protein signatures. Additionally, the protein-coding genes were significantly correlated with each other. EMTAB8107 and GSE154600 single-cell data revealed that the genes were highly expressed. Furthermore, the genes were related to tumor functional states (angiogenesis, invasion, and quiescence). We reported and validated a survivability prediction model for ovarian cancer based on prognostic-related protein signatures. A strong correlation was found between the signatures, tumor-infiltrating immune cells, and immune checkpoints. The protein-coding genes were highly expressed in single-cell RNA and bulk RNA sequencing, correlating with both each other and tumor functional states.
Assuntos
Detecção Precoce de Câncer , Neoplasias Ovarianas , Humanos , Feminino , Transcriptoma , Proteoma/genética , Prognóstico , Proteômica , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Biomarcadores Tumorais/genéticaRESUMO
Due to their multidirectional influence, adipocytokines are currently the subject of numerous intensive studies. Significant impact applies to many processes, both physiological and pathological. Moreover, the role of adipocytokines in carcinogenesis seems particularly interesting and not fully understood. For this reason, ongoing research focuses on the role of these compounds in the network of interactions in the tumor microenvironment. Particular attention should be drawn to cancers that remain challenging for modern gynecological oncology-ovarian and endometrial cancer. This paper presents the role of selected adipocytokines, including leptin, adiponectin, visfatin, resistin, apelin, chemerin, omentin and vaspin in cancer, with a particular focus on ovarian and endometrial cancer, and their potential clinical relevance.
Assuntos
Neoplasias do Endométrio , Neoplasias Ovarianas , Humanos , Feminino , Adipocinas/fisiologia , Tecido Adiposo/fisiologia , Adiponectina , Microambiente TumoralRESUMO
OTUD5 (OTU Deubiquitinase 5) is a functional cysteine protease with deubiquitinase activity and is a member of the ovarian tumor protease (OTU) family. OTUD5 is involved in the deubiquitination of many key proteins in various cellular signaling pathways and plays an important role in maintaining normal human development and physiological functions. Its dysfunction can affect physiological processes, such as immunity and DNA damage repair, and it can even lead to tumors, inflammatory diseases and genetic disorders. Therefore, the regulation of OTUD5 activity and expression has become a hot topic of research. A comprehensive understanding of the regulatory mechanisms of OTUD5 and its use as a therapeutic target for diseases is of great value. Herein, we review the physiological processes and molecular mechanisms of OTUD5 regulation, outline the specific regulatory processes of OTUD5 activity and expression, and link OTUD5 to diseases from the perspective of studies on signaling pathways, molecular interactions, DNA damage repair and immune regulation, thus providing a theoretical basis for future studies.