Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.260
Filtrar
2.
Sci Rep ; 14(1): 13456, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38862558

RESUMO

The agonist-antagonist myoneural interface (AMI) is an amputation surgery that preserves sensorimotor signaling mechanisms of the central-peripheral nervous systems. Our first neuroimaging study investigating AMI subjects conducted by Srinivasan et al. (2020) focused on task-based neural signatures, and showed evidence of proprioceptive feedback to the central nervous system. The study of resting state neural activity helps non-invasively characterize the neural patterns that prime task response. In this study on resting state functional magnetic resonance imaging in AMI subjects, we compared functional connectivity in patients with transtibial AMI (n = 12) and traditional (n = 7) amputations (TA). To test our hypothesis that we would find significant neurophysiological differences between AMI and TA subjects, we performed a whole-brain exploratory analysis to identify a seed region; namely, we conducted ANOVA, followed by t-test statistics to locate a seed in the salience network. Then, we implemented a seed-based connectivity analysis to gather cluster-level inferences contrasting our subject groups. We show evidence supporting our hypothesis that the AMI surgery induces functional network reorganization resulting in a neural configuration that significantly differs from the neural configuration after TA surgery. AMI subjects show significantly less coupling with regions functionally dedicated to selecting where to focus attention when it comes to salient stimuli. Our findings provide researchers and clinicians with a critical mechanistic understanding of the effect of AMI amputation on brain networks at rest, which has promising implications for improved neurorehabilitation and prosthetic control.


Assuntos
Amputação Cirúrgica , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Descanso/fisiologia , Tíbia/cirurgia , Tíbia/fisiopatologia , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Neurofisiologia/métodos , Amputados/reabilitação , Mapeamento Encefálico/métodos
4.
Clin Neurophysiol ; 164: 57-99, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852434

RESUMO

In this review, different aspects of the use of clinical neurophysiology techniques for the treatment of movement disorders are addressed. First of all, these techniques can be used to guide neuromodulation techniques or to perform therapeutic neuromodulation as such. Neuromodulation includes invasive techniques based on the surgical implantation of electrodes and a pulse generator, such as deep brain stimulation (DBS) or spinal cord stimulation (SCS) on the one hand, and non-invasive techniques aimed at modulating or even lesioning neural structures by transcranial application. Movement disorders are one of the main areas of indication for the various neuromodulation techniques. This review focuses on the following techniques: DBS, repetitive transcranial magnetic stimulation (rTMS), low-intensity transcranial electrical stimulation, including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), and focused ultrasound (FUS), including high-intensity magnetic resonance-guided FUS (MRgFUS), and pulsed mode low-intensity transcranial FUS stimulation (TUS). The main clinical conditions in which neuromodulation has proven its efficacy are Parkinson's disease, dystonia, and essential tremor, mainly using DBS or MRgFUS. There is also some evidence for Tourette syndrome (DBS), Huntington's disease (DBS), cerebellar ataxia (tDCS), and axial signs (SCS) and depression (rTMS) in PD. The development of non-invasive transcranial neuromodulation techniques is limited by the short-term clinical impact of these techniques, especially rTMS, in the context of very chronic diseases. However, at-home use (tDCS) or current advances in the design of closed-loop stimulation (tACS) may open new perspectives for the application of these techniques in patients, favored by their easier use and lower rate of adverse effects compared to invasive or lesioning methods. Finally, this review summarizes the evidence for keeping the use of electromyography to optimize the identification of muscles to be treated with botulinum toxin injection, which is indicated and widely performed for the treatment of various movement disorders.


Assuntos
Estimulação Encefálica Profunda , Transtornos dos Movimentos , Estimulação Transcraniana por Corrente Contínua , Humanos , Transtornos dos Movimentos/terapia , Transtornos dos Movimentos/fisiopatologia , Estimulação Encefálica Profunda/métodos , Estimulação Transcraniana por Corrente Contínua/métodos , Neurofisiologia/métodos , Estimulação Magnética Transcraniana/métodos
5.
Nature ; 630(8017): 587-595, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38898291

RESUMO

Advances in large-scale single-unit human neurophysiology, single-cell RNA sequencing, spatial transcriptomics and long-term ex vivo tissue culture of surgically resected human brain tissue have provided an unprecedented opportunity to study human neuroscience. In this Perspective, we describe the development of these paradigms, including Neuropixels and recent brain-cell atlas efforts, and discuss how their convergence will further investigations into the cellular underpinnings of network-level activity in the human brain. Specifically, we introduce a workflow in which functionally mapped samples of human brain tissue resected during awake brain surgery can be cultured ex vivo for multi-modal cellular and functional profiling. We then explore how advances in human neuroscience will affect clinical practice, and conclude by discussing societal and ethical implications to consider. Potential findings from the field of human neuroscience will be vast, ranging from insights into human neurodiversity and evolution to providing cell-type-specific access to study and manipulate diseased circuits in pathology. This Perspective aims to provide a unifying framework for the field of human neuroscience as we welcome an exciting era for understanding the functional cytoarchitecture of the human brain.


Assuntos
Encéfalo , Neurofisiologia , Neurociências , Análise de Célula Única , Humanos , Encéfalo/citologia , Encéfalo/fisiologia , Neuropatologia/métodos , Neuropatologia/tendências , Neurofisiologia/métodos , Neurofisiologia/tendências , Neurociências/métodos , Neurociências/tendências , Análise de Célula Única/métodos , Análise de Célula Única/tendências , Análise da Expressão Gênica de Célula Única , Transcriptoma , Fluxo de Trabalho , Animais
6.
J Neurophysiol ; 132(1): 308-315, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38865216

RESUMO

Neurophysiological recording with a new probe often yields better signal quality than with a used probe. Why does the signal quality degrade after only a few experiments? Here, we considered silicon probes in which the contacts are densely packed, and each contact is coated with a conductive polymer that increases its surface area. We tested 12 Cambridge Neurotech silicon probes during 61 recording sessions from the brain of three marmosets. Out of the box, each probe arrived with an electrodeposited polymer coating on 64 gold contacts and an impedance of around 50 kΩ. With repeated use, the impedance increased and there was a corresponding decrease in the number of well-isolated neurons. Imaging of the probes suggested that the reduction in signal quality was due to a gradual loss of the polymer coating. To rejuvenate the probes, we first stripped the contacts, completely removing their polymer coating, and then recoated them in a solution of 10 mM 3,4-Ethylenedioxythiophene (EDOT) monomer with 11 mM Poly(sodium 4-styrenesulfonate) (PSS) using a current density of about 3 mA/cm2 for 30 s. This recoating process not only returned probe impedance to around 50 kΩ but also yielded significantly improved signal quality during neurophysiological recordings. Thus, insertion into the brain promoted the loss of the polymer that coated the contacts of the silicon probes. This led to degradation of signal quality, but recoating rejuvenated the probes.NEW & NOTEWORTHY With repeated use, a silicon probe's ability to isolate neurons degrades. As a result, the probe is often discarded after only a handful of uses. Here, we demonstrate a major source of this problem and then produce a solution to rejuvenate the probes.


Assuntos
Callithrix , Neurônios , Silício , Animais , Silício/farmacologia , Neurônios/fisiologia , Neurônios/efeitos dos fármacos , Impedância Elétrica , Eletrodos Implantados , Encéfalo/fisiologia , Encéfalo/efeitos dos fármacos , Polímeros/farmacologia , Masculino , Neurofisiologia/instrumentação , Neurofisiologia/métodos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Microeletrodos
7.
BMC Psychiatry ; 24(1): 433, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858652

RESUMO

BACKGROUND: Objective and quantifiable markers are crucial for developing novel therapeutics for mental disorders by 1) stratifying clinically similar patients with different underlying neurobiological deficits and 2) objectively tracking disease trajectory and treatment response. Schizophrenia is often confounded with other psychiatric disorders, especially bipolar disorder, if based on cross-sectional symptoms. Awake and sleep EEG have shown promise in identifying neurophysiological differences as biomarkers for schizophrenia. However, most previous studies, while useful, were conducted in European and American populations, had small sample sizes, and utilized varying analytic methods, limiting comprehensive analyses or generalizability to diverse human populations. Furthermore, the extent to which wake and sleep neurophysiology metrics correlate with each other and with symptom severity or cognitive impairment remains unresolved. Moreover, how these neurophysiological markers compare across psychiatric conditions is not well characterized. The utility of biomarkers in clinical trials and practice would be significantly advanced by well-powered transdiagnostic studies. The Global Research Initiative on the Neurophysiology of Schizophrenia (GRINS) project aims to address these questions through a large, multi-center cohort study involving East Asian populations. To promote transparency and reproducibility, we describe the protocol for the GRINS project. METHODS: The research procedure consists of an initial screening interview followed by three subsequent sessions: an introductory interview, an evaluation visit, and an overnight neurophysiological recording session. Data from multiple domains, including demographic and clinical characteristics, behavioral performance (cognitive tasks, motor sequence tasks), and neurophysiological metrics (both awake and sleep electroencephalography), are collected by research groups specialized in each domain. CONCLUSION: Pilot results from the GRINS project demonstrate the feasibility of this study protocol and highlight the importance of such research, as well as its potential to study a broader range of patients with psychiatric conditions. Through GRINS, we are generating a valuable dataset across multiple domains to identify neurophysiological markers of schizophrenia individually and in combination. By applying this protocol to related mental disorders often confounded with each other, we can gather information that offers insight into the neurophysiological characteristics and underlying mechanisms of these severe conditions, informing objective diagnosis, stratification for clinical research, and ultimately, the development of better-targeted treatment matching in the clinic.


Assuntos
Eletroencefalografia , Esquizofrenia , Adulto , Feminino , Humanos , Masculino , Biomarcadores , Estudos de Coortes , Eletroencefalografia/métodos , Neurofisiologia/métodos , Projetos de Pesquisa , Esquizofrenia/fisiopatologia , Esquizofrenia/diagnóstico , Sono/fisiologia , Estudos Transversais , Pessoa de Meia-Idade , Idoso
8.
Artigo em Inglês | MEDLINE | ID: mdl-38844307
9.
Rev. neurol. (Ed. impr.) ; 78(7): 199-207, Ene-Jun, 2024. ilus, graf
Artigo em Espanhol | IBECS | ID: ibc-232186

RESUMO

Introducción: El neurocientífico español Justo Gonzalo y Rodríguez-Leal (1910-1986) investiga la organización funcional de la corteza cerebral durante más de cuatro décadas. Sus hallazgos le llevan a formular una teoría neurofisiológica basada en las leyes de la excitabilidad nerviosa, que denomina dinámica cerebral. En el presente trabajo se expone de forma cronológica cómo surgen las principales ideas sobre las que se articula.Desarrollo: En 1939 Gonzalo observa los denominados fenómenos de acción dinámica: desfasamiento, facilitación y repercusión cerebral. Le siguen dos principios: efecto cerebral de la lesión según la magnitud y posición (1941), y organización sensorial, según un desarrollo espiral (1947). Paralelamente, caracteriza lo que llama el síndrome central de la corteza cerebral. En la década de los cincuenta desarrolla los conceptos de gradiente cortical, similitud y alometría. En contraposición a las concepciones modulares de la corteza cerebral, en las que una región es responsable de una función, Gonzalo expresa que ‘los gradientes corticales dan la localización de los sistemas mientras la similitud y alometría revelan su trama funcional’.Conclusiones: La teoría de dinámica cerebral se articula en dos etapas. La primera (de 1938 a 1950) se caracteriza por una importante base clínica con observación de nuevos fenómenos y formulación de nuevos conceptos. La segunda (de 1950 a 1960) incluye la introducción de conceptos de mayor alcance, como el gradiente funcional cortical, y leyes de alometría que se basan en un cambio de escala. Actualmente, varios autores consideran que el concepto de gradiente es clave para entender la organización cerebral.(AU)


Introduction: The Spanish neuroscientist Justo Gonzalo y Rodríguez-Leal (1910-1986) investigated the functional organisation of the cerebral cortex over more than four decades. His findings led him to formulate a neurophysiological theory based on the laws of nervous excitability, which he called brain dynamics. This paper presents in chronological order how the main ideas on which it is based arose.Development: In 1939, Gonzalo observed the phenomena of dynamic action: asynchrony or disaggregation, facilitation and cerebral repercussion. This was followed by two principles: the cerebral effect of lesions according to their magnitude and position (1941), and spiral development of the sensory field (1947). At the same time, he characterised what he called the central syndrome of the cerebral cortex. In the 1950s he developed the concepts of the cortical gradient, similarity and allometry. In contrast to modular conceptions of the cerebral cortex, in which one region is responsible for one function, Gonzalo argued that ‘cortical gradients provide the location of systems, while similarity and allometry reveal their functional mechanism.’Conclusions: The theory of brain dynamics was established in two stages. The first (between 1938 and 1950) had an important clinical foundation, involving the observation of new phenomena and the formulation of new concepts. The second (between 1950 and 1960) included the introduction of more far-reaching concepts, such as the functional cortical gradient, and allometry laws based on a change of scale. Today, various authors believe that the concept of the gradient is crucial for understanding how the brain is organised.(AU)


Assuntos
Humanos , Masculino , Feminino , Córtex Cerebral , Córtex Cerebral/anatomia & histologia , Neurologia/história , Cérebro/anatomia & histologia , Neurofisiologia
10.
Neuron ; 112(13): 2086-2090, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38781973

RESUMO

Neurophysiology and neuromodulation strive to understand the neural basis of behavior through a one-to-one correspondence between a particular brain and its behavioral output. Within this framework, studies with few subjects but sufficient sample sizes can be both rigorous and impactful.


Assuntos
Encéfalo , Neurofisiologia , Humanos , Encéfalo/fisiologia , Neurofisiologia/métodos , Tamanho da Amostra , Animais , Neurotransmissores/metabolismo , Comportamento/fisiologia
11.
Int Rev Neurobiol ; 176: 87-118, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38802184

RESUMO

This chapter describes the role of neurophysiological techniques in diagnosing and monitoring amyotrophic lateral sclerosis (ALS). Despite many advances, electromyography (EMG) remains a keystone investigation from which to build support for a diagnosis of ALS, demonstrating the pathophysiological processes of motor unit hyperexcitability, denervation and reinnervation. We consider development of the different diagnostic criteria and the role of EMG therein. While not formally recognised by established diagnostic criteria, we discuss the pioneering studies that have demonstrated the diagnostic potential of transcranial magnetic stimulation (TMS) of the motor cortex and highlight the growing evidence for TMS in the diagnostic process. Finally, accurately monitoring disease progression is crucial for the successful implementation of clinical trials. Neurophysiological measures of disease state have been incorporated into clinical trials for over 20 years and we review prominent techniques for assessing disease progression.


Assuntos
Esclerose Lateral Amiotrófica , Eletromiografia , Neurofisiologia , Estimulação Magnética Transcraniana , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/fisiopatologia , Humanos , Estimulação Magnética Transcraniana/métodos , Eletromiografia/métodos , Neurofisiologia/métodos , Progressão da Doença , Córtex Motor/fisiopatologia
12.
Sci Rep ; 14(1): 10785, 2024 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734712

RESUMO

Large language models (LLMs), like ChatGPT, Google's Bard, and Anthropic's Claude, showcase remarkable natural language processing capabilities. Evaluating their proficiency in specialized domains such as neurophysiology is crucial in understanding their utility in research, education, and clinical applications. This study aims to assess and compare the effectiveness of Large Language Models (LLMs) in answering neurophysiology questions in both English and Persian (Farsi) covering a range of topics and cognitive levels. Twenty questions covering four topics (general, sensory system, motor system, and integrative) and two cognitive levels (lower-order and higher-order) were posed to the LLMs. Physiologists scored the essay-style answers on a scale of 0-5 points. Statistical analysis compared the scores across different levels such as model, language, topic, and cognitive levels. Performing qualitative analysis identified reasoning gaps. In general, the models demonstrated good performance (mean score = 3.87/5), with no significant difference between language or cognitive levels. The performance was the strongest in the motor system (mean = 4.41) while the weakest was observed in integrative topics (mean = 3.35). Detailed qualitative analysis uncovered deficiencies in reasoning, discerning priorities, and knowledge integrating. This study offers valuable insights into LLMs' capabilities and limitations in the field of neurophysiology. The models demonstrate proficiency in general questions but face challenges in advanced reasoning and knowledge integration. Targeted training could address gaps in knowledge and causal reasoning. As LLMs evolve, rigorous domain-specific assessments will be crucial for evaluating advancements in their performance.


Assuntos
Idioma , Neurofisiologia , Humanos , Neurofisiologia/métodos , Processamento de Linguagem Natural , Cognição/fisiologia
13.
Neurodiagn J ; 64(2): 75-80, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38776505

RESUMO

The NeuroAnalyst role is relatively new with the NA-CLTM credential first becoming available in 2021. Many institutions express interest in utilizing this new role in neurodiagnostic departments, but there is a relative dearth of information about the benefits and challenges of developing a NeuroAnalyst role to support clinical neurophysiologists. The aim of this article is to share the positive experience of one institution in developing a team of NeuroAnalysts. The addition of the role can decrease EEG report turnaround time and balance the workload of clinical neurophysiologists, which improves patient care and allows physicians to increase productivity in other ways.


Assuntos
Neurofisiologia , Humanos , Eletroencefalografia/métodos
14.
J Hist Neurosci ; 33(3): 298-308, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38598175

RESUMO

Walter Eichler (1904-1942) performed the first in situ nerve conduction studies in humans. Eichler's work has been largely overlooked and there have been no biographical accounts written of him. His 1937 paper, Über die Ableitung der Aktionspotentiale vom menschlichen Nerven in situ (On the recording of the action potentials from human nerves in situ) was translated and reviewed. Archival material was obtained on his career that was housed predominantly at the University of Freiburg im Breisgau. He had memberships in Nazi organizations but did not appear to be politically active. During his brief career, he constructed novel equipment and established seminal principles for performing nerve conductions on humans. The authors repeated his experiment in the ulnar nerve, which duplicated Eichler's findings. His recordings were quite remarkable given advances in technology. In summary, the Eichler paper is the first study in the development of in situ clinical electroneurography in humans. Many of his procedural observations are still fundamental in the current practice of electroneurography. As best can be determined, his study in humans did not appear ethically compromised. Although Eichler's personal background remains open to question, his paper is a seminal study in the history and development of clinical electroneurography.Abbreviations: AP: Action potential; C: Capacitor; CNP: Compound nerve potential; DC: Direct current; E1: Preferred term for active electrode; E2: Preferred term for reference electrode; NSDÄB: Nationalsozialistische Deutsche NSD-Ärtzebund (National Socialist German Doctors' League; NSDAP: Nationalsozialistische Deutsche Arbeiterpartei (National Socialist German Workers' Party/ Nazi Party); SS: Schutzstaffel (Protective Echelon or Squad of the Nazi party).


Assuntos
Condução Nervosa , Humanos , História do Século XX , Condução Nervosa/fisiologia , Potenciais de Ação/fisiologia , Nervo Ulnar/fisiologia , Alemanha , Eletrofisiologia/história , Neurofisiologia/história , Estudos de Condução Nervosa
15.
Musculoskelet Sci Pract ; 72: 102957, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38642475

RESUMO

OBJECTIVES: The Neurophysiology of Pain Questionnaire (NPQ) is widely used to assess pain knowledge among clinicians and patients with pain, but an Italian version is not available. This study aimed to translate and cross-culturally adapt the NPQ into Italian, to test its psychometric properties, to assess the knowledge of Italian physical therapists (PTs) on pain, and to evaluate which characteristics are associated with pain knowledge. METHODS: The NPQ was translated into Italian, integrated with some additional questions (IT-NPQ-New), and sent by email via the Italian Association of Physiotherapy newsletter. Rasch analysis (RA) was used to test the psychometric properties of the Italian versions. Multivariable regression analyses were used to check for associations between participants' characteristics and their NPQ scores. RESULTS: A sample of 753 PTs completed the survey. RA of the NPQ-19 and IT-NPQ-New revealed that 10 (IT-NPQ-10) and 18 (IT-NPQ-18) items fit the model. Both questionnaires showed good psychometric properties. The overall median score among Italian PTs was 6.0 [5.0-7.0] and 11.0 [9.0-13.0] points for the IT-NPQ-10 and the IT-NPQ-18, respectively. These scores were statistically different among groups according to gender, age, years of professional activity, post-graduate specialization and days attended of targeted pain courses, with the latter being the most influential variable. CONCLUSIONS: Italian PTs now dispose of two tools to assess their basic knowledge related to pain science. Our study also showed that pain knowledge among Italian PTs needs improvement, especially considering recent biopsychosocial approaches to pain.


Assuntos
Fisioterapeutas , Psicometria , Humanos , Masculino , Itália , Feminino , Inquéritos e Questionários , Fisioterapeutas/psicologia , Adulto , Pessoa de Meia-Idade , Medição da Dor/métodos , Reprodutibilidade dos Testes , Neurofisiologia
17.
Rev Neurol ; 78(7): 199-207, 2024 Apr 01.
Artigo em Espanhol | MEDLINE | ID: mdl-38502168

RESUMO

INTRODUCTION: The Spanish neuroscientist Justo Gonzalo y Rodriguez-Leal (1910-1986) investigated the functional organisation of the cerebral cortex over more than four decades. His findings led him to formulate a neurophysiological theory based on the laws of nervous excitability, which he called brain dynamics. This paper presents in chronological order how the main ideas on which it is based arose. DEVELOPMENT: In 1939, Gonzalo observed the phenomena of dynamic action: asynchrony or disaggregation, facilitation and cerebral repercussion. This was followed by two principles: the cerebral effect of lesions according to their magnitude and position (1941), and spiral development of the sensory field (1947). At the same time, he characterised what he called the central syndrome of the cerebral cortex. In the 1950s he developed the concepts of the cortical gradient, similarity and allometry. In contrast to modular conceptions of the cerebral cortex, in which one region is responsible for one function, Gonzalo argued that 'cortical gradients provide the location of systems, while similarity and allometry reveal their functional mechanism.' CONCLUSIONS: The theory of brain dynamics was established in two stages. The first (between 1938 and 1950) had an important clinical foundation, involving the observation of new phenomena and the formulation of new concepts. The second (between 1950 and 1960) included the introduction of more far-reaching concepts, such as the functional cortical gradient, and allometry laws based on a change of scale. Today, various authors believe that the concept of the gradient is crucial for understanding how the brain is organised.


TITLE: Cronología de la investigación sobre la dinámica cerebral de Justo Gonzalo.Introducción. El neurocientífico español Justo Gonzalo y Rodríguez-Leal (1910-1986) investiga la organización funcional de la corteza cerebral durante más de cuatro décadas. Sus hallazgos le llevan a formular una teoría neurofisiológica basada en las leyes de la excitabilidad nerviosa, que denomina dinámica cerebral. En el presente trabajo se expone de forma cronológica cómo surgen las principales ideas sobre las que se articula.Desarrollo. En 1939 Gonzalo observa los denominados fenómenos de acción dinámica: desfasamiento, facilitación y repercusión cerebral. Le siguen dos principios: efecto cerebral de la lesión según la magnitud y posición (1941), y organización sensorial, según un desarrollo espiral (1947). Paralelamente, caracteriza lo que llama el síndrome central de la corteza cerebral. En la década de los cincuenta desarrolla los conceptos de gradiente cortical, similitud y alometría. En contraposición a las concepciones modulares de la corteza cerebral, en las que una región es responsable de una función, Gonzalo expresa que 'los gradientes corticales dan la localización de los sistemas mientras la similitud y alometría revelan su trama funcional'. Conclusiones. La teoría de dinámica cerebral se articula en dos etapas. La primera (de 1938 a 1950) se caracteriza por una importante base clínica con observación de nuevos fenómenos y formulación de nuevos conceptos. La segunda (de 1950 a 1960) incluye la introducción de conceptos de mayor alcance, como el gradiente funcional cortical, y leyes de alometría que se basan en un cambio de escala. Actualmente, varios autores consideran que el concepto de gradiente es clave para entender la organización cerebral.


Assuntos
Encéfalo , Córtex Cerebral , Humanos , Masculino , Neurofisiologia , Síndrome
18.
Artigo em Inglês | MEDLINE | ID: mdl-38551673

RESUMO

The Journal of Comparative Physiology A is the premier peer-reviewed scientific journal in comparative physiology, in particular sensory physiology, neurophysiology, and neuroethology. Founded in 1924 by Karl von Frisch and Alfred Kühn, it celebrates its 100th anniversary in 2024. During these 100 years, many of the landmark achievements in these disciplines were published in this journal. To commemorate these accomplishments, we have compiled a list of the Top 100 Authors over these 100 years, representing approximately 1% of all its authors. To select these individuals, three performance criteria were applied: number of publications, total number of citations attracted by these articles, and mean citation rate of the papers published by each author. The resulting list of the Top 100 Authors provides a fascinating insight into the history of the disciplines covered by the Journal of Comparative Physiology A and into the academic careers of many of their leading representatives.


Assuntos
Neurofisiologia , Fisiologia Comparada , Animais , Humanos
19.
J Clin Neurophysiol ; 41(3): 278-284, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38436391

RESUMO

PURPOSE: Nerve conduction study (NCS) is essential for subclassifying Guillain-Barré syndrome (GBS). It is well known that the GBS subclassification can change through serial NCSs. However, the usefulness of serial NCSs is debatable, especially in patients with early stage GBS. METHODS: Follow-up NCS data within 3 weeks (early followed NCS, EFN) and within 3 to 10 weeks (late-followed NCS, LFN) were collected from 60 patients with GBS who underwent their first NCS (FN) within 10 days after symptom onset. Each NCS was classified into five subtypes (normal, demyelinating, axonal, inexcitable, and equivocal), according to Hadden's and Rajabally's criteria. We analyzed the frequency of significant changes in classification (SCCs) comprising electrodiagnostic aggravation and subtype shifts between demyelinating and axonal types according to follow-up timing. RESULTS: Between FN and EFN, 33.3% of patients with Hadden's criteria and 18.3% with Rajabally's criteria showed SCCs. Between FN and LFN, 23.3% of patients with Hadden's criteria and 21.7% with Rajabally's criteria showed SCCs, of which 71.4% (Hadden's criteria) and 46.2% (Rajabally's criteria) already showed SCCs from the EFN. The conditions of delayed SCCs between EFN and LFN were very early FN, mild symptoms at the FN, or persistent electrophysiological deterioration 3 weeks after symptom onset. CONCLUSIONS: A substantial proportion of patients with GBS showed significant changes in neurophysiological classification at the early stage. Serial NCS may be helpful for precise neurophysiological classification. This study suggests that follow-up NCSs should be performed within 3 weeks of symptom onset in patients with GBS in whom FN was performed within 10 days of symptom onset.


Assuntos
Síndrome de Guillain-Barré , Zinostatina , Humanos , Síndrome de Guillain-Barré/diagnóstico , Estudos de Condução Nervosa , Neurofisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA