Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.480
Filtrar
1.
Food Res Int ; 188: 114441, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823858

RESUMO

Rice (Oryza sativa L.) is one of the most consumed cereals that along with several important nutritional constituents typically provide more than 21% of the caloric requirements of human beings. Aflatoxins (AFs) are toxic secondary metabolites of several Aspergillus species that are prevalent in cereals, including rice. This review provides a comprehensive overview on production factors, prevalence, regulations, detection methods, and decontamination strategies for AFs in the rice production chain. The prevalence of AFs in rice is more prominent in African and Asian than in European countries. Developed nations have more stringent regulations for AFs in rice than in the developing world. The contamination level of AFs in the rice varied at different stages of rice production chain and is affected by production practices, environmental conditions comprising temperature, humidity, moisture, and water activity as well as milling operations such as de-husking, parboiling, and polishing. A range of methods including chromatographic techniques, immunochemical methods, and spectrophotometric methods have been developed, and used for monitoring AFs in rice. Chromatographic methods are the most used methods of AFs detection followed by immunochemical techniques. AFs decontamination strategies adopted worldwide involve various physical, chemical, and biological strategies, and even using plant materials. In conclusion, adopting good agricultural practices, implementing efficient AFs detection methods, and developing innovative aflatoxin decontamination strategies are imperative to ensure the safety and quality of rice for consumers.


Assuntos
Aflatoxinas , Descontaminação , Contaminação de Alimentos , Oryza , Oryza/química , Oryza/microbiologia , Aflatoxinas/análise , Contaminação de Alimentos/análise , Descontaminação/métodos , Humanos , Aspergillus/metabolismo , Manipulação de Alimentos/métodos , Microbiologia de Alimentos
2.
PLoS One ; 19(6): e0302440, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38870165

RESUMO

Rhizoctonia solani, the causative agent of sheath blight disease in rice, poses a significant threat to agricultural productivity. Traditional management approaches involving chemical fungicides have been effective but come with detrimental consequences for the ecosystem. This study aimed to investigate sustainable alternatives in the form of antifungal peptides derived from Solanaceous plant species as potential agents against R. solani. Peptide extracts were obtained using an optimized antimicrobial peptide (AMP) extraction method and desalted using the solid-phase extraction technique. The antifungal potential of peptide-rich extracts from Solanum tuberosum and Capsicum annum was assessed through in vitro tests employing the agar well diffusion method. Furthermore, peptide-protein docking analysis was performed on HPEPDOCK and HDOCK server; and molecular dynamics simulations (MDS) of 100 ns period were performed using the Gromacs 2020.4. The results demonstrated significant inhibition zones for both extracts at concentrations of 100 mg/mL. Additionally, the extracts of Solanum tuberosum and Capsicum annum had minimum inhibitory concentrations of 50 mg/mL and 25 mg/mL, respectively with minimum fungicidal concentrations of 25 mg/mL. Insights into the potential mechanisms of key peptides inhibiting R. solani targets were gleaned from in-silico studies. Notably, certain AMPs exhibited favorable free energy of binding against pathogenicity-related targets, including histone demethylase, sortin nexin, and squalene synthase, in protein-peptide docking simulations. Extended molecular dynamics simulations lasting 100 ns and MM-PBSA calculations were performed on select protein-peptide complexes. AMP10 displayed the most favorable binding free energy against all target proteins, with AMP3, AMP12b, AMP6, and AMP15 also exhibiting promising results against specific targets of R. solani. These findings underscore the potential of peptide extracts from S. tuberosum and C. annum as effective antifungal agents against rice sheath blight caused by R. solani.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Oryza , Doenças das Plantas , Rhizoctonia , Oryza/microbiologia , Doenças das Plantas/microbiologia , Rhizoctonia/efeitos dos fármacos , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Solanum tuberosum/microbiologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Solanaceae/química , Testes de Sensibilidade Microbiana , Simulação por Computador , Capsicum/microbiologia , Capsicum/química
3.
Curr Microbiol ; 81(8): 223, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874598

RESUMO

Two endophytic actinobacteria, strains MK5T and MK7, were isolated from the surface-sterilized root of Jasmine rice (Oryza sativa KDML 105). These strains were aerobic actinobacteria with a well-developed substrate and aerial mycelia that formed spiral spore chains. The type strains that shared the high 16S rRNA gene sequence similarity with both strains were Streptomyces naganishii NBRC 12892T (99.4%), "Streptomyces griseicoloratus" TRM S81-3T (99.2%), and Streptomyces spiralis NBRC 14215T (98.9%). Strains MK5T and MK7 are the same species sharing a digital DNA-DNA hybridization (dDDH) value of 95.3% and a 16S rRNA gene sequence similarity of 100%. Chemotaxonomic data confirmed the affiliation of strains MK5T and MK7 to the genus Streptomyces. Strains MK5T and MK7 contained MK-9(H4) as a major menaquinone; the whole-cell sugar of both strains was galactose and glucose. The strain MK5T shared 93.4% average nucleotide identity (ANI)-Blast, 95.5% ANI-MUMmer, 93% average amino acid identity, and 61.3% dDDH with S. spiralis NBRC 14215T. The polyphasic approach confirmed that strain MK5T represents a novel species, and the name Streptomyces mahasarakhamensis sp. nov. is proposed. The type strain is MK5T (= TBRC 17754 = NRRL B-65683). Genome mining, using an in silico approach and searching biosynthesis gene clusters of strains MK5T and MK7, revealed that the genomes contained genes encoding proteins relating to plant growth promotion, bioactive compounds, and beneficial enzymes. Strains MK5T and MK7 could produce indole acetic acid and solubilize phosphate in vitro.


Assuntos
DNA Bacteriano , Endófitos , Oryza , Filogenia , RNA Ribossômico 16S , Streptomyces , Oryza/microbiologia , Streptomyces/genética , Streptomyces/isolamento & purificação , Streptomyces/classificação , Streptomyces/metabolismo , RNA Ribossômico 16S/genética , Endófitos/genética , Endófitos/classificação , Endófitos/isolamento & purificação , Endófitos/metabolismo , DNA Bacteriano/genética , Raízes de Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Vitamina K 2/análogos & derivados , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Hibridização de Ácido Nucleico , Ácidos Graxos/metabolismo , Composição de Bases
4.
PLoS One ; 19(6): e0301342, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38865348

RESUMO

BRRI31R is one of the Bangladesh's most promising restorer lines due to its abundant pollen producing capacity, strong restoring ability, good combining ability, high outcrossing rate and genetically diverse from cytoplasmic male sterile (CMS) line. But the drawback of this line is that it is highly susceptible to bacterial blight (BB) disease of rice caused by Xanthomonas oryzae pv. oryzae. The present study highlighted the pyramiding of effective BB resistance genes (xa5, xa13 and Xa21) into the background of BRRI31R, through marker-assisted backcrossing (MABC). Backcross progenies were confirmed and advanced based on the foreground selection of target genes. Pyramided lines were used for pathogenicity test against five Bangladeshi Xanthomonas oryzae (BXo) races (BXo93, BXo220, BXo822, BXo826, BXo887) and confirmed the dominant fertility restore genes, Rf3 and Rf4 and further validated against SNP markers for more confirmation of target resistance genes. All pyramided restorer lines consisted of Xa4 (in built), xa5, xa13, Xa21, and Chalk5 with two fertility restorer genes, Rf3, Rf4. and these restorer lines showed intermediate amylose content (<25%). Restorer lines BRRI31R-MASP3 and BRRI31R-MASP4 showed high levels of resistance against five virulent BXo races and SNP genotyping revealed that these lines also contained a blast resistance gene Pita races. Gene pyramided restorer lines, BRRI31R-MASP3 and BRRI31R-MASP4 can directly be used as a male parent for the development of new BB resistant hybrid rice variety or could be used as a replacement of restorer line of BRRI hybrid dhan5 and 7 to enhance the quality of hybrid seeds as well as rice production in Bangladesh.


Assuntos
Resistência à Doença , Oryza , Melhoramento Vegetal , Doenças das Plantas , Xanthomonas , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Xanthomonas/patogenicidade , Xanthomonas/genética , Oryza/microbiologia , Oryza/genética , Genes de Plantas , Marcadores Genéticos , Cruzamentos Genéticos
5.
Nat Commun ; 15(1): 5012, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866764

RESUMO

Ferroptosis is an iron-dependent cell death that was discovered recently. For beneficial microbes to establish mutualistic relationships with hosts, precisely controlled cell death in plant cells is necessary. However, whether ferroptosis is involved in the endophyte‒plant system is poorly understood. Here, we reported that endophytic Streptomyces hygroscopicus OsiSh-2, which established a sophisticated and beneficial interaction with host rice plants, caused ferroptotic cell death in rice characterized by ferroptosis- and immune-related markers. Treatments with ferroptosis inhibitors and inducers, different doses of OsiSh-2, and the siderophore synthesis-deficient mutant ΔcchH revealed that only moderate ferroptosis induced by endophytes is essential for the establishment of an optimal symbiont to enhance plant growth. Additionally, ferroptosis involved in a defence-primed state in rice, which contributed to improved resistance against rice blast disease. Overall, our study provides new insights into the mechanisms of endophyte‒plant interactions mediated by ferroptosis and suggests new directions for crop yield promotion.


Assuntos
Resistência à Doença , Endófitos , Ferroptose , Oryza , Doenças das Plantas , Streptomyces , Simbiose , Oryza/microbiologia , Oryza/genética , Oryza/imunologia , Ferroptose/genética , Endófitos/fisiologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Streptomyces/genética , Streptomyces/fisiologia , Sideróforos/metabolismo , Ferro/metabolismo
6.
Food Microbiol ; 122: 104569, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38839228

RESUMO

Huangjiu is a spontaneously fermented alcoholic beverage, that undergoes intricate microbial compositional changes. This study aimed to unravel the flavor and quality formation mechanisms based on the microbial metabolism of Huangjiu. Here, metagenome techniques, chemometrics analysis, and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) metabolomics combined with microbial metabolic network were employed to investigate the distinctions and relationship between the microbial profiles and the quality characteristics, flavor metabolites, functional metabolic patterns of Huangjiu across three regions. Significant variations (P < 0.05) were observed in metabolic rate of physicochemical parameters and biogenic amine concentration among three regions. 8 aroma compounds (phenethyl acetate, phenylethyl alcohol, isobutyl alcohol, ethyl octanoate, ethyl acetate, ethyl hexanoate, isoamyl alcohol, and diethyl succinate) out of 448 volatile compounds were identified as the regional chemical markers. 25 dominant microbial genera were observed through metagenomic analysis, and 13 species were confirmed as microbial markers in three regions. A metabolic network analysis revealed that Saccharomycetales (Saccharomyces), Lactobacillales (Lactobacillus, Weissella, and Leuconostoc), and Eurotiales (Aspergillus) were the predominant populations responsible for substrate, flavor (mainly esters and phenylethyl alcohol) metabolism, Lactobacillales and Enterobacterales were closely linked with biogenic amine. These findings provide scientific evidence for regional microbial contributions to geographical characteristics of Huangjiu, and perspectives for optimizing microbial function to promote Huangjiu quality.


Assuntos
Bactérias , Fermentação , Cromatografia Gasosa-Espectrometria de Massas , Redes e Vias Metabólicas , Metagenômica , Oryza , Compostos Orgânicos Voláteis , Vinho , Vinho/análise , Vinho/microbiologia , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Oryza/microbiologia , Oryza/química , Oryza/metabolismo , China , Paladar , Aromatizantes/metabolismo , Aromatizantes/química , Metabolômica/métodos , Odorantes/análise , Microbiota , Microextração em Fase Sólida , Aminas Biogênicas/análise , Aminas Biogênicas/metabolismo , População do Leste Asiático
8.
Mol Plant Pathol ; 25(6): e13459, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38808386

RESUMO

F-box protein is a subunit of the SCF (SKP1-CUL1-F-box protein) E3 ubiquitin ligase complex, which plays a critical role in regulating different pathways in plant immunity. In this study, we identified the rice (Oryza sativa) F-box protein OsFBX156, which targets the heat shock protein 70 (OsHSP71.1) to regulate resistance to the rice blast fungus Magnaporthe oryzae. Overexpression of OsFBX156 or knockout of OsHSP71.1 in rice resulted in the elevation of pathogenesis-related (PR) genes and an induction burst of reactive oxygen species (ROS) after flg22 and chitin treatments, thereby enhancing resistance to M. oryzae. Furthermore, OsFBX156 can promote the degradation of OsHSP71.1 through the 26S proteasome pathway. This study sheds lights on a novel mechanism wherein the F-box protein OsFBX156 targets OsHSP71.1 for degradation to promote ROS production and PR gene expression, thereby positively regulating rice innate immunity.


Assuntos
Resistência à Doença , Proteínas F-Box , Oryza , Doenças das Plantas , Proteínas de Plantas , Ubiquitinação , Oryza/microbiologia , Oryza/metabolismo , Oryza/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Resistência à Doença/genética , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Espécies Reativas de Oxigênio/metabolismo , Regulação da Expressão Gênica de Plantas , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Imunidade Vegetal/genética , Ascomicetos/patogenicidade
9.
Pak J Biol Sci ; 27(4): 196-209, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38812111

RESUMO

<b>Background and Objective:</b> Blast disease (<i>Pyricularia oryzae</i>) is a major disease-causing yield losses in rice crops worldwide. Disease control using resistant varieties is less effective due to the high genetic variation in <i>P. oryzae</i> populations in the field and the use of synthetic fungicides hurts the diversity of biological agents. This study aims to explore fungi in the rhizosphere of organic aromatic rice in North Luwu Regency that can utilized as biological control agents against three haplotypes of <i>P. oryzae</i>. <b>Materials and Methods:</b> Isolation of rhizosphere fungi using serial dilution method and scatter plate method. The identification of fungi based on microscopic and macroscopic characteristics. Genotype test of 15 <i>P. oryzae</i> isolates used gene-based markers related to virulence traits, namely Erg2 (1,440 bp), Pwl2 (900 bp) and Cut1 (1,730 bp). Amplified DNA bands that appeared were scored as 1 (present) and 0 (absent). <b>Results:</b> Exploring organic rice rhizosphere fungi in North Luwu Regency found potential biological control agents against three <i>P. oryzae</i> haplotypes on local varieties: Juvenile and Bandarata. Twelve fungal isolates from the rhizosphere of aromatic rice were successfully isolated and six antagonistic fungal isolates were able to inhibit the growth of <i>P. oryzae</i> haplotypes C-011, D-111 and F-110. <i>Trichoderma</i> spp., isolates had the highest inhibition percentage of 72-90%, followed by <i>Penicillium </i>sp., 1 with an inhibition percentage of 62-82%. <b>Conclusion:</b> Twelve fungal isolates from the rhizosphere of aromatic rice were successfully isolated and six antagonistic fungal isolates were able to inhibit the growth of <i>P. oryzae</i> haplotypes C-011, D-111 and F-110.


Assuntos
Haplótipos , Oryza , Doenças das Plantas , Rizosfera , Oryza/microbiologia , Doenças das Plantas/microbiologia , Ascomicetos/genética , Ascomicetos/patogenicidade , Microbiologia do Solo , Fungos/genética , Agentes de Controle Biológico
10.
BMC Genomics ; 25(1): 449, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714914

RESUMO

BACKGROUND: Previous studies have shown that protein kinase MoKin1 played an important role in the growth, conidiation, germination and pathogenicity in rice blast fungus, Magnaporthe oryzae. ΔMokin1 mutant showed significant phenotypic defects and significantly reduced pathogenicity. However, the internal mechanism of how MoKin1 affected the development of physiology and biochemistry remained unclear in M. oryzae. RESULT: This study adopted a multi-omics approach to comprehensively analyze MoKin1 function, and the results showed that MoKin1 affected the cellular response to endoplasmic reticulum stress (ER stress). Proteomic analysis revealed that the downregulated proteins in ΔMokin1 mutant were enriched mainly in the response to ER stress triggered by the unfolded protein. Loss of MoKin1 prevented the ER stress signal from reaching the nucleus. Therefore, the phosphorylation of various proteins regulating the transcription of ER stress-related genes and mRNA translation was significantly downregulated. The insensitivity to ER stress led to metabolic disorders, resulting in a significant shortage of carbohydrates and a low energy supply, which also resulted in severe phenotypic defects in ΔMokin1 mutant. Analysis of MoKin1-interacting proteins indicated that MoKin1 really took participate in the response to ER stress. CONCLUSION: Our results showed the important role of protein kinase MoKin1 in regulating cellular response to ER stress, providing a new research direction to reveal the mechanism of MoKin1 affecting pathogenic formation, and to provide theoretical support for the new biological target sites searching and bio-pesticides developing.


Assuntos
Estresse do Retículo Endoplasmático , Proteínas Fúngicas , Oryza , Proteômica , Oryza/microbiologia , Oryza/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Doenças das Plantas/microbiologia , Regulação Fúngica da Expressão Gênica , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Mutação , Multiômica , Ascomicetos
11.
PeerJ ; 12: e17323, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726377

RESUMO

The rice receptor kinase XA21 confers broad-spectrum resistance to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of rice bacterial blight disease. To investigate the relationship between the expression level of XA21 and resulting resistance, we generated independent HA-XA21 transgenic rice lines accumulating the XA21 immune receptor fused with an HA epitope tag. Whole-genome sequence analysis identified the T-DNA insertion sites in sixteen independent T0 events. Through quantification of the HA-XA21 protein and assessment of the resistance to Xoo strain PXO99 in six independent transgenic lines, we observed that XA21-mediated resistance is dose dependent. In contrast, based on the four agronomic traits quantified in these experiments, yield is unlikely to be affected by the expression level of HA-XA21. These findings extend our knowledge of XA21-mediated defense and contribute to the growing number of well-defined genomic landing pads in the rice genome that can be targeted for gene insertion without compromising yield.


Assuntos
Resistência à Doença , Oryza , Doenças das Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Xanthomonas , Xanthomonas/genética , Oryza/microbiologia , Oryza/genética , Oryza/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases
12.
Plant Signal Behav ; 19(1): 2350869, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38722963

RESUMO

Fungal pathogens deliver effector proteins into living plant cells to suppress plant immunity and control plant processes that are needed for infection. During plant infection, the devastating rice blast fungus, Magnaporthe oryzae, forms the specialized biotrophic interfacial complex (BIC), which is essential for effector translocation. Cytoplasmic effectors are first focally secreted into BICs, and subsequently packaged into dynamic membranous effector compartments (MECs), then translocated via clathrin-mediated endocytosis (CME) into the host cytoplasm. This study demonstrates that clathrin-heavy chain inhibitors endosidin-9 (ES9) and endosidin-9-17 (ES9-17) blocked the internalization of the fluorescently labeled effectors Bas1 and Pwl2 in rice cells, leading to swollen BICs lacking MECs. In contrast, ES9-17 treatment had no impact on the localization pattern of the apoplastic effector Bas4. This study provides further evidence that cytoplasmic effector translocation occurs by CME in BICs, suggesting a potential role for M. oryzae effectors in co-opting plant endocytosis.


Assuntos
Endocitose , Oryza , Oryza/microbiologia , Oryza/metabolismo , Doenças das Plantas/microbiologia , Ascomicetos , Interações Hospedeiro-Patógeno , Transporte Proteico , Proteínas Fúngicas/metabolismo , Clatrina/metabolismo
14.
Nature ; 629(8014): 1158-1164, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38750355

RESUMO

Plant pattern-recognition receptors perceive microorganism-associated molecular patterns to activate immune signalling1,2. Activation of the pattern-recognition receptor kinase CERK1 is essential for immunity, but tight inhibition of receptor kinases in the absence of pathogen is crucial to prevent autoimmunity3,4. Here we find that the U-box ubiquitin E3 ligase OsCIE1 acts as a molecular brake to inhibit OsCERK1 in rice. During homeostasis, OsCIE1 ubiquitinates OsCERK1, reducing its kinase activity. In the presence of the microorganism-associated molecular pattern chitin, active OsCERK1 phosphorylates OsCIE1 and blocks its E3 ligase activity, thus releasing the brake and promoting immunity. Phosphorylation of a serine within the U-box of OsCIE1 prevents its interaction with E2 ubiquitin-conjugating enzymes and serves as a phosphorylation switch. This phosphorylation site is conserved in E3 ligases from plants to animals. Our work identifies a ligand-released brake that enables dynamic immune regulation.


Assuntos
Oryza , Imunidade Vegetal , Proteínas de Plantas , Ubiquitina , Animais , Quitina/metabolismo , Homeostase , Ligantes , Oryza/enzimologia , Oryza/imunologia , Oryza/metabolismo , Oryza/microbiologia , Fosforilação , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Fosfosserina/metabolismo , Sequência Conservada
15.
Nat Commun ; 15(1): 4357, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821954

RESUMO

Triazoles are widely used to control pathogenic fungi. They inhibit the ergosterol biosynthetic pathway, but the precise mechanisms leading to fungicidal activities in many fungal pathogens are poorly understood. Here, we elucidate the mode of action of epoxiconazole and metconazole in the wheat pathogen Zymoseptoria tritici and the rice blast fungus Magnaporthe oryzae. We show that both azoles have fungicidal activity and reduce fluidity, but not integrity, of the plasma membrane. This impairs localisation of Cdc15-like F-BAR proteins, resulting in defective actin ring assembly and incomplete septation. However, mutant studies and pharmacological experiments in vitro and in planta show that azole lethality is due to a combination of reactive oxygen species-induced apoptosis and macroautophagy. Simultaneous inhibition of both programmed cell death pathways abolishes azole-induced cell death. Other classes of ergosterol biosynthesis inhibitors also induce apoptosis and macroautophagy, suggesting that activation of these two cell death pathways is a hallmark of ergosterol synthesis-targeting fungicides. This knowledge will inform future crop protection strategies.


Assuntos
Apoptose , Ascomicetos , Fungicidas Industriais , Doenças das Plantas , Espécies Reativas de Oxigênio , Apoptose/efeitos dos fármacos , Doenças das Plantas/microbiologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/metabolismo , Ascomicetos/patogenicidade , Fungicidas Industriais/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Triticum/microbiologia , Azóis/farmacologia , Ergosterol/biossíntese , Ergosterol/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Autofagia/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Oryza/microbiologia , Oryza/metabolismo , Triazóis/farmacologia , Produtos Agrícolas/microbiologia
16.
Cell ; 187(10): 2557-2573.e18, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38729111

RESUMO

Many of the world's most devastating crop diseases are caused by fungal pathogens that elaborate specialized infection structures to invade plant tissue. Here, we present a quantitative mass-spectrometry-based phosphoproteomic analysis of infection-related development by the rice blast fungus Magnaporthe oryzae, which threatens global food security. We mapped 8,005 phosphosites on 2,062 fungal proteins following germination on a hydrophobic surface, revealing major re-wiring of phosphorylation-based signaling cascades during appressorium development. Comparing phosphosite conservation across 41 fungal species reveals phosphorylation signatures specifically associated with biotrophic and hemibiotrophic fungal infection. We then used parallel reaction monitoring (PRM) to identify phosphoproteins regulated by the fungal Pmk1 MAPK that controls plant infection by M. oryzae. We define 32 substrates of Pmk1 and show that Pmk1-dependent phosphorylation of regulator Vts1 is required for rice blast disease. Defining the phosphorylation landscape of infection therefore identifies potential therapeutic interventions for the control of plant diseases.


Assuntos
Proteínas Fúngicas , Oryza , Doenças das Plantas , Fosforilação , Oryza/microbiologia , Oryza/metabolismo , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo , Fosfoproteínas/metabolismo , Ascomicetos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteômica , Transdução de Sinais
17.
Commun Biol ; 7(1): 607, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769168

RESUMO

A critical step to maximize the usefulness of genome-wide association studies (GWAS) in plant breeding is the identification and validation of candidate genes underlying genetic associations. This is of particular importance in disease resistance breeding where allelic variants of resistance genes often confer resistance to distinct populations, or races, of a pathogen. Here, we perform a genome-wide association analysis of rice blast resistance in 500 genetically diverse rice accessions. To facilitate candidate gene identification, we produce de-novo genome assemblies of ten rice accessions with various rice blast resistance associations. These genome assemblies facilitate the identification and functional validation of novel alleles of the rice blast resistance genes Ptr and Pia. We uncover an allelic series for the unusual Ptr rice blast resistance gene, and additional alleles of the Pia resistance genes RGA4 and RGA5. By linking these associations to three thousand rice genomes we provide a useful tool to inform future rice blast breeding efforts. Our work shows that GWAS in combination with whole-genome sequencing is a powerful tool for gene cloning and to facilitate selection of specific resistance alleles for plant breeding.


Assuntos
Alelos , Resistência à Doença , Estudo de Associação Genômica Ampla , Oryza , Doenças das Plantas , Oryza/genética , Oryza/imunologia , Oryza/microbiologia , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Genoma de Planta , Genes de Plantas , Melhoramento Vegetal/métodos
18.
Int J Mol Sci ; 25(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38732268

RESUMO

Rice (Oryza sativa) is one of the most important staple foods worldwide. However, rice blast disease, caused by the ascomycete fungus Magnaporthe oryzae, seriously affects the yield and quality of rice. Calmodulin-binding transcriptional activators (CAMTAs) play vital roles in the response to biotic stresses. In this study, we showed that OsCAMTA3 and CAMTA PROTEIN LIKE (OsCAMTAPL), an OsCAMTA3 homolog that lacks the DNA-binding domain, functioned together in negatively regulating disease resistance in rice. OsCAMTA3 associated with OsCAMTAPL. The oscamta3 and oscamtapl mutants showed enhanced resistance compared to wild-type plants, and oscamta3/pl double mutants showed more robust resistance to M. oryzae than oscamta3 or oscamtapl. An RNA-Seq analysis revealed that 59 and 73 genes, respectively, were differentially expressed in wild-type plants and oscamta3 before and after inoculation with M. oryzae, including OsALDH2B1, an acetaldehyde dehydrogenase that negatively regulates plant immunity. OsCAMTA3 could directly bind to the promoter of OsALDH2B1, and OsALDH2B1 expression was decreased in oscamta3, oscamtapl, and oscamta3/pl mutants. In conclusion, OsCAMTA3 associates with OsCAMTAPL to regulate disease resistance by binding and activating the expression of OsALDH2B1 in rice, which reveals a strategy by which rice controls rice blast disease and provides important genes for resistance breeding holding a certain positive impact on ensuring food security.


Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , Oryza , Doenças das Plantas , Proteínas de Plantas , Oryza/microbiologia , Oryza/genética , Oryza/imunologia , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Ascomicetos/patogenicidade , Regiões Promotoras Genéticas , Magnaporthe/patogenicidade , Transativadores/genética , Transativadores/metabolismo , Mutação
19.
Ecotoxicol Environ Saf ; 278: 116396, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38696872

RESUMO

The success of the sodic soil reclamation using elemental S (S°) depends on the population of the native S° oxidizers. Augmenting the native flora of the sodic soils with effective S° oxidizers can enhance the success of the sodic soil reclamation. Present study reports for the first time the S° oxidation potential of the Sphingomonas olei strain 20UP7 isolated from sodic soils with pHs 9.8 and ECe 3.6 dS m-1. Inoculation with S. olei strain 20UP7 caused 13.0-24.2 % increase in S° oxidation in different sodic soils (pHs 9.1-10.5). It improved the concentration of the Ca2+, Mg2+, PO43- and declined the HCO3- and total alkalinity of the soil solution. This isolate also showed appreciable P and Zn solubilization, indole acetic acid, ammonia, and titratable acidity production in the growth media. It tended to the formation of biofilm around sulphur particles. The PCR amplification with gene-specific primers showed the occurrence of soxA, soxB, and soxY genes with a single band corresponding to length of 850, 460, and 360 base pairs, respectively. The integration of the S. olei strain 20UP7 with S° caused 21.7-25.4 % increase in the rice and wheat yield compared to the soil treated with S° alone. This study concludes that the S. olei, native to high saline-sodic soils can be utilized for improving the sodicity reclamation and plant growth promotion using elemental S based formulations.


Assuntos
Oxirredução , Microbiologia do Solo , Solo , Solo/química , Enxofre/metabolismo , Sphingomonas , Concentração de Íons de Hidrogênio , Biofilmes/crescimento & desenvolvimento , Desenvolvimento Vegetal/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Oryza/microbiologia , Oryza/crescimento & desenvolvimento , Poluentes do Solo
20.
Ecotoxicol Environ Saf ; 278: 116418, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38696873

RESUMO

Microorganisms have a significant role in regulating the absorption and transportation of Cd in the soil-plant system. However, the mechanism by which key microbial taxa play a part in response to the absorption and transportation of Cd in rice under Cd stress requires further exploration. In this study, the cadmium-tolerant endophytic bacterium Herbaspirillum sp. R3 (R3) and Fe-Mn-modified biochar (Fe-Mn) were, respectively, applied to cadmium-contaminated rice paddies to investigate the effects of key bacterial taxa in the soil-rice system on the absorption and transportation of Cd in rice under different treatments. The results showed that both R3 and Fe-Mn treatments considerably decreased the content of cadmium in roots, stems and leaves of rice at the peak tillering stage by 17.24-49.28% in comparison to the control (CK). The cadmium content reduction effect of R3 treatment is better than that of Fe-Mn treatment. Further analysis revealed that the key bacterial taxa in rice roots under R3 treatment were Sideroxydans and Actinobacteria, and that their abundance showed a substantial positive correlation and a significant negative correlation with the capacity of rice roots to assimilate Cd from the surroundings, respectively. The significant increase in soil pH under Fe-Mn treatment, significant reduction in the relative abundances of Acidobacteria, Verrucomicrobia, Subdivision3 genera incertae sedis, Sideroxydans, Geobacter, Gp1, and Gp3, and the significant increase in the relative abundance of Thiobacillus among the soil bacterial taxa may be the main reasons for the decrease in available Cd content of the soil. In addition, both the R3 and Fe-Mn treatments showed some growth-promoting effects on rice, which may be related to their promotion of transformations of soil available nutrients. This paper describes the possible microbial mechanisms by which strain R3 and Fe-Mn biochar reduce Cd uptake in rice, providing a theoretical basis for the remediation of Cd contamination in rice and soil by utilizing key microbial taxa.


Assuntos
Cádmio , Carvão Vegetal , Manganês , Oryza , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Poluentes do Solo , Oryza/microbiologia , Cádmio/metabolismo , Carvão Vegetal/química , Poluentes do Solo/metabolismo , Raízes de Plantas/microbiologia , Solo/química , Ferro/química , Biodegradação Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...