Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.782
Filtrar
1.
Adv Protein Chem Struct Biol ; 141: 331-360, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38960479

RESUMO

We recently identified TMEM230 as a master regulator of the endomembrane system of cells. TMEM230 expression is necessary for promoting motor protein dependent intracellular trafficking of metalloproteins for cellular energy production in mitochondria. TMEM230 is also required for transport and secretion of metalloproteinases for autophagy and phagosome dependent clearance of misfolded proteins, defective RNAs and damaged cells, activities that decline with aging. This suggests that aberrant levels of TMEM230 may contribute to aging and regain of proper levels may have therapeutic applications. The components of the endomembrane system include the Golgi complex, other membrane bound organelles, and secreted vesicles and factors. Secreted cellular components modulate immune response and tissue regeneration in aging. Upregulation of intracellular packaging, trafficking and secretion of endosome components while necessary for tissue homeostasis and normal wound healing, also promote secretion of pro-inflammatory and pro-senescence factors. We recently determined that TMEM230 is co-regulated with trafficked cargo of the endomembrane system, including lysosome factors such as RNASET2. Normal tissue regeneration (in aging), repair (following injury) and aberrant destructive tissue remodeling (in cancer or autoimmunity) likely are regulated by TMEM230 activities of the endomembrane system, mitochondria and autophagosomes. The role of TMEM230 in aging is supported by its ability to regulate the pro-inflammatory secretome and senescence-associated secretory phenotype in tissue cells of patients with advanced age and chronic disease. Identifying secreted factors regulated by TMEM230 in young patients and patients of advanced age will facilitate identification of aging associated targets that aberrantly promote, inhibit or reverse aging. Ex situ culture of patient derived cells for identifying secreted factors in tissue regeneration and aging provides opportunities in developing therapeutic and personalized medicine strategies. Identification and validation of human secreted factors in tissue regeneration requires long-term stabile scaffold culture conditions that are different from those previously reported for cell lines used as cell models for aging. We describe a 3 dimensional (3D) platform utilizing non-biogenic and non-labile poly ε-caprolactone scaffolds that supports maintenance of long-term continuous cultures of human stem cells, in vitro generated 3D organoids and patient derived tissue. Combined with animal component free culture media, non-biogenic scaffolds are suitable for proteomic and glycobiological analyses to identify human factors in aging. Applications of electrospun nanofiber technologies in 3D cell culture allow for ex situ screening and the development of patient personalized therapeutic strategies and predicting their effectiveness in mitigating or promoting aging.


Assuntos
Envelhecimento , Organoides , Humanos , Organoides/metabolismo , Envelhecimento/metabolismo , Proteínas de Membrana/metabolismo , Senescência Celular , Feminino , Alicerces Teciduais/química , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/citologia
2.
Sci Rep ; 14(1): 15116, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956424

RESUMO

Caspase-9, a cysteine-aspartate protease traditionally associated with intrinsic apoptosis, has recently emerged as having non-apoptotic roles, including influencing cell migration-an aspect that has received limited attention in existing studies. In our investigation, we aimed to explore the impact of caspase-9 on the migration and invasion behaviors of MDA-MB-231, a triple-negative breast cancer (TNBC) cell line known for its metastatic properties. We established a stable cell line expressing an inducible caspase-9 (iC9) in MDA-MB-231 and assessed their metastatic behavior using both monolayer and the 3D organotypic model in co-culture with human Foreskin fibroblasts (HFF). Our findings revealed that caspase-9 had an inhibitory effect on migration and invasion in both models. In monolayer culture, caspase-9 effectively suppressed the migration and invasion of MDA-MB-231 cells, comparable to the anti-metastatic agent panitumumab (Pan). Notably, the combination of caspase-9 and Pan exhibited a significant additional effect in reducing metastatic behavior. Interestingly, caspase-9 demonstrated superior efficacy compared to Pan in the organotypic model. Molecular analysis showed down regulation of epithelial-mesenchymal transition and migratory markers, in caspase-9 activated cells. Additionally, flow cytometry analysis indicated a cell cycle arrest. Moreover, pre-treatment with activated caspase-9 sensitized cells to the chemotherapy of doxorubicin, thereby enhancing its effectiveness. In conclusion, the anti-metastatic potential of caspase-9 presents avenues for the development of novel therapeutic approaches for TNBC/metastatic breast cancer. Although more studies need to figure out the exact involving mechanisms behind this behavior.


Assuntos
Caspase 9 , Movimento Celular , Organoides , Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Caspase 9/metabolismo , Movimento Celular/efeitos dos fármacos , Organoides/efeitos dos fármacos , Organoides/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Metástase Neoplásica , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Invasividade Neoplásica , Técnicas de Cocultura , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Células MDA-MB-231
3.
Sci Rep ; 14(1): 16032, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992075

RESUMO

This study explores the application of the RIP3-caspase3-assay in heterogeneous spheroid cultures to analyze cell death pathways, emphasizing the nuanced roles of apoptosis and necroptosis. By employing directly conjugated monoclonal antibodies, we provide detailed insights into the complex mechanisms of cell death. Our findings demonstrate the assay's capability to differentiate between RIP1-independent apoptosis, necroptosis, and RIP1-dependent apoptosis, marking a significant advancement in organoid research. Additionally, we investigate the effects of TNFα on isolated intestinal epithelial cells, revealing a concentration-dependent response and an adaptive or threshold reaction to TNFα-induced stress. The results indicate a preference for RIP1-independent cell death pathways upon TNFα stimulation, with a notable increase in apoptosis and a secondary role of necroptosis. Our research underscores the importance of the RIP3-caspase3-assay in understanding cell death mechanisms in organoid cultures, offering valuable insights for disease modeling and the development of targeted therapies. The assay's adaptability and robustness in spheroid cultures enhances its potential as a tool in personalized medicine and translational research.


Assuntos
Apoptose , Caspase 3 , Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores , Esferoides Celulares , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Humanos , Esferoides Celulares/metabolismo , Esferoides Celulares/efeitos dos fármacos , Caspase 3/metabolismo , Apoptose/efeitos dos fármacos , Necroptose/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Morte Celular/efeitos dos fármacos , Organoides/metabolismo , Organoides/citologia
4.
Cells ; 13(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38994994

RESUMO

The proneural transcription factor atonal basic helix-loop-helix transcription factor 7 (ATOH7) is expressed in early progenitors in the developing neuroretina. In vertebrates, this is crucial for the development of retinal ganglion cells (RGCs), as mutant animals show an almost complete absence of RGCs, underdeveloped optic nerves, and aberrations in retinal vessel development. Human mutations are rare and result in autosomal recessive optic nerve hypoplasia (ONH) or severe vascular changes, diagnosed as autosomal recessive persistent hyperplasia of the primary vitreous (PHPVAR). To better understand the role of ATOH7 in neuroretinal development, we created ATOH7 knockout and eGFP-expressing ATOH7 reporter human induced pluripotent stem cells (hiPSCs), which were differentiated into early-stage retinal organoids. Target loci regulated by ATOH7 were identified by Cleavage Under Targets and Release Using Nuclease with sequencing (CUT&RUN-seq) and differential expression by RNA sequencing (RNA-seq) of wildtype and mutant organoid-derived reporter cells. Additionally, single-cell RNA sequencing (scRNA-seq) was performed on whole organoids to identify cell type-specific genes. Mutant organoids displayed substantial deficiency in axon sprouting, reduction in RGCs, and an increase in other cell types. We identified 469 differentially expressed target genes, with an overrepresentation of genes belonging to axon development/guidance and Notch signaling. Taken together, we consolidate the function of human ATOH7 in guiding progenitor competence by inducing RGC-specific genes while inhibiting other cell fates. Furthermore, we highlight candidate genes responsible for ATOH7-associated optic nerve and retinovascular anomalies, which sheds light to potential future therapy targets for related disorders.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Células-Tronco Pluripotentes Induzidas , Retina , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Retina/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular/genética , Transdução de Sinais , Células Ganglionares da Retina/metabolismo , Organoides/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
5.
Sci Rep ; 14(1): 15351, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38961189

RESUMO

As SARS-CoV-2 continues to spread worldwide, tractable primary airway cell models that recapitulate the cell-intrinsic response to arising viral variants are needed. Here we describe an adult stem cell-derived human airway organoid model overexpressing the ACE2 receptor (ACE2-OE) that supports robust viral replication while maintaining 3D architecture and cellular diversity of the airway epithelium. ACE2-OE organoids were infected with SARS-CoV-2 variants and subjected to single-cell RNA-sequencing. Interferon-lambda was upregulated in cells with low-level infection while the NF-kB inhibitor alpha gene (encoding IkBa) was consistently upregulated in infected cells, and its expression positively correlated with infection levels. Confocal microscopy showed more IkBa expression in infected than bystander cells, but found concurrent nuclear translocation of NF-kB that IkBa usually prevents. Overexpressing a nondegradable IkBa mutant reduced NF-kB translocation and increased viral infection. These data demonstrate the functionality of ACE2-OE organoids in SARS-CoV-2 research and underscore that the strength of the NF-kB feedback loop in infected cells controls viral replication.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Inibidor de NF-kappaB alfa , Organoides , SARS-CoV-2 , Replicação Viral , Humanos , Organoides/virologia , Organoides/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , SARS-CoV-2/fisiologia , COVID-19/virologia , COVID-19/metabolismo , COVID-19/genética , Inibidor de NF-kappaB alfa/metabolismo , Inibidor de NF-kappaB alfa/genética , NF-kappa B/metabolismo
6.
Cell Commun Signal ; 22(1): 363, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010112

RESUMO

BACKGROUND: We previously identified Il17RB, a member of the IL17 superfamily, as a candidate marker gene for endometrial aging. While IL17RB has been linked to inflammation and malignancies in several organ systems, its function in the endometrium has not been investigated and is thus poorly understood. In the present study, we performed a functional analysis of this receptor with the aim of determining the effects of its age-associated overexpression on the uterine environment. METHODS: We analyzed IL17RB-related signaling pathways and downstream gene expression in an immortalized human endometrial glandular epithelial cell line ("hEM") forced to express the receptor via lentiviral transduction ("IL17RB-hEM"). We also prepared endometrial organoids from human endometrial tissue sourced from hysterectomy patients ("patient-derived EOs") and exposed them to cytokines that are upregulated by IL17RB expression to investigate changes in organoid-forming capacity and senescence markers. We analyzed RNA-seq data (GEO accession number GSE132886) from our previous study to identify the signaling pathways associated with altered IL17RB expression. We also analyzed the effects of the JNK pathway on organoid-forming capacity. RESULTS: Stimulation with interleukin 17B enhanced the NF-κB pathway in IL17RB-hEM, resulting in significantly elevated expression of the genes encoding the senescence associated secretory phenotype (SASP) factors IL6, IL8, and IL1ß. Of these cytokines, IL1ß inhibited endometrial organoid growth. Bioinformatics analysis showed that the JNK signaling pathway was associated with age-related variation in IL17RB expression. When IL17RB-positive cells were cultured in the presence of IL17B, their organoid-forming capacity was slightly but non-significantly lower than in unexposed IL17RB-positive cells, but when IL17B was paired with a JNK inhibitor (SP600125), it was restored to control levels. Further, IL1ß exposure significantly reduced organoid-forming capacity and increased p21 expression in endometrial organoids relative to non-exposure (control), but when IL1ß was paired with SP600125, both indicators were restored to levels comparable to the control condition. CONCLUSIONS: We have revealed an association between IL17RB, whose expression increases in the endometrial glandular epithelium with advancing age, and cellular senescence. Using human endometrial organoids as in vitro model, we found that IL1ß inhibits cell proliferation and leads to endometrial senescence via the JNK pathway.


Assuntos
Senescência Celular , Endométrio , Receptores de Interleucina-17 , Transdução de Sinais , Humanos , Feminino , Endométrio/metabolismo , Endométrio/citologia , Receptores de Interleucina-17/metabolismo , Receptores de Interleucina-17/genética , Senescência Celular/genética , Organoides/metabolismo , Linhagem Celular
7.
Cell Mol Life Sci ; 81(1): 306, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023560

RESUMO

Recent advances in stem cell research have led to the creation of organoids, miniature replicas of human organs, offering innovative avenues for studying diseases. Kidney organoids, with their ability to replicate complex renal structures, provide a novel platform for investigating kidney diseases and assessing drug efficacy, albeit hindered by labor-intensive generation and batch variations, highlighting the need for tailored cryopreservation methods to enable widespread utilization. Here, we evaluated cryopreservation strategies for kidney organoids by contrasting slow-freezing and vitrification methods. 118 kidney organoids were categorized into five conditions. Control organoids followed standard culture, while two slow-freezing groups used 10% DMSO (SF1) or commercial freezing media (SF2). Vitrification involved V1 (20% DMSO, 20% Ethylene Glycol with sucrose) and V2 (15% DMSO, 15% Ethylene Glycol). Assessment of viability, functionality, and structural integrity post-thawing revealed notable differences. Vitrification, particularly V1, exhibited superior viability (91% for V1, 26% for V2, 79% for SF1, and 83% for SF2 compared to 99.4% in controls). 3D imaging highlighted distinct nephron segments among groups, emphasizing V1's efficacy in preserving both podocytes and tubules in kidney organoids. Cisplatin-induced injury revealed a significant reduction in regenerative capacities in organoids cryopreserved by flow-freezing methods, while the V1 method did not show statistical significance compared to the unfrozen controls. This study underscores vitrification, especially with high concentrations of cryoprotectants, as an effective approach for maintaining kidney organoid viability and structure during cryopreservation, offering practical approaches for kidney organoid research.


Assuntos
Criopreservação , Crioprotetores , Rim , Organoides , Criopreservação/métodos , Organoides/citologia , Organoides/efeitos dos fármacos , Organoides/metabolismo , Humanos , Rim/citologia , Crioprotetores/farmacologia , Vitrificação , Dimetil Sulfóxido/farmacologia , Etilenoglicol/farmacologia , Congelamento , Sobrevivência Celular/efeitos dos fármacos
8.
J Clin Invest ; 134(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38950288

RESUMO

Research advances over the past 30 years have confirmed a critical role for genetics in the etiology of dilated cardiomyopathies (DCMs). However, full knowledge of the genetic architecture of DCM remains incomplete. We identified candidate DCM causal gene, C10orf71, in a large family with 8 patients with DCM by whole-exome sequencing. Four loss-of-function variants of C10orf71 were subsequently identified in an additional group of492 patients with sporadic DCM from 2 independent cohorts. C10orf71 was found to be an intrinsically disordered protein specifically expressed in cardiomyocytes. C10orf71-KO mice had abnormal heart morphogenesis during embryonic development and cardiac dysfunction as adults with altered expression and splicing of contractile cardiac genes. C10orf71-null cardiomyocytes exhibited impaired contractile function with unaffected sarcomere structure. Cardiomyocytes and heart organoids derived from human induced pluripotent stem cells with C10orf71 frameshift variants also had contractile defects with normal electrophysiological activity. A rescue study using a cardiac myosin activator, omecamtiv mecarbil, restored contractile function in C10orf71-KO mice. These data support C10orf71 as a causal gene for DCM by contributing to the contractile function of cardiomyocytes. Mutation-specific pathophysiology may suggest therapeutic targets and more individualized therapy.


Assuntos
Cardiomiopatia Dilatada , Mutação da Fase de Leitura , Camundongos Knockout , Miócitos Cardíacos , Organoides , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/metabolismo , Modelos Animais de Doenças , Contração Miocárdica/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Organoides/metabolismo , Organoides/patologia
9.
Cell Rep Med ; 5(7): 101627, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38964315

RESUMO

The efficacy of chemotherapy varies significantly among patients with gastric cancer (GC), and there is currently no effective strategy to predict chemotherapeutic outcomes. In this study, we successfully establish 57 GC patient-derived organoids (PDOs) from 73 patients with GC (78%). These organoids retain histological characteristics of their corresponding primary GC tissues. GC PDOs show varied responses to different chemotherapeutics. Through RNA sequencing, the upregulation of tumor suppression genes/pathways is identified in 5-fluorouracil (FU)- or oxaliplatin-sensitive organoids, whereas genes/pathways associated with proliferation and invasion are enriched in chemotherapy-resistant organoids. Gene expression biomarker panels, which could distinguish sensitive and resistant patients to 5-FU and oxaliplatin (area under the dose-response curve [AUC] >0.8), are identified. Moreover, the drug-response results in PDOs are validated in patient-derived organoids-based xenograft (PDOX) mice and are consistent with the actual clinical response in 91.7% (11/12) of patients with GC. Assessing chemosensitivity in PDOs can be utilized as a valuable tool for screening chemotherapeutic drugs in patients with GC.


Assuntos
Fluoruracila , Organoides , Medicina de Precisão , Neoplasias Gástricas , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Humanos , Organoides/efeitos dos fármacos , Organoides/patologia , Organoides/metabolismo , Animais , Medicina de Precisão/métodos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Masculino , Feminino , Ensaios Antitumorais Modelo de Xenoenxerto , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Idoso , Relevância Clínica
10.
Development ; 151(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38994775

RESUMO

Super-enhancers (SEs) are expansive regions of genomic DNA that regulate the expression of genes involved in cell identity and cell fate. We recently identified developmental stage- and cell type-specific modules within the murine Vsx2 SE. Here, we show that the human VSX2 SE modules have similar developmental stage- and cell type-specific activity in reporter gene assays. By inserting the human sequence of one VSX2 SE module into a mouse with microphthalmia, eye size was rescued. To understand the function of these SE modules during human retinal development, we deleted individual modules in human embryonic stem cells and generated retinal organoids. Deleting one module results in small organoids, recapitulating the small-eyed phenotype of mice with microphthalmia, while deletion of the other module led to disruptions in bipolar neuron development. This prototypical SE serves as a model for understanding developmental stage- and cell type-specific effects of neurogenic transcription factors with complex expression patterns. Moreover, by elucidating the gene regulatory mechanisms, we can begin to examine how dysregulation of these mechanisms contributes to phenotypic diversity and disease.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio , Retina , Fatores de Transcrição , Animais , Humanos , Camundongos , Elementos Facilitadores Genéticos/genética , Evolução Molecular , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Microftalmia/genética , Microftalmia/patologia , Neurogênese/genética , Organoides/metabolismo , Retina/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
11.
Nat Commun ; 15(1): 5524, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951485

RESUMO

The three-dimensional genome structure organized by CTCF is required for development. Clinically identified mutations in CTCF have been linked to adverse developmental outcomes. Nevertheless, the underlying mechanism remains elusive. In this investigation, we explore the regulatory roles of a clinically relevant R567W point mutation, located within the 11th zinc finger of CTCF, by introducing this mutation into both murine models and human embryonic stem cell-derived cortical organoid models. Mice with homozygous CTCFR567W mutation exhibit growth impediments, resulting in postnatal mortality, and deviations in brain, heart, and lung development at the pathological and single-cell transcriptome levels. This mutation induces premature stem-like cell exhaustion, accelerates the maturation of GABAergic neurons, and disrupts neurodevelopmental and synaptic pathways. Additionally, it specifically hinders CTCF binding to peripheral motifs upstream to the core consensus site, causing alterations in local chromatin structure and gene expression, particularly at the clustered protocadherin locus. Comparative analysis using human cortical organoids mirrors the consequences induced by this mutation. In summary, this study elucidates the influence of the CTCFR567W mutation on human neurodevelopmental disorders, paving the way for potential therapeutic interventions.


Assuntos
Fator de Ligação a CCCTC , Transtornos do Neurodesenvolvimento , Organoides , Fator de Ligação a CCCTC/metabolismo , Fator de Ligação a CCCTC/genética , Humanos , Animais , Camundongos , Transtornos do Neurodesenvolvimento/genética , Organoides/metabolismo , Mutação , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/patologia , Masculino , Cromatina/metabolismo , Cromatina/genética , Feminino , Encéfalo/metabolismo , Encéfalo/patologia , Mutação Puntual , Células-Tronco Embrionárias Humanas/metabolismo
12.
Anal Chem ; 96(29): 12129-12138, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38985547

RESUMO

As organoids and organ-on-chip (OoC) systems move toward preclinical and clinical applications, there is an increased need for method validation. Using a liquid chromatography-mass spectrometry (LC-MS)-based approach, we developed a method for measuring small-molecule drugs and metabolites in the cell medium directly sampled from liver organoids/OoC systems. The LC-MS setup was coupled to an automatic filtration and filter flush system with online solid-phase extraction (SPE), allowing for robust and automated sample cleanup/analysis. For the matrix, rich in, e.g., protein, salts, and amino acids, no preinjection sample preparation steps (protein precipitation, SPE, etc.) were necessary. The approach was demonstrated with tolbutamide and its liver metabolite, 4-hydroxytolbutamide (4HT). The method was validated for analysis of cell media of human stem cell-derived liver organoids cultured in static conditions and on a microfluidic platform according to Food and Drug Administration (FDA) guidelines with regards to selectivity, matrix effects, accuracy, precision, etc. The system allows for hundreds of injections without replacing chromatography hardware. In summary, drug/metabolite analysis of organoids/OoCs can be performed robustly with minimal sample preparation.


Assuntos
Fígado , Organoides , Humanos , Organoides/metabolismo , Organoides/citologia , Cromatografia Líquida/métodos , Fígado/metabolismo , Espectrometria de Massas/métodos , Tolbutamida/metabolismo , Tolbutamida/análise , Dispositivos Lab-On-A-Chip , Preparações Farmacêuticas/metabolismo , Preparações Farmacêuticas/análise , Extração em Fase Sólida , Bibliotecas de Moléculas Pequenas/análise , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/química , Espectrometria de Massa com Cromatografia Líquida
13.
Mol Biol Cell ; 35(8): br15, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38985518

RESUMO

Aneuploidy is nearly ubiquitous in tumor genomes, but the role of aneuploidy in the early stages of cancer evolution remains unclear. Here, by inducing heterogeneous aneuploidy in non-transformed human colon organoids (colonoids), we investigated how the effects of aneuploidy on cell growth and differentiation may promote malignant transformation. Previous work implicated p53 activation as a downstream response to aneuploidy induction. We found that simple aneuploidy, characterized by 1-3 gained or lost chromosomes, resulted in little or modest p53 activation and cell cycle arrest when compared with more complex aneuploid cells. Single-cell RNA sequencing analysis revealed that the degree of p53 activation was strongly correlated with karyotype complexity. Single-cell tracking showed that cells could continue to divide despite the observation of one to a few lagging chromosomes. Unexpectedly, colonoids with simple aneuploidy exhibited impaired differentiation after niche factor withdrawal. These findings demonstrate that simple aneuploid cells can escape p53 surveillance and may contribute to niche factor-independent growth of cancer-initiating colon stem cells.


Assuntos
Aneuploidia , Diferenciação Celular , Proliferação de Células , Organoides , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Organoides/metabolismo , Colo/metabolismo , Intestinos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Pontos de Checagem do Ciclo Celular/genética , Transformação Celular Neoplásica/genética
14.
Cell Rep Med ; 5(7): 101650, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39019014

RESUMO

Gastric cancer poses diverse treatment challenges due to its high tumor heterogeneity. Through the use of patient-derived tumor organoid (PDO) models, new research1 has identified genes and molecular signatures that are predictive of chemotherapeutic response, providing valuable insights for clinical management and translational advancements.


Assuntos
Organoides , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Organoides/patologia , Organoides/efeitos dos fármacos , Organoides/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
15.
Cell Syst ; 15(7): 649-661.e9, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38981488

RESUMO

Organoids derived from human stem cells are a promising approach for disease modeling, regenerative medicine, and fundamental research. However, organoid variability and limited control over morphological outcomes remain as challenges. One open question is the extent to which engineering control over culture conditions can guide organoids to specific compositions. Here, we extend a DNA "velcro" cell patterning approach, precisely controlling the number and ratio of human induced pluripotent stem cell-derived progenitors contributing to nephron progenitor (NP) organoids and mosaic NP/ureteric bud (UB) tip cell organoids within arrays of microwells. We demonstrate long-term control over organoid size and morphology, decoupled from geometric constraints. We then show emergent trends in organoid tissue proportions that depend on initial progenitor cell composition. These include higher nephron and stromal cell representation in mosaic NP/UB organoids vs. NP-only organoids and a "goldilocks" initial cell ratio in mosaic organoids that optimizes the formation of proximal tubule structures.


Assuntos
Organoides , Organoides/citologia , Organoides/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Néfrons/citologia , Diferenciação Celular/fisiologia , Células-Tronco/citologia
16.
Methods Mol Biol ; 2805: 51-87, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008174

RESUMO

We describe a scalable method for the robust generation of 3D pancreatic islet-like organoids from human pluripotent stem cells using suspension bioreactors. Our protocol involves a 6-stage, 20-day directed differentiation process, resulting in the production of 104-105 organoids. These organoids comprise α- and ß-like cells that exhibit glucose-responsive insulin and glucagon secretion. We detail methods for culturing, passaging, and cryopreserving stem cells as suspended clusters and for differentiating them through specific growth media and exogenous factors added in a stepwise manner. Additionally, we address quality control measures, troubleshooting strategies, and functional assays for research applications.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células , Diferenciação Celular , Ilhotas Pancreáticas , Organoides , Células-Tronco Pluripotentes , Humanos , Organoides/citologia , Organoides/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Técnicas de Cultura de Células/métodos , Criopreservação/métodos
17.
J Vis Exp ; (209)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39037269

RESUMO

The optimization and detailed characterization of gastrointestinal organoid models require advanced methods for analyzing their luminal environments. This paper presents a highly reproducible method for the precise measurement of pH within the lumina of 3D human gastric organoids via micromanipulator-controlled microelectrodes. The pH microelectrodes are commercially available and consist of beveled glass tips of 25 µm in diameter. For measurements, the pH microelectrode is advanced into the lumen of an organoid (>200 µm) that is suspended in Matrigel, while a reference electrode rests submerged in the surrounding medium in the culture plate. Using such microelectrodes to profile organoids derived from the human gastric body, we demonstrate that luminal pH is relatively consistent within each culture well at ~7.7 ± 0.037 and that continuous measurements can be obtained for a minimum of 15 min. In some larger organoids, the measurements revealed a pH gradient between the epithelial surface and the lumen, suggesting that pH measurements in organoids can be achieved with high spatial resolution. In a previous study, microelectrodes were successfully used to measure luminal oxygen concentrations in organoids, demonstrating the versatility of this method for organoid analyses. In summary, this protocol describes an important tool for the functional characterization of the complex luminal space within 3D organoids.


Assuntos
Microeletrodos , Organoides , Organoides/citologia , Organoides/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Estômago/citologia
18.
Methods Mol Biol ; 2811: 137-154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39037655

RESUMO

The integration of CRISPR/Cas9 genome editing techniques with organoid technology has revolutionized the field of tumor modeling, enabling the creation of diverse tumor models with distinct mutational profiles. This protocol details the application of CRISPR knock-ins to engineer tumor organoids with reporter cassettes, which are regulated by endogenous promoters of specific genes of interest. This approach facilitates the precise fluorescent labeling, isolation, and subsequent manipulation of targeted tumor cell subpopulations. The utilization of these knock-in reporter cassettes not only allows the visualization and purification of specific tumor cell subsets but also enables conditional cell ablation and lineage tracing studies. In this chapter, we provide a comprehensive guide for the design, construction, delivery, and validation of CRISPR/Cas9 tools tailored for knock-in reporter cassette integration into specific marker genes of interest. By following this protocol, researchers can harness the potential of engineered tumor organoids to decipher intricate tumor heterogeneity, track metastatic trajectories, and unveil novel therapeutic vulnerabilities linked to specific tumor cell subpopulations.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Técnicas de Introdução de Genes , Organoides , Organoides/metabolismo , Organoides/patologia , Humanos , Técnicas de Introdução de Genes/métodos , Edição de Genes/métodos , Animais , Neoplasias/genética , Neoplasias/patologia , Genes Reporter
19.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000189

RESUMO

Impaired E-cadherin (Cdh1) functions are closely associated with cellular dedifferentiation, infiltrative tumor growth and metastasis, particularly in gastric cancer. The class-I carcinogen Helicobacter pylori (H. pylori) colonizes gastric epithelial cells and induces Cdh1 shedding, which is primarily mediated by the secreted bacterial protease high temperature requirement A (HtrA). In this study, we used human primary epithelial cell lines derived from gastroids and mucosoids from different healthy donors to investigate HtrA-mediated Cdh1 cleavage and the subsequent impact on bacterial pathogenesis in a non-neoplastic context. We found a severe impairment of Cdh1 functions by HtrA-induced ectodomain cleavage in 2D primary cells and mucosoids. Since mucosoids exhibit an intact apico-basal polarity, we investigated bacterial transmigration across the monolayer, which was partially depolarized by HtrA, as indicated by microscopy, the analyses of the transepithelial electrical resistance (TEER) and colony forming unit (cfu) assays. Finally, we investigated CagA injection and observed efficient CagA translocation and tyrosine phosphorylation in 2D primary cells and, to a lesser extent, similar effects in mucosoids. In summary, HtrA is a crucially important factor promoting the multistep pathogenesis of H. pylori in non-transformed primary gastric epithelial cells and organoid-based epithelial models.


Assuntos
Proteínas de Bactérias , Caderinas , Células Epiteliais , Mucosa Gástrica , Helicobacter pylori , Organoides , Humanos , Caderinas/metabolismo , Organoides/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Antígenos de Bactérias/metabolismo , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Antígenos CD/metabolismo , Estômago/microbiologia , Estômago/patologia , Linhagem Celular , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/microbiologia , Serina Proteases
20.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000238

RESUMO

Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide. Therefore, the need for new therapeutic strategies is still a challenge. Surgery and chemotherapy represent the first-line interventions; nevertheless, the prognosis for metastatic CRC (mCRC) patients remains unacceptable. An important step towards targeted therapy came from the inhibition of the epidermal growth factor receptor (EGFR) pathway, by the anti-EGFR antibody, Cetuximab, or by specific tyrosine kinase inhibitors (TKI). Cetuximab, a mouse-human chimeric monoclonal antibody (mAb), binds to the extracellular domain of EGFR thus impairing EGFR-mediated signaling and reducing cell proliferation. TKI can affect the EGFR biochemical pathway at different steps along the signaling cascade. Apart from Cetuximab, other anti-EGFR mAbs have been developed, such as Panitumumab. Both antibodies have been approved for the treatment of KRAS-NRAS wild type mCRC, alone or in combination with chemotherapy. These antibodies display strong differences in activating the host immune system against CRC, due to their different immunoglobulin isotypes. Although anti-EGFR antibodies are efficient, drug resistance occurs with high frequency. Resistant tumor cell populations can either already be present before therapy or develop later by biochemical adaptations or new genomic mutations in the EGFR pathway. Numerous efforts have been made to improve the efficacy of the anti-EGFR mAbs or to find new agents that are able to block downstream EGFR signaling cascade molecules. Indeed, we examined the importance of analyzing the anti-EGFR antibody-drug conjugates (ADC) developed to overcome resistance and/or stimulate the tumor host's immunity against CRC growth. Also, patient-derived CRC organoid cultures represent a useful and feasible in vitro model to study tumor behavior and therapy response. Organoids can reflect tumor genetic heterogeneity found in the tissue of origin, representing a unique tool for personalized medicine. Thus, CRC-derived organoid cultures are a smart model for studying the tumor microenvironment and for the preclinical assay of anti-EGFR drugs.


Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Organoides , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Organoides/metabolismo , Organoides/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Animais , Cetuximab/farmacologia , Cetuximab/uso terapêutico , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Terapia de Alvo Molecular/métodos , Panitumumabe/farmacologia , Panitumumabe/uso terapêutico , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA