Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.212
Filtrar
1.
Cells ; 11(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35681455

RESUMO

For pregnancy to be established, uterine cells respond to the ovarian hormones, estrogen, and progesterone, via their nuclear receptors, the estrogen receptor (ESR1) and progesterone receptor (PGR). ESR1 and PGR regulate genes by binding chromatin at genes and at distal enhancer regions, which interact via dynamic 3-dimensional chromatin structures. Endometrial epithelial cells are the initial site of embryo attachment and invasion, and thus understanding the processes that yield their receptive state is important. Here, we cultured and treated organoids derived from human epithelial cells, isolated from endometrial biopsies, with estrogen and progesterone and evaluated their transcriptional profiles, their PGR cistrome, and their chromatin conformation. Progesterone attenuated estrogen-dependent gene responses but otherwise minimally impacted the organoid transcriptome. PGR ChIPseq peaks were co-localized with previously described organoid ESR1 peaks, and most PGR and ESR1 peaks were in B (inactive) compartment regions of chromatin. Significantly more ESR1 peaks were assigned to estrogen-regulated genes by considering chromatin loops identified using HiC than were identified using ESR1 peak location relative to closest genes. Overall, the organoids model allowed a definition of the chromatin regulatory components governing hormone responsiveness.


Assuntos
Organoides , Progesterona , Cromatina/metabolismo , Endométrio/metabolismo , Estrogênios/metabolismo , Feminino , Humanos , Organoides/metabolismo , Gravidez , Progesterona/metabolismo , Progesterona/farmacologia , Receptores de Estrogênio/metabolismo
2.
Int J Mol Sci ; 23(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35682909

RESUMO

L. monocytogenes, consisting of 13 serotypes, is an opportunistic food-borne pathogen that causes different host reactions depending on its serotypes. In this study, highly toxic L. monocytogenes 10403s resulted in more severe infections and lower survival rates. Additionally, to investigate the remodeling of the host proteome by strains exhibiting differential toxicity, the cellular protein responses of intestinal organoids were analyzed using tandem mass tag (TMT) labeling and high-performance liquid chromatography-mass spectrometry. The virulent strain 10403s caused 102 up-regulated and 52 down-regulated proteins, while the low virulent strain M7 caused 188 up-regulated and 25 down-regulated proteins. Based on the analysis of gene ontology (GO) and KEGG databases, the expressions of differential proteins in organoids infected by L. monocytogenes 10403s (virulent strain) or M7 (low virulent strain) were involved in regulating essential processes such as the biological metabolism, the energy metabolism, and immune system processes. The results showed that the immune system process, as the primary host defense response to L. monocytogenes, comprised five pathways, including ECM-receptor interaction, the complement and coagulation cascades, HIF-1, ferroptosis, and NOD-like receptor signaling pathways. As for the L. monocytogenes 10403s vs. M7 group, the expression of differential proteins was involved in two pathways: systemic lupus erythematosus and transcriptional mis-regulation in cancer. All in all, these results revealed that L. monocytogenes strains with different toxicity induced similar biological functions and immune responses while having different regulations on differential proteins in the pathway.


Assuntos
Listeria monocytogenes , Listeriose , Proteínas de Bactérias/metabolismo , Humanos , Organoides/metabolismo , Proteômica , Virulência
3.
Nat Commun ; 13(1): 3291, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672412

RESUMO

Salivary glands that produce and secrete saliva, which is essential for lubrication, digestion, immunity, and oral homeostasis, consist of diverse cells. The long-term maintenance of diverse salivary gland cells in organoids remains problematic. Here, we establish long-term murine and human salivary gland organoid cultures. Murine and human salivary gland organoids express gland-specific genes and proteins of acinar, myoepithelial, and duct cells, and exhibit gland functions when stimulated with neurotransmitters. Furthermore, human salivary gland organoids are established from isolated basal or luminal cells, retaining their characteristics. Single-cell RNA sequencing also indicates that human salivary gland organoids contain heterogeneous cell types and replicate glandular diversity. Our protocol also enables the generation of tumoroid cultures from benign and malignant salivary gland tumor types, in which tumor-specific gene signatures are well-conserved. In this study, we provide an experimental platform for the exploration of precision medicine in the era of tissue regeneration and anticancer treatment.


Assuntos
Organoides , Neoplasias das Glândulas Salivares , Animais , Humanos , Camundongos , Organoides/metabolismo , Saliva/metabolismo , Neoplasias das Glândulas Salivares/metabolismo , Glândulas Salivares
4.
Acta Histochem ; 124(5): 151910, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35667159

RESUMO

Gene expression changes are one of the hallmarks of malignant cells and such changes in specific genes have been identified for a variety of human cancers. Such an association in gene expression changes becomes very significant for breast cancers due to the genetic heterogeneity seen in such cancers. It is due to such genetic implication that breast cancers are classified into several subtypes; based on the expression and the magnitude of expression of estrogen and progesterone receptor genes. Changes in the expression of ERBB2, ESR1, PLAU, MUC1, PGR, and TP53 are implicated in breast cancers. Of the various models available for cancer research, organoid cultures from patient-derived biopsies are being considered as the most relevant for invitro testing. Organoid cultures derived from patient biopsies mitigate several limitations of other commonly available models such as cancer cell lines. Such organoids retain the functional physiology of solid tumors which include gene expression. Also, utilizing patient derived organoids for in vitro testing paves way for personalized medicine which greatly enhances the effectiveness of cancer therapy for individuals. We present the genes implicated in breast cancers, the ways in which organoids can be derived from breast cancer biopsies and their applications for gene expression studies.


Assuntos
Neoplasias da Mama , Organoides , Biópsia , Neoplasias da Mama/metabolismo , Feminino , Expressão Gênica , Humanos , Organoides/metabolismo , Organoides/patologia , Medicina de Precisão
5.
Sci Rep ; 12(1): 9983, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705580

RESUMO

Immune checkpoint blockade (ICB) therapy has demonstrated good efficacy in many cancer types. In cancers such as non-resectable advanced or metastatic triple-negative breast cancer (TNBC), it has recently been approved as a promising treatment. However, clinical data shows overall response rates (ORRs) from ~ 3-40% in breast cancer patients, depending on subtype, previous treatments, and mutation status. Composition of the host-microbiome has a significant role in cancer development and therapeutic responsiveness. Some bacterial families are conducive to oncogenesis and progression, while others aid innate and therapeutically induced anti-tumor immunity. Modeling microbiome effects on anti-tumor immunity in ex vivo systems is challenging, forcing the use of in vivo models, making it difficult to dissect direct effects on immune cells from combined effects on tumor and immune cells. We developed a novel immune-enhanced tumor organoid (iTO) system to study factors affecting ICB response. Using the 4T1 TNBC murine cell line and matched splenocytes, we demonstrated ICB-induced response. Further administration of bacterial-derived metabolites from species found in the immunomodulatory host-microbiome significantly increased ICB-induced apoptosis of tumor cells and altered immune cell receptor expression. These outcomes represent a method to isolate individual factors that alter ICB response and streamline the study of microbiome effects on ICB efficacy.


Assuntos
Microbiota , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Imunomodulação , Imunoterapia/métodos , Camundongos , Organoides/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo
6.
Cell Mol Life Sci ; 79(7): 364, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35705879

RESUMO

Despite many improvements in ovarian cancer diagnosis and treatment, until now, conventional chemotherapy and new biological drugs have not been shown to cure the disease, and the overall prognosis remains poor. Over 90% of ovarian malignancies are categorized as epithelial ovarian cancers (EOC), a collection of different types of neoplasms with distinctive disease biology, response to chemotherapy, and outcome. Advances in our understanding of the histopathology and molecular features of EOC subtypes, as well as the cellular origins of these cancers, have given a boost to the development of clinically relevant experimental models. The overall goal of this review is to provide a comprehensive description of the available preclinical investigational approaches aimed at better characterizing disease development and progression and at identifying new therapeutic strategies. Systems discussed comprise monolayer (2D) and three-dimensional (3D) cultures of established and primary cancer cell lines, organoids and patient-derived explants, animal models, including carcinogen-induced, syngeneic, genetically engineered mouse, xenografts, patient-derived xenografts (PDX), humanized PDX, and the zebrafish and the laying hen models. Recent advances in tumour-on-a-chip platforms are also detailed. The critical analysis of strengths and weaknesses of each experimental model will aid in identifying opportunities to optimize their translational value.


Assuntos
Neoplasias Ovarianas , Peixe-Zebra , Animais , Carcinoma Epitelial do Ovário/patologia , Galinhas , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Organoides/metabolismo , Neoplasias Ovarianas/tratamento farmacológico
7.
Signal Transduct Target Ther ; 7(1): 168, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610212

RESUMO

Organoids are three-dimensional (3D) miniature structures cultured in vitro produced from either human pluripotent stem cells (hPSCs) or adult stem cells (AdSCs) derived from healthy individuals or patients that recapitulate the cellular heterogeneity, structure, and functions of human organs. The advent of human 3D organoid systems is now possible to allow remarkably detailed observation of stem cell morphogens, maintenance and differentiation resemble primary tissues, enhancing the potential to study both human physiology and developmental stage. As they are similar to their original organs and carry human genetic information, organoids derived from patient hold great promise for biomedical research and preclinical drug testing and is currently used for personalized, regenerative medicine, gene repair and transplantation therapy. In recent decades, researchers have succeeded in generating various types of organoids mimicking in vivo organs. Herein, we provide an update on current in vitro differentiation technologies of brain, retinal, kidney, liver, lung, gastrointestinal, cardiac, vascularized and multi-lineage organoids, discuss the differences between PSC- and AdSC-derived organoids, summarize the potential applications of stem cell-derived organoids systems in the laboratory and clinic, and outline the current challenges for the application of organoids, which would deepen the understanding of mechanisms of human development and enhance further utility of organoids in basic research and clinical studies.


Assuntos
Células-Tronco Adultas , Células-Tronco Pluripotentes , Adulto , Diferenciação Celular/genética , Humanos , Organoides/metabolismo , Células-Tronco Pluripotentes/fisiologia , Medicina Regenerativa/métodos
8.
Phytomedicine ; 102: 154190, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35636173

RESUMO

BACKGROUND: Islet transplantation is an effective treatment for the type 1 and severe type 2 diabetes, but it is restricted by the severe lack of pancreas donors. In vitro differentiation of pancreatic progenitors into insulin-secreting cells is one of the hopeful strategies in the cell transplantation therapy of diabetes. Isoastragaloside I is one of the saponin molecules found in Astragalus membranaceus, which has been demonstrated to alleviate insulin resistance and glucose intolerance in obese mice. STUDY DESIGN: We established mouse pancreatic ductal organoids (mPDOs) with progenitor characteristics and an insulin promoter-driven EGFP reporter system to screen astragalus saponin components for monomers that can promote insulin-producing cell differentiation. METHODS: mPDOs treated with or without astragalus saponin monomers were investigated by the insulin promoter-driven EGFP reporter, quantitative PCR, immunofluorescence and flow cytometry to evaluate the expression of endocrine progenitor and ß-cell markers. RESULTS: Isoastragaloside I significantly promoted the expression of ß-cell differentiation genes, which was demonstrated by the activation of the insulin promoter-driven EGFP reporter, as well as the significant increase of mRNA levels of the endocrine progenitor marker Ngn3 and the ß-cell markers insulin1 and insulin2. Immunostaining studies indicated that the ß-cell-specific C-peptide was upregulated in isoastragaloside I-treated mPDOs. FACS analysis revealed that the ratio of C-peptide-secreting cells in isoastragaloside I-treated mPDOs was over 40%. Glucose tolerance tests demonstrated that the differentiated mPDOs could secrete C-peptide in response to glucose stimulation. CONCLUSIONS: We discover a novel strategy of inducing pancreatic ductal progenitors to differentiate into insulin-producing cells using isoastragaloside I. This approach can be potentially applied to ß-cell transplantation in diabetes therapies.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Saponinas , Animais , Peptídeo C/metabolismo , Diferenciação Celular/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Camundongos , Organoides/metabolismo , Saponinas/metabolismo , Saponinas/farmacologia
9.
Sci Rep ; 12(1): 7200, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504930

RESUMO

Signaling pathways play an important role in cell fate determination in stem cells and regulate a plethora of developmental programs, the dysregulation of which can lead to human diseases. Growth factors (GFs) regulating these signaling pathways therefore play a major role in the plasticity of adult stem cells and modulate cellular differentiation and tissue repair outcomes. We consider murine mammary organoid generation from self-organizing adult stem cells as a tool to understand the role of GFs in organ development and tissue regeneration. The astounding capacity of mammary organoids to regenerate a gland in vivo after transplantation makes it a convenient model to study organ regeneration. We show organoids grown in suspension with minimal concentration of Matrigel and in the presence of a cocktail of GFs regulating EGF and FGF signaling can recapitulate key epithelial layers of adult mammary gland. We establish a toolkit utilizing in vivo whole animal imaging and ultrasound imaging combined with ex vivo approaches including tissue clearing and confocal imaging to study organ regeneration and ductal morphogenesis. Although the organoid structures were severely impaired in vitro when cultured in the presence of individual GFs, ex vivo imaging revealed ductal branching after transplantation albeit with significantly reduced number of terminal end buds. We anticipate these imaging modalities will open novel avenues to study mammary gland morphogenesis in vivo and can be beneficial for monitoring mammary tumor progression in pre-clinical and clinical settings.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Organoides , Animais , Fatores Imunológicos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Glândulas Mamárias Animais/metabolismo , Camundongos , Morfogênese , Organoides/crescimento & desenvolvimento , Organoides/metabolismo , Regeneração
10.
Int J Mol Sci ; 23(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35628262

RESUMO

BACKGROUND: Bladder cancer is the most cost-intensive cancer due to high recurrence rates and long follow-up times. Bladder cancer organoids were considered interesting tools for investigating better methods for the detection and treatment of this cancer. METHODS: Organoids were generated from urothelial carcinoma tissue samples, then expanded and characterized; the expression of immune modulatory antigens and tumor stem cells markers CD24 and CD44 was explored in early (P ≤ 3) and later (P ≥ 5) passages (P) by immunofluorescence and by quantitative PCR of cDNA. The expression of these factors was investigated in the corresponding cancer tissue samples by immunohistochemistry. RESULTS: The expression of the PD-L1 was detected on some but not all organoids. CD276 and CD47 were observed on organoids in all passages investigated. Organoids growing beyond passage 8 expressed both CD24 and CD44 at elevated levels in early and late cultures. Organoids proliferating to the eighth passage initially expressed both CD24 and CD44, but lost CD24 expression over time, while CD44 remained. Organoids growing only up to the 6th passage failed to express CD24 but expressed CD44. CONCLUSIONS: The data indicate that the expression of CD24 in urothelial cancer cell organoids may serve as an indicator for the prolonged proliferation potential of the cells.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Antígenos B7/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Antígeno CD24/metabolismo , Carcinoma de Células de Transição/metabolismo , Humanos , Células-Tronco Neoplásicas/metabolismo , Organoides/metabolismo , Neoplasias da Bexiga Urinária/metabolismo
11.
Science ; 376(6596): eabe1505, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35617398

RESUMO

In castration-resistant prostate cancer (CRPC), the loss of androgen receptor (AR) dependence leads to clinically aggressive tumors with few therapeutic options. We used ATAC-seq (assay for transposase-accessible chromatin sequencing), RNA-seq, and DNA sequencing to investigate 22 organoids, six patient-derived xenografts, and 12 cell lines. We identified the well-characterized AR-dependent and neuroendocrine subtypes, as well as two AR-negative/low groups: a Wnt-dependent subtype, and a stem cell-like (SCL) subtype driven by activator protein-1 (AP-1) transcription factors. We used transcriptomic signatures to classify 366 patients, which showed that SCL is the second most common subtype of CRPC after AR-dependent. Our data suggest that AP-1 interacts with the YAP/TAZ and TEAD proteins to maintain subtype-specific chromatin accessibility and transcriptomic landscapes in this group. Together, this molecular classification reveals drug targets and can potentially guide therapeutic decisions.


Assuntos
Cromatina , Terapia de Alvo Molecular , Neoplasias de Próstata Resistentes à Castração , Linhagem Celular Tumoral , Cromatina/genética , Perfilação da Expressão Gênica , Humanos , Masculino , Células-Tronco Neoplásicas/classificação , Células-Tronco Neoplásicas/metabolismo , Organoides/metabolismo , Organoides/patologia , Neoplasias de Próstata Resistentes à Castração/classificação , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo
12.
Sci Total Environ ; 838(Pt 2): 155811, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35597345

RESUMO

Plastic particles, especially nanoplastics, represent an emerging concern of threat to human health, oral uptake is an important pathway for the plastic particles ingestion by human. While their fate and adverse effects in animal gastrointestinal tract are increasingly investigated, knowledge about their uptake and toxicity in human intestine is still limited. Here, by exposing human intestinal organoids to polystyrene nanoplastics (PS-NPs, ~50 nm in size) with concentrations of 10 and 100 µg/mL, we present evidence of their distinct accumulation in various type cells in intestinal organoids, then causing the cell apoptosis and inflammatory response. Our results further revealed that the effective inhibition of PS-NPs accumulation in secretive cells through co-exposure to a clathrin-mediated endocytosis inhibitor (chlorpromazine), and proved the essential role of active endocytosis in the PS-NPs uptaking into enterocyte cells. Our work not only elucidated the potential uptake and toxicity of PS-NPs in human intestinal cells and the underlying mechanism, but also provide a potential therapeutic approach to relieve the toxicity of PS-NPs to human through the endocytosis inhibition.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Animais , Humanos , Intestinos , Microplásticos , Nanopartículas/toxicidade , Organoides/metabolismo , Poliestirenos/metabolismo , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade
13.
Cells ; 11(9)2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35563716

RESUMO

The liver represents the most important metabolic organ of the human body. It is evident that an imbalance of liver function can lead to several pathological conditions, known as liver failure. Orthotropic liver transplantation (OLT) is currently the most effective and established treatment for end-stage liver diseases and acute liver failure (ALF). Due to several limitations, stem-cell-based therapies are currently being developed as alternative solutions. Stem cells or progenitor cells derived from various sources have emerged as an alternative source of hepatic regeneration. Therefore, hematopoietic stem cells (HSCs), mesenchymal stromal cells (MSCs), endothelial progenitor cells (EPCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are also known to differentiate into hepatocyte-like cells (HPLCs) and liver progenitor cells (LPCs) that can be used in preclinical or clinical studies of liver disease. Furthermore, these cells have been shown to be effective in the development of liver organoids that can be used for disease modeling, drug testing and regenerative medicine. In this review, we aim to discuss the characteristics of stem-cell-based therapies for liver diseases and present the current status and future prospects of using HLCs, LPCs or liver organoids in clinical trials.


Assuntos
Células-Tronco Pluripotentes Induzidas , Hepatopatias , Hepatócitos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Hepatopatias/metabolismo , Hepatopatias/terapia , Organoides/metabolismo
14.
Infect Immun ; 90(6): e0004122, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35579465

RESUMO

Secretory IgA (SIgA) is the most abundant antibody type in intestinal secretions where it contributes to safeguarding the epithelium from invasive pathogens like the Gram-negative bacterium, Salmonella enterica serovar Typhimurium (STm). For example, we recently reported that passive oral administration of the recombinant monoclonal SIgA antibody, Sal4, to mice promotes STm agglutination in the intestinal lumen and restricts bacterial invasion of Peyer's patch tissues. In this report, we sought to recapitulate Sal4-mediated protection against STm in human Enteroids and human intestinal organoids (HIOs) as models to decipher the molecular mechanisms by which antibodies function in mucosal immunity in the human gastrointestinal tract. We confirm that Enteroids and HIO-derived monolayers are permissive to STm infection, dependent on HilD, the master transcriptional regulator of the SPI-I type three secretion system (T3SS). Stimulation of M-like cells in both Enteroids and HIOs by the addition of RANKL further enhanced STm invasion. The apical addition of Sal4 mouse IgA, as well as recombinant human Sal4 dimeric IgA (dIgA) and SIgA resulted a dose-dependent reduction in bacterial invasion. Moreover, basolateral application of Sal4 dIgA to Enteroid and HIO monolayers gave rise to SIgA in the apical compartment via a pathway dependent on expression of the polymeric immunoglobulin receptor (pIgR). The resulting Sal4 SIgA was sufficient to reduce STm invasion of Enteroid and HIO epithelial cell monolayers by ~20-fold. Recombinant Sal4 IgG was also transported in the Enteroid and HIOs, but to a lesser degree and via a pathway dependent on the neonatal Fc receptor (FCGRT). The models described lay the foundation for future studies into detailed mechanisms of IgA and IgG protection against STm and other pathogens.


Assuntos
Imunoglobulina A , Organoides , Animais , Humanos , Imunoglobulina A/metabolismo , Imunoglobulina A Secretora , Imunoglobulina G/metabolismo , Mucosa Intestinal/metabolismo , Camundongos , Organoides/metabolismo , Salmonella typhimurium , Transcitose
15.
Endocr Relat Cancer ; 29(7): 427-450, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35521774

RESUMO

Pituitary tumorigenesis is highly prevalent and causes major endocrine disorders. Hardly anything is known on the behavior of the local stem cells in this pathology. Here, we explored the stem cells' biology in mouse and human pituitary tumors using transcriptomic, immunophenotyping and organoid approaches. In the prolactinoma-growing pituitary of dopamine receptor D2 knock-out mice, the stem cell population displays an activated state in terms of proliferative activity and distinct cytokine/chemokine phenotype. Organoids derived from the tumorous glands' stem cells recapitulated these aspects of the stem cells' activation nature. Upregulated cytokines, in particular interleukin-6, stimulated the stem cell-derived organoid development and growth process. In human pituitary tumors, cells typified by expression of stemness markers, in particular SOX2 and SOX9, were found present in a wide variety of clinical tumor types, also showing a pronounced proliferative status. Organoids efficiently developed from human tumor samples, displaying a stemness phenotype as well as tumor-specific expression fingerprints. Transcriptomic analysis revealed fading of cytokine pathways at organoid development and passaging, but their reactivation did not prove capable of rescuing early organoid expansion and passageability arrest. Taken together, our study revealed and underscored an activated phenotype of the pituitary-resident stem cells in tumorigenic glands and tumors. Our findings pave the way to defining the functional position of the local stem cells in pituitary tumor pathogenesis, at present barely known. Deeper insight can lead to more efficient and targeted clinical management, currently still not satisfactorily.


Assuntos
Organoides , Neoplasias Hipofisárias , Animais , Diferenciação Celular , Citocinas/metabolismo , Humanos , Camundongos , Células-Tronco Neoplásicas/patologia , Organoides/metabolismo , Organoides/patologia , Neoplasias Hipofisárias/metabolismo
16.
Biomed Pharmacother ; 151: 113105, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35605292

RESUMO

Dog bladder cancer (BC) is mostly muscle-invasive (MI) with poor prognosis, and its pathogenesis is close to human MIBC. Three-dimensional (3D) organoid culture ensures novel knowledge on cancer diseases including BC. Recently, we have established dog BC organoids (BCO) using their urine samples. BCO recapitulated the epithelial structures, characteristics, and drug sensitivity of BC-diseased dogs. However, organoids from dog normal bladder epithelium are not established yet. Therefore, the present study aimed to establish dog normal bladder organoids (NBO) for further understanding the pathogenesis of dog BC and human MIBC. The established NBO underwent various analyzes including cell marker expressions, histopathological structures, cancer-related gene expression patterns, and drug sensitivity. NBO could be produced non-invasively with a continuous culturing and recapitulated the structures and characteristics of the dog's normal bladder mucosal tissues. Different drug sensitivities were observed in each NBO. The analysis of RNA sequencing revealed that several novel genes were changed in NBO compared with BCO. NBO showed a higher expression of p53 and E-cadherin, but a lower expression of MDM2 and Twist1 compared with BCO. These results suggest that NBO could be a promising experimental 3D model for studying the developmental mechanisms of dog BC and human MIBC.


Assuntos
Organoides , Neoplasias da Bexiga Urinária , Animais , Cães , Modelos Teóricos , Organoides/metabolismo , Organoides/patologia , Análise de Sequência de RNA , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/patologia
17.
Biomaterials ; 286: 121575, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35598335

RESUMO

Human in vitro hepatic models that faithfully recapitulate liver function are essential for successful basic and translational research. A limitation of current in vitro models, which are extensively used for drug discovery and toxicity testing, is the loss of drug metabolic function due to the low expression and activity of cytochrome P450 (CYP450) enzymes. Here, we aimed to generate human pluripotent stem cell-derived hepatic organoids (hHOs) with a high drug metabolic ability. We established a two-step protocol to produce hHOs from human pluripotent stem cells for long-term expansion and drug testing. Fully differentiated hHOs had multicellular composition and exhibited cellular polarity and hepatobiliary structures. They also displayed remarkable CYP450 activity and recapitulated the metabolic clearance, CYP450-mediated drug toxicity, and metabolism. Furthermore, hHOs successfully modeled Wilson's disease in terms of Cu metabolism, drug responses, and diagnostic marker expression and secretion. In conclusion, hHOs exhibit high capacity for drug testing and disease modeling. Hence, this hepatic model system provides an advanced tool for studying hepatic drug metabolism and diseases.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Diferenciação Celular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fígado/metabolismo , Modelos Biológicos , Organoides/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-35598460

RESUMO

Organoid is a burgeoning model that have emerged in the past decade. Tumor organoids can simulate specific aspects of the 3D structure, cell type composition and function of real tumors to make up for the deficiencies of cell models and animal models. Curcumin has been found to be effective in suppressing various phases of colorectal cancer development. Nevertheless, there is no clear evidence that the results obtained on cultured cells or animal models can be translated in humans. Therefore, we constructed patient-derived organoids of colorectal cancer to show the curcumin responses of these organoids. Then, a MS-based non-targeted metabolomic strategy was to gain a system-level understanding of the mechanism of curcumin on colorectal cancer patient-derived organoids. Then non-targeted metabonomic analysis found that curcumin mainly regulated the phenylalanine, tyrosine and tryptophan biosynthesis, nicotinate and nicotinamide metabolism, purine metabolism in the organoids of colorectal cancer. Our research provided a reference for further revealing the role of curcumin in human-derived colorectal cancer-like solid tumors.


Assuntos
Neoplasias Colorretais , Curcumina , Animais , Células Cultivadas , Neoplasias Colorretais/tratamento farmacológico , Curcumina/metabolismo , Curcumina/farmacologia , Humanos , Organoides/metabolismo , Organoides/patologia
19.
Cell Rep ; 39(7): 110827, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35584680

RESUMO

Photoreceptors (PRs) are the primary visual sensory cells, and their loss leads to blindness that is currently incurable. Although cell replacement therapy holds promise, success is hindered by our limited understanding of PR axon growth during development and regeneration. Here, we generate retinal organoids from human pluripotent stem cells to study the mechanisms of PR process extension. We find that early-born PRs exhibit autonomous axon extension from dynamic terminals. However, as PRs age from 40 to 80 days of differentiation, they lose dynamic terminals on 2D substrata and in 3D retinal organoids. Interestingly, PRs without motile terminals are still capable of extending axons but only by process stretching via attachment to motile non-PR cells. Immobile PR terminals of late-born PRs have fewer and less organized actin filaments but more synaptic proteins compared with early-born PR terminals. These findings may help inform the development of PR transplantation therapies.


Assuntos
Células Fotorreceptoras , Células-Tronco Pluripotentes , Axônios , Diferenciação Celular , Humanos , Organoides/metabolismo , Células-Tronco Pluripotentes/metabolismo , Retina/metabolismo
20.
Int J Mol Sci ; 23(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35563524

RESUMO

Magnesium (Mg) is fundamental in the brain, where it regulates metabolism and neurotransmission and protects against neuroinflammation. To obtain insights into the molecular basis of Mg action in the brain, we investigated the effects of Mg in human brain organoids, a revolutionary 3D model to study neurobiology and neuropathology. In particular, brain organoids derived from human induced pluripotent stem cells were cultured in the presence or in the absence of an in vitro-generated blood-brain barrier (BBB), and then exposed to 1 or 5 mM concentrations of inorganic and organic Mg salts (Mg sulphate (MgSO4); Mg pidolate (MgPid)). We evaluated the modulation of NMDA and GABAergic receptors, and BDNF. Our data suggest that the presence of the BBB is essential for Mg to exert its effects on brain organoids, and that 5 mM of MgPid is more effective than MgSO4 in increasing the levels of GABA receptors and BDNF, and decreasing those of NMDA receptor. These results might illuminate novel pathways explaining the neuroprotective role of Mg.


Assuntos
Células-Tronco Pluripotentes Induzidas , Organoides , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Magnésio/metabolismo , Magnésio/farmacologia , Organoides/metabolismo , Sais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...