Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.883
Filtrar
1.
PLoS One ; 19(5): e0302906, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38718039

RESUMO

Osteoarthritis is the most prevalent type of degenerative arthritis. It is characterized by persistent pain, joint dysfunction, and physical disability. Pain relief and inflammation control are prioritised during osteoarthritis treatment Mume Fructus (Omae), a fumigated product of the Prunus mume fruit, is used as a traditional medicine in several Asian countries. However, its therapeutic mechanism of action and effects on osteoarthritis and articular chondrocytes remain unknown. In this study, we analyzed the anti-osteoarthritis and articular regenerative effects of Mume Fructus extract on rat chondrocytes. Mume Fructus treatment reduced the interleukin-1ß-induced expression of matrix metalloproteinase 3, matrix metalloproteinase 13, and a disintegrin and metalloproteinase with thrombospondin type 1 motifs 5. Additionally, it enhanced collagen type II alpha 1 chain and aggrecan accumulation in rat chondrocytes. Furthermore, Mume Fructus treatment regulated the inflammatory cytokine levels, mitogen-activated protein kinase phosphorylation, and nuclear factor-kappa B activation. Overall, our results demonstrated that Mume Fructus inhibits osteoarthritis progression by inhibiting the nuclear factor-kappa B and mitogen-activated protein kinase pathways to reduce the levels of inflammatory cytokines and prevent cartilage degeneration. Therefore, Mume Fructus may be a potential therapeutic option for osteoarthritis.


Assuntos
Cartilagem Articular , Condrócitos , Interleucina-1beta , NF-kappa B , Osteoartrite , Extratos Vegetais , Animais , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Interleucina-1beta/metabolismo , Ratos , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , NF-kappa B/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Osteoartrite/patologia , Extratos Vegetais/farmacologia , Prunus/química , Ratos Sprague-Dawley , Regulação para Baixo/efeitos dos fármacos , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/genética , Colágeno Tipo II/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/genética , Frutas/química , Agrecanas/metabolismo , Proteína ADAMTS5/metabolismo , Proteína ADAMTS5/genética , Células Cultivadas , Masculino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
2.
Sci Rep ; 14(1): 10610, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38719857

RESUMO

Histone lysine methylation is thought to play a role in the pathogenesis of rheumatoid arthritis (RA). We previously reported aberrant expression of the gene encoding mixed-lineage leukemia 1 (MLL1), which catalyzes methylation of histone H3 lysine 4 (H3K4), in RA synovial fibroblasts (SFs). The aim of this study was to elucidate the involvement of MLL1 in the activated phenotype of RASFs. SFs were isolated from synovial tissues obtained from patients with RA or osteoarthritis (OA) during total knee joint replacement. MLL1 mRNA and protein levels were determined after stimulation with tumor necrosis factor α (TNFα). We also examined changes in trimethylation of H3K4 (H3K4me3) levels in the promoters of RA-associated genes (matrix-degrading enzymes, cytokines, and chemokines) and the mRNA levels upon small interfering RNA-mediated depletion of MLL1 in RASFs. We then determined the levels of H3K4me3 and mRNAs following treatment with the WD repeat domain 5 (WDR5)/MLL1 inhibitor MM-102. H3K4me3 levels in the gene promoters were also compared between RASFs and OASFs. After TNFα stimulation, MLL1 mRNA and protein levels were higher in RASFs than OASFs. Silencing of MLL1 significantly reduced H3K4me3 levels in the promoters of several cytokine (interleukin-6 [IL-6], IL-15) and chemokine (C-C motif chemokine ligand 2 [CCL2], CCL5, C-X-C motif chemokine ligand 9 [CXCL9], CXCL10, CXCL11, and C-X3-C motif chemokine ligand 1 [CX3CL1]) genes in RASFs. Correspondingly, the mRNA levels of these genes were significantly decreased. MM-102 significantly reduced the promoter H3K4me3 and mRNA levels of the CCL5, CXCL9, CXCL10, and CXCL11 genes in RASFs. In addition, H3K4me3 levels in the promoters of the IL-6, IL-15, CCL2, CCL5, CXCL9, CXCL10, CXCL11, and CX3CL1 genes were significantly higher in RASFs than OASFs. Our findings suggest that MLL1 regulates the expression of particular cytokines and chemokines in RASFs and is associated with the pathogenesis of RA. These results could lead to new therapies for RA.


Assuntos
Artrite Reumatoide , Quimiocinas , Citocinas , Fibroblastos , Histona-Lisina N-Metiltransferase , Histonas , Proteína de Leucina Linfoide-Mieloide , Membrana Sinovial , Humanos , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Artrite Reumatoide/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Fibroblastos/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Citocinas/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Histonas/metabolismo , Quimiocinas/metabolismo , Quimiocinas/genética , Regulação da Expressão Gênica , Fator de Necrose Tumoral alfa/metabolismo , Regiões Promotoras Genéticas , Feminino , Masculino , Células Cultivadas , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/genética , Idoso
3.
Sci Rep ; 14(1): 10568, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719877

RESUMO

Early diagnosis and treatment of pre- and early-stage osteoarthritis (OA) is important. However, the cellular and cartilaginous changes occurring during these stages remain unclear. We investigated the histological and immunohistochemical changes over time between pre- and early-stage OA in a rat model of traumatic injury. Thirty-six male rats were divided into two groups, control and OA groups, based on destabilization of the medial meniscus. Histological and immunohistochemical analyses of articular cartilage were performed on days 1, 3, 7, 10, and 14 postoperatively. Cell density of proteins associated with cartilage degradation increased from postoperative day one. On postoperative day three, histological changes, including chondrocyte death, reduced matrix staining, and superficial fibrillation, were observed. Simultaneously, a compensatory increase in matrix staining was observed. The Osteoarthritis Research Society International score increased from postoperative day seven, indicating thinner cartilage. On postoperative day 10, the positive cell density decreased, whereas histological changes progressed with fissuring and matrix loss. The proteoglycan 4-positive cell density increased on postoperative day seven. These findings will help establish an experimental model and clarify the mechanism of the onset and progression of pre- and early-stage traumatic OA.


Assuntos
Cartilagem Articular , Modelos Animais de Doenças , Progressão da Doença , Imuno-Histoquímica , Osteoartrite , Animais , Cartilagem Articular/patologia , Cartilagem Articular/metabolismo , Masculino , Ratos , Osteoartrite/patologia , Osteoartrite/metabolismo , Condrócitos/metabolismo , Condrócitos/patologia , Ratos Sprague-Dawley , Proteoglicanas/metabolismo
4.
PeerJ ; 12: e17032, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38770093

RESUMO

Purpose: This study seeks to identify potential clinical biomarkers for osteoarthritis (OA) using bioinformatics and investigate OA mechanisms through cellular assays. Methods: Differentially Expressed Genes (DEGs) from GSE52042 (four OA samples, four control samples) were screened and analyzed with protein-protein interaction (PPI) analysis. Overlapping genes in GSE52042 and GSE206848 (seven OA samples, and seven control samples) were identified and evaluated using Gene Set Enrichment Analysis (GSEA) and clinical diagnostic value analysis to determine the hub gene. Finally, whether and how the hub gene impacts LPS-induced OA progression was explored by in vitro experiments, including Western blotting (WB), co-immunoprecipitation (Co-IP), flow cytometry, etc. Result: Bioinformatics analysis of DEGs (142 up-regulated and 171 down-regulated) in GSE52042 identified two overlapping genes (U2AF2, TPX2) that exhibit significant clinical diagnostic value. These genes are up-regulated in OA samples from both GSE52042 and GSE206848 datasets. Notably, TPX2, which AUC = 0.873 was identified as the hub gene. In vitro experiments have demonstrated that silencing TPX2 can alleviate damage to chondrocytes induced by lipopolysaccharide (LPS). Furthermore, there is a protein interaction between TPX2 and MMP13 in OA. Excessive MMP13 can attenuate the effects of TPX2 knockdown on LPS-induced changes in OA protein expression, cell growth, and apoptosis. Conclusion: In conclusion, our findings shed light on the molecular mechanisms of OA and suggested TPX2 as a potential therapeutic target. TPX2 could promote the progression of LPS-induced OA by up-regulating the expression of MMP13, which provides some implications for clinical research.


Assuntos
Proteínas de Ciclo Celular , Condrócitos , Progressão da Doença , Lipopolissacarídeos , Metaloproteinase 13 da Matriz , Proteínas Associadas aos Microtúbulos , Osteoartrite , Regulação para Cima , Lipopolissacarídeos/farmacologia , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/induzido quimicamente , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Condrócitos/metabolismo , Condrócitos/patologia , Condrócitos/efeitos dos fármacos , Biologia Computacional , Mapas de Interação de Proteínas
5.
Elife ; 122024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770735

RESUMO

Osteoarthritis (OA) is a degenerative disease with a high prevalence in the elderly population, but our understanding of its mechanisms remains incomplete. Analysis of serum exosomal small RNA sequencing data from clinical patients and gene expression data from OA patient serum and cartilage obtained from the GEO database revealed a common dysregulated miRNA, miR-199b-5p. In vitro cell experiments demonstrated that miR-199b-5p inhibits chondrocyte vitality and promotes extracellular matrix degradation. Conversely, inhibition of miR-199b-5p under inflammatory conditions exhibited protective effects against damage. Local viral injection of miR-199b-5p into mice induced a decrease in pain threshold and OA-like changes. In an OA model, inhibition of miR-199b-5p alleviated the pathological progression of OA. Furthermore, bioinformatics analysis and experimental validation identified Gcnt2 and Fzd6 as potential target genes of MiR-199b-5p. Thus, these results indicated that MiR-199b-5p/Gcnt2 and Fzd6 axis might be a novel therapeutic target for the treatment of OA.


Assuntos
Receptores Frizzled , MicroRNAs , Osteoartrite , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoartrite/genética , Osteoartrite/patologia , Osteoartrite/metabolismo , Animais , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Camundongos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Condrócitos/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica
6.
PLoS One ; 19(5): e0303506, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38771826

RESUMO

OBJECTIVE: To elucidate potential molecular mechanisms differentiating osteoarthritis (OA) and rheumatoid arthritis (RA) through a bioinformatics analysis of differentially expressed genes (DEGs) in patient synovial cells, aiming to provide new insights for clinical treatment strategies. MATERIALS AND METHODS: Gene expression datasets GSE1919, GSE82107, and GSE77298 were downloaded from the Gene Expression Omnibus (GEO) database to serve as the training groups, with GSE55235 being used as the validation dataset. The OA and RA data from the GSE1919 dataset were merged with the standardized data from GSE82107 and GSE77298, followed by batch effect removal to obtain the merged datasets of differential expressed genes (DEGs) for OA and RA. Intersection analysis was conducted on the DEGs between the two conditions to identify commonly upregulated and downregulated DEGs. Enrichment analysis was then performed on these common co-expressed DEGs, and a protein-protein interaction (PPI) network was constructed to identify hub genes. These hub genes were further analyzed using the GENEMANIA online platform and subjected to enrichment analysis. Subsequent validation analysis was conducted using the GSE55235 dataset. RESULTS: The analysis of differentially expressed genes in the synovial cells from patients with Osteoarthritis (OA) and Rheumatoid Arthritis (RA), compared to a control group (individuals without OA or RA), revealed significant changes in gene expression patterns. Specifically, the genes APOD, FASN, and SCD were observed to have lower expression levels in the synovial cells of both OA and RA patients, indicating downregulation within the pathological context of these diseases. In contrast, the SDC1 gene was found to be upregulated, displaying higher expression levels in the synovial cells of OA and RA patients compared to normal controls.Additionally, a noteworthy observation was the downregulation of the transcription factor PPARG in the synovial cells of patients with OA and RA. The decrease in expression levels of PPARG further validates the alteration in lipid metabolism and inflammatory processes associated with the pathogenesis of OA and RA. These findings underscore the significance of these genes and the transcription factor not only as biomarkers for differential diagnosis between OA and RA but also as potential targets for therapeutic interventions aimed at modulating their expression to counteract disease progression. CONCLUSION: The outcomes of this investigation reveal the existence of potentially shared molecular mechanisms within Osteoarthritis (OA) and Rheumatoid Arthritis (RA). The identification of APOD, FASN, SDC1, TNFSF11 as key target genes, along with their downstream transcription factor PPARG, highlights common potential factors implicated in both diseases. A deeper examination and exploration of these findings could pave the way for new candidate targets and directions in therapeutic research aimed at treating both OA and RA. This study underscores the significance of leveraging bioinformatics approaches to unravel complex disease mechanisms, offering a promising avenue for the development of more effective and targeted treatments.


Assuntos
Artrite Reumatoide , Perfilação da Expressão Gênica , Osteoartrite , Mapas de Interação de Proteínas , Membrana Sinovial , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Humanos , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , Mapas de Interação de Proteínas/genética , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Biologia Computacional/métodos , Redes Reguladoras de Genes , Regulação da Expressão Gênica , Bases de Dados Genéticas
7.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732111

RESUMO

Glycosphingolipids (GSLs), a subtype of glycolipids containing sphingosine, are critical components of vertebrate plasma membranes, playing a pivotal role in cellular signaling and interactions. In human articular cartilage in osteoarthritis (OA), GSL expression is known notably to decrease. This review focuses on the roles of gangliosides, a specific type of GSL, in cartilage degeneration and regeneration, emphasizing their regulatory function in signal transduction. The expression of gangliosides, whether endogenous or augmented exogenously, is regulated at the enzymatic level, targeting specific glycosyltransferases. This regulation has significant implications for the composition of cell-surface gangliosides and their impact on signal transduction in chondrocytes and progenitor cells. Different levels of ganglioside expression can influence signaling pathways in various ways, potentially affecting cell properties, including malignancy. Moreover, gene manipulations against gangliosides have been shown to regulate cartilage metabolisms and chondrocyte differentiation in vivo and in vitro. This review highlights the potential of targeting gangliosides in the development of therapeutic strategies for osteoarthritis and cartilage injury and addresses promising directions for future research and treatment.


Assuntos
Cartilagem Articular , Condrócitos , Glicoesfingolipídeos , Osteoartrite , Regeneração , Humanos , Osteoartrite/terapia , Osteoartrite/metabolismo , Osteoartrite/patologia , Animais , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Condrócitos/metabolismo , Glicoesfingolipídeos/metabolismo , Transdução de Sinais , Gangliosídeos/metabolismo
8.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732122

RESUMO

Osteoarthritis is more prevalent than any other form of arthritis and is characterized by the progressive mechanical deterioration of joints. Glucosamine, an amino monosaccharide, has been used for over fifty years as a dietary supplement to alleviate osteoarthritis-related discomfort. Silibinin, extracted from milk thistle, modifies the degree of glycosylation of target proteins, making it an essential component in the treatment of various diseases. In this study, we aimed to investigate the functional roles of glucosamine and silibinin in cartilage homeostasis using the TC28a2 cell line. Western blots showed that glucosamine suppressed the N-glycosylation of the gp130, EGFR, and N-cadherin proteins. Furthermore, both glucosamine and silibinin differentially decreased and increased target proteins such as gp130, Snail, and KLF4 in TC28a2 cells. We observed that both compounds dose-dependently induced the proliferation of TC28a2 cells. Our MitoSOX and DCFH-DA dye data showed that 1 µM glucosamine suppressed mitochondrial reactive oxygen species (ROS) generation and induced cytosol ROS generation, whereas silibinin induced both mitochondrial and cytosol ROS generation in TC28a2 cells. Our JC-1 data showed that glucosamine increased red aggregates, resulting in an increase in the red/green fluorescence intensity ratio, while all the tested silibinin concentrations increased the green monomers, resulting in decreases in the red/green ratio. We observed increasing subG1 and S populations and decreasing G1 and G2/M populations with increasing amounts of glucosamine, while increasing amounts of silibinin led to increases in subG1, S, and G2/M populations and decreases in G1 populations in TC28a2 cells. MTT data showed that both glucosamine and silibinin induced cytotoxicity in TC28a2 cells in a dose-dependent manner. Regarding endoplasmic reticulum stress, both compounds induced the expression of CHOP and increased the level of p-eIF2α/eIF2α. With respect to O-GlcNAcylation status, glucosamine and silibinin both reduced the levels of O-GlcNAc transferase and hypoxia-inducible factor 1 alpha. Furthermore, we examined proteins and mRNAs related to these processes. In summary, our findings demonstrated that these compounds differentially modulated cellular proliferation, mitochondrial and cytosol ROS generation, the mitochondrial membrane potential, the cell cycle profile, and autophagy. Therefore, we conclude that glucosamine and silibinin not only mediate glycosylation modifications but also regulate cellular processes in human chondrocytes.


Assuntos
Condrócitos , Glucosamina , Homeostase , Fator 4 Semelhante a Kruppel , Espécies Reativas de Oxigênio , Silibina , Glucosamina/farmacologia , Glucosamina/metabolismo , Humanos , Silibina/farmacologia , Glicosilação/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fator 4 Semelhante a Kruppel/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Cartilagem/metabolismo , Cartilagem/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Osteoartrite/metabolismo , Osteoartrite/tratamento farmacológico
9.
Front Immunol ; 15: 1384372, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765007

RESUMO

Osteoarthritis (OA) and Rheumatoid Arthritis (RA) are significant health concerns with notable prevalence and economic impact. RA, affecting 0.5% to 1.0% of the global population, leads to chronic joint damage and comorbidities. OA, primarily afflicting the elderly, results in joint degradation and severe pain. Both conditions incur substantial healthcare expenses and productivity losses. The cGAS-STING pathway, consisting of cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING), is a crucial component of mammalian immunity. This pathway is responsible for detecting foreign DNA, particularly double-stranded DNA (dsDNA), triggering innate immune defense responses. When cGAS recognizes dsDNA, it catalyzes the synthesis of cyclic GMP-AMP (cGAMP), which then binds to and activates STING. Activated STING, in turn, initiates downstream signaling events leading to the production of interferons and other immune mediators. The cGAS-STING pathway is essential for defending against viral infections and maintaining cellular balance. Dysregulation of this pathway has been implicated in various inflammatory diseases, including arthritis, making it a target for potential therapeutic interventions. Understanding the intricate molecular signaling network of cGAS-STING in these arthritis forms offers potential avenues for targeted therapies. Addressing these challenges through improved early detection, comprehensive management, and interventions targeting the cGAS-STING pathway is crucial for alleviating the impact of OA and RA on individuals and healthcare systems. This review offers an up-to-date comprehension of the cGAS-STING pathway's role in the development and therapeutic approaches for these arthritis types.


Assuntos
Artrite Reumatoide , Proteínas de Membrana , Nucleotidiltransferases , Osteoartrite , Transdução de Sinais , Humanos , Nucleotidiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Artrite Reumatoide/imunologia , Artrite Reumatoide/etiologia , Artrite Reumatoide/terapia , Osteoartrite/imunologia , Osteoartrite/terapia , Osteoartrite/metabolismo , Osteoartrite/etiologia , Animais
10.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167215, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38714267

RESUMO

Osteoarthritis (OA) is a prevalent joint degenerative disease, resulting in a significant societal burden. However, there is currently a lack of effective treatment option available. Previous studies have suggested that Botulinum toxin A (BONT/A), a macromolecular protein extracted from Clostridium Botulinum, may improve the pain and joint function in OA patients, but the mechanism remains elusive. This study was to investigate the impact and potential mechanism of BONT/A on OA in vivo and in vitro experiment. LPS increased the levels of ROS, Fe2+and Fe3+, as well as decreased GSH levels, the ratio of GSH / GSSH and mitochondrial membrane potential. It also enhanced the degeneration of extracellular matrix (ECM) and altered the ferroptosis-related protein expression in chondrocytes. BONT/A rescued LPS-induced decrease in collagen type II (Collagen II) expression and increase in matrix metalloproteinase 13 (MMP13), mitigated LPS-induced cytotoxicity in chondrocytes, abolished the accumulation of ROS and iron, upregulated GSH and the ratio of GSH/ GSSH, improved mitochondrial function, and promoted SLC7A11/GPX4 anti-ferroptosis system activation. Additionally, intra-articular injection of BONT/A inhibited the degradation of cartilage in OA model rats. This chondroprotective effect of BONT/A was reversed by erastin (a classical ferroptosis agonist) and enhanced by liproxstatin-1 (a classic ferroptosis inhibitor). Our research confirms that BONT/A alleviates the OA development by inhibiting the ferroptosis of chondrocytes, which revealed to be a potential therapeutic mechanism for BONT/A treating the OA.


Assuntos
Toxinas Botulínicas Tipo A , Condrócitos , Ferroptose , Osteoartrite , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Ferroptose/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Animais , Toxinas Botulínicas Tipo A/farmacologia , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Osteoartrite/patologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Ratos , Masculino , Lipopolissacarídeos/farmacologia , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Humanos
11.
J Pharm Biomed Anal ; 245: 116196, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38723559

RESUMO

Osteoarthritis (OA) is a degenerative joint disease primarily affecting the cartilage. The therapeutic potential of the Dipsacus asper-Achyranthes bidentate herb pair for OA has been acknowledged, yet its precise mechanism remains elusive. In this study, we conducted a comprehensive analysis of metabolomic changes and therapeutic outcomes in osteoarthritic rats, employing a gas chromatography-mass spectrometry-based metabolomics approach in conjunction with histopathological and biochemical assessments. The rats were divided into six groups: control, model, positive control, Dipsacus asper treated, Achyranthes bidentata treated, and herb pair treated groups. Compared to the model group, significant reductions in levels of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and iNOS were observed in the treated groups. Multivariate statistical analyses were employed to investigate metabolite profile changes in serum samples and identify potential biomarkers, revealing 45 differential biomarkers, with eighteen validated using standard substances. These analytes exhibited excellent linearity across a wide concentration range (R2>0.9990), with intra- and inter-day precision RSD values below 4.69% and 4.83%, respectively. Recoveries of the eighteen analytes ranged from 93.97% to 106.59%, with RSD values under 5.72%, underscoring the method's reliability. Treatment with the herbal pair effectively restored levels of unsaturated fatty acids such as linoleic acid and arachidonic acid, along with glucogenic amino acids. Additionally, levels of phosphoric acid and citric acid were reversed, indicating restoration of energy metabolism. Collectively, these findings highlight the utility of metabolomic analysis in evaluating therapeutic efficacy and elucidating the underlying molecular mechanisms of herb pairs in OA treatment.


Assuntos
Achyranthes , Biomarcadores , Metabolismo Energético , Ácidos Graxos Insaturados , Cromatografia Gasosa-Espectrometria de Massas , Metabolômica , Osteoartrite , Ratos Sprague-Dawley , Animais , Metabolômica/métodos , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Achyranthes/química , Ratos , Metabolismo Energético/efeitos dos fármacos , Masculino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Insaturados/sangue , Biomarcadores/sangue , Dipsacaceae/química , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
12.
Mol Med Rep ; 30(1)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38757339

RESUMO

During osteoarthritis (OA), chondrocytes become highly active, with increased matrix synthesis and inflammatory cytokine­induced catabolic pathways. Early intervention strategies targeting pathological changes may attenuate or halt disease progression. The present study aimed to reveal the role of glutathione peroxidase (GPX)7 in OA. For this purpose, a research model was established by inducing C28/I2 human chondrocytes with interleukin (IL)­1ß, and the expression level of GPX7 was determined. To explore its roles, C28/I2 cells were transfected to gain GPX7 overexpression. The effects of GPX7 overexpression on intracellular inflammation, extracellular matrix (ECM) degradation, apoptosis and ferroptosis were then evaluated. In addition, the cells were treated with the ferroptosis inducer, erastin, and its effects on the aforementioned phenotypes were assessed. The level of GPX7 was decreased in response to IL­1ß treatment, and GPX7 overexpression suppressed cellular inflammation, ECM degradation and apoptosis. Moreover, the reduction of lipid peroxidation, ferrous ions and transferrin indicated that GPX7 overexpression inhibited ferroptosis. Subsequently, inflammation, ECM degradation and apoptosis were found to be promoted in the cells upon treatment with erastin. These findings suggested that the regulatory role of GPX7 may be mediated by a pathway involving ferroptosis. On the whole, the present study revealed that GPX7 reduces IL­1ß­induced chondrocyte inflammation, apoptosis and ECM degradation partially through a mechanism involving ferroptosis. The results of the present study lay a theoretical foundation for subsequent OA­related research and may enable the development of translational strategies for the treatment of OA.


Assuntos
Apoptose , Condrócitos , Matriz Extracelular , Ferroptose , Glutationa Peroxidase , Inflamação , Interleucina-1beta , Osteoartrite , Condrócitos/metabolismo , Condrócitos/patologia , Ferroptose/genética , Humanos , Interleucina-1beta/metabolismo , Matriz Extracelular/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/genética , Linhagem Celular , Peroxidação de Lipídeos
13.
J Orthop Surg (Hong Kong) ; 32(2): 10225536241254588, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38758016

RESUMO

PURPOSE: The abnormal function and survival of chondrocytes result in articular cartilage failure, which may accelerate the onset and development of osteoarthritis (OA). This study is aimed to investigate the role of LINC01094 in chondrocyte apoptosis. METHODS: The viability and apoptosis of lipopolysaccharide (LPS)-induced chondrocytes were evaluated through CCK-8 assay and flow cytometry analysis, respectively. The expression levels of LINC01094, miR-577 and MTF1 were detected by qRT-PCR. Dual luciferase reporter tests were implemented for the verification of targeted relationships among them. Western blotting was employed to measure the levels of pro-apoptotic proteins (Caspase3 and Caspase9). RESULTS: The viability of LPS-induced chondrocytes was overtly promoted by loss of LINC01094 or miR-577 upregulation, but could be repressed via MTF1 overexpression. The opposite results were observed in apoptosis rate and the levels of Caspase3 and Caspase9. LINC01094 directly bound to miR-577, while MTF1 was verified to be modulated by miR-577. Both LINC01094 and MTF1 were at high levels, whereas miR-577 was at low level in OA synovial fluid and LPS-induced chondrocytes. Furthermore, the highly expressed miR-577 abolished the influences of MTF1 overexpression on LPS-induced chondrocytes. CONCLUSIONS: Silencing of LINC01094 represses the apoptosis of chondrocytes through upregulating miR-577 expression and downregulating MTF1 levels, providing a preliminary insight for the treatment of OA in the future.


Assuntos
Apoptose , Condrócitos , MicroRNAs , Osteoartrite , RNA Longo não Codificante , Fatores de Transcrição , Condrócitos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Osteoartrite/metabolismo , Osteoartrite/genética , Osteoartrite/patologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Fator MTF-1 de Transcrição , Células Cultivadas , Técnicas de Silenciamento de Genes , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Lipopolissacarídeos
14.
FASEB J ; 38(10): e23636, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38752683

RESUMO

Osteoarthritis (OA) and rheumatoid arthritis (RA) are two common forms of arthritis with undefined etiology and pathogenesis. Yes-associated protein (YAP) and its homolog transcriptional coactivator with PDZ-binding motif (TAZ), which act as sensors for cellular mechanical and inflammatory cues, have been identified as crucial players in the regulation of joint homeostasis. Current studies also reveal a significant association between YAP/TAZ and the pathogenesis of OA and RA. The objective of this review is to elucidate the impact of YAP/TAZ on different joint tissues and to provide inspiration for further studying the potential therapeutic implications of YAP/TAZ on arthritis. Databases, such as PubMed, Cochran Library, and Embase, were searched for all available studies during the past two decades, with keywords "YAP," "TAZ," "OA," and "RA."


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Artrite Reumatoide , Osteoartrite , Fatores de Transcrição , Proteínas de Sinalização YAP , Humanos , Fatores de Transcrição/metabolismo , Animais , Artrite Reumatoide/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Sinalização YAP/metabolismo , Osteoartrite/metabolismo , Osteoartrite/etiologia , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Articulações/metabolismo , Articulações/patologia , Transativadores/metabolismo , Transativadores/genética
15.
FASEB J ; 38(9): e23640, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38690715

RESUMO

Osteoarthritis (OA) is the main cause of cartilage damage and disability. This study explored the biological function of S-phase kinase-associated protein 2 (SKP2) and Kruppel-like factor 11 (KLF11) in OA progression and its underlying mechanisms. C28/I2 chondrocytes were stimulated with IL-1ß to mimic OA in vitro. We found that SKP2, Jumonji domain-containing protein D3 (JMJD3), and Notch receptor 1 (NOTCH1) were upregulated, while KLF11 was downregulated in IL-1ß-stimulated chondrocytes. SKP2/JMJD3 silencing or KLF11 overexpression repressed apoptosis and extracellular matrix (ECM) degradation in chondrocytes. Mechanistically, SKP2 triggered the ubiquitination and degradation of KLF11 to transcriptionally activate JMJD3, which resulted in activation of NOTCH1 through inhibiting H3K27me3. What's more, the in vivo study found that KLF11 overexpression delayed OA development in rats via restraining apoptosis and maintaining the balance of ECM metabolism. Taken together, ubiquitination and degradation of KLF11 regulated by SKP2 contributed to OA progression by activation of JMJD3/NOTCH1 pathway. Our findings provide promising therapeutic targets for OA.


Assuntos
Condrócitos , Histona Desmetilases com o Domínio Jumonji , Osteoartrite , Receptor Notch1 , Proteínas Quinases Associadas a Fase S , Ubiquitinação , Receptor Notch1/metabolismo , Receptor Notch1/genética , Animais , Proteínas Quinases Associadas a Fase S/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/genética , Ratos , Condrócitos/metabolismo , Condrócitos/patologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Masculino , Transdução de Sinais , Ratos Sprague-Dawley , Humanos , Apoptose , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética
16.
Sci Rep ; 14(1): 11237, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755283

RESUMO

Osteoarthritis (OA) is the most prevalent form of arthritis, characterized by a complex pathogenesis. One of the key factors contributing to its development is the apoptosis of chondrocytes triggered by oxidative stress. Involvement of peroxisome proliferator-activated receptor gamma (PPARγ) has been reported in the regulation of oxidative stress. However, there remains unclear mechanisms that through which PPARγ influences the pathogenesis of OA. The present study aims to delve into the role of PPARγ in chondrocytes apoptosis induced by oxidative stress in the context of OA. Primary human chondrocytes, both relatively normal and OA, were isolated and cultured for the following study. Various assessments were performed, including measurements of cell proliferation, viability and cytotoxicity. Additionally, we examined cell apoptosis, levels of reactive oxygen species (ROS), nitric oxide (NO), mitochondrial membrane potential (MMP) and cytochrome C release. We also evaluated the expression of related genes and proteins, such as collagen type II (Col2a1), aggrecan, inducible nitric oxide synthase (iNOS), caspase-9, caspase-3 and PPARγ. Compared with relatively normal cartilage, the expression of PPARγ in OA cartilage was down-regulated. The proliferation of OA chondrocytes decreased, accompanied by an increase in the apoptosis rate. Down-regulation of PPARγ expression in OA chondrocytes coincided with an up-regulation of iNOS expression, leading to increased secretion of NO, endogenous ROS production, and decrease of MMP levels. Furthermore, we observed the release of cytochrome C, elevated caspase-9 and caspase-3 activities, and reduction of the components of extracellular matrix (ECM) Col2a1 and aggrecan. Accordingly, utilization of GW1929 (PPARγ Agonists) or Z-DEVD-FMK (caspase-3 inhibitor) can protect chondrocytes from mitochondrial-related apoptosis and alleviate the progression of OA. During the progression of OA, excessive oxidative stress in chondrocytes leads to apoptosis and ECM degradation. Activation of PPARγ can postpone OA by down-regulating caspase-3-dependent mitochondrial apoptosis pathway.


Assuntos
Apoptose , Caspase 3 , Condrócitos , Mitocôndrias , Osteoartrite , PPAR gama , Espécies Reativas de Oxigênio , Humanos , Condrócitos/metabolismo , Condrócitos/patologia , PPAR gama/metabolismo , Caspase 3/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Potencial da Membrana Mitocondrial , Proliferação de Células , Óxido Nítrico/metabolismo , Células Cultivadas , Pessoa de Meia-Idade , Idoso , Feminino , Masculino
17.
J Nanobiotechnology ; 22(1): 255, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755672

RESUMO

Age is the most important risk factor in degenerative diseases such as osteoarthritis (OA), which is associated with the accumulation of senescent cells in the joints. Here, we aimed to assess the impact of senescence on the therapeutic properties of extracellular vesicles (EVs) from human fat mesenchymal stromal cells (ASCs) in OA. We generated a model of DNA damage-induced senescence in ASCs using etoposide and characterized EVs isolated from their conditioned medium (CM). Senescent ASCs (S-ASCs) produced 3-fold more EVs (S-EVs) with a slightly bigger size and that contain 2-fold less total RNA. Coculture experiments showed that S-ASCs were as efficient as healthy ASCs (H-ASCs) in improving the phenotype of OA chondrocytes cultured in resting conditions but were defective when chondrocytes were proliferating. S-EVs were also impaired in their capacity to polarize synovial macrophages towards an anti-inflammatory phenotype. A differential protein cargo mainly related to inflammation and senescence was detected in S-EVs and H-EVs. Using the collagenase-induced OA model, we found that contrary to H-EVs, S-EVs could not protect mice from cartilage damage and joint calcifications, and were less efficient in protecting subchondral bone degradation. In addition, S-EVs induced a pro-catabolic and pro-inflammatory gene signature in the joints of mice shortly after injection, while H-EVs decreased hypertrophic, catabolic and inflammatory pathways. In conclusion, S-EVs are functionally impaired and cannot protect mice from developing OA.


Assuntos
Senescência Celular , Condrócitos , Vesículas Extracelulares , Células-Tronco Mesenquimais , Osteoartrite , Células-Tronco Mesenquimais/metabolismo , Vesículas Extracelulares/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , Animais , Humanos , Camundongos , Condrócitos/metabolismo , Células Cultivadas , Masculino , Camundongos Endogâmicos C57BL , Dano ao DNA
18.
PLoS One ; 19(5): e0301341, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753666

RESUMO

The deficiency of clinically specific biomarkers has made it difficult to achieve an accurate diagnosis of temporomandibular joint osteoarthritis (TMJ-OA) and the insufficient comprehension of the pathogenesis of the pathogenesis of TMJ-OA has posed challenges in advancing therapeutic measures. The combined use of metabolomics and transcriptomics technologies presents a highly effective method for identifying vital metabolic pathways and key genes in TMJ-OA patients. In this study, an analysis of synovial fluid untargeted metabolomics of 6 TMJ-OA groups and 6 temporomandibular joint reducible anterior disc displacement (TMJ-DD) groups was conducted using liquid and gas chromatography mass spectrometry (LC/GC-MS). The differential metabolites (DMs) between TMJ-OA and TMJ-DD groups were analyzed through multivariate analysis. Meanwhile, a transcriptomic dataset (GSE205389) was obtained from the GEO database to analyze the differential metabolism-related genes (DE-MTGs) between TMJ-OA and TMJ-DD groups. Finally, an integrated analysis of DMs and DE-MTGs was carried out to investigate the molecular mechanisms associated with TMJ-OA. The analysis revealed significant differences in the levels of 46 DMs between TMJ-OA and TMJ-DD groups, of which 3 metabolites (L-carnitine, taurine, and adenosine) were identified as potential biomarkers for TMJ-OA. Collectively, differential expression analysis identified 20 DE-MTGs. Furthermore, the integration of metabolomics and transcriptomics analysis revealed that the tricarboxylic acid (TCA) cycle, alanine, aspartate and glutamate metabolism, ferroptosis were significantly enriched. This study provides valuable insights into the metabolic abnormalities and associated pathogenic mechanisms, improving our understanding of TMJOA etiopathogenesis and facilitating potential target screening for therapeutic intervention.


Assuntos
Metabolômica , Osteoartrite , Transtornos da Articulação Temporomandibular , Transcriptoma , Humanos , Osteoartrite/metabolismo , Osteoartrite/genética , Metabolômica/métodos , Masculino , Feminino , Transtornos da Articulação Temporomandibular/metabolismo , Transtornos da Articulação Temporomandibular/genética , Adulto , Articulação Temporomandibular/metabolismo , Articulação Temporomandibular/patologia , Perfilação da Expressão Gênica , Biomarcadores/metabolismo , Líquido Sinovial/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Pessoa de Meia-Idade
19.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731975

RESUMO

Osteoarthritis (OA) is the most prevalent age-related degenerative disorder, which severely reduces the quality of life of those affected. Whilst management strategies exist, no cures are currently available. Virtually all joint resident cells generate extracellular vesicles (EVs), and alterations in chondrocyte EVs during OA have previously been reported. Herein, we investigated factors influencing chondrocyte EV release and the functional role that these EVs exhibit. Both 2D and 3D models of culturing C28I/2 chondrocytes were used for generating chondrocyte EVs. We assessed the effect of these EVs on chondrogenic gene expression as well as their uptake by chondrocytes. Collectively, the data demonstrated that chondrocyte EVs are sequestered within the cartilage ECM and that a bi-directional relationship exists between chondrocyte EV release and changes in chondrogenic differentiation. Finally, we demonstrated that the uptake of chondrocyte EVs is at least partially dependent on ß1-integrin. These results indicate that chondrocyte EVs have an autocrine homeostatic role that maintains chondrocyte phenotype. How this role is perturbed under OA conditions remains the subject of future work.


Assuntos
Condrócitos , Vesículas Extracelulares , Homeostase , Integrina beta1 , Condrócitos/metabolismo , Vesículas Extracelulares/metabolismo , Integrina beta1/metabolismo , Humanos , Diferenciação Celular , Osteoartrite/metabolismo , Osteoartrite/patologia , Condrogênese , Animais , Matriz Extracelular/metabolismo , Cartilagem Articular/metabolismo , Células Cultivadas
20.
Nat Aging ; 4(5): 664-680, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38760576

RESUMO

Hyaline cartilage fibrosis is typically considered an end-stage pathology of osteoarthritis (OA), which results in changes to the extracellular matrix. However, the mechanism behind this is largely unclear. Here, we found that the RNA helicase DDX5 was dramatically downregulated during the progression of OA. DDX5 deficiency increased fibrosis phenotype by upregulating COL1 expression and downregulating COL2 expression. In addition, loss of DDX5 aggravated cartilage degradation by inducing the production of cartilage-degrading enzymes. Chondrocyte-specific deletion of Ddx5 led to more severe cartilage lesions in the mouse OA model. Mechanistically, weakened DDX5 resulted in abundance of the Fn1-AS-WT and Plod2-AS-WT transcripts, which promoted expression of fibrosis-related genes (Col1, Acta2) and extracellular matrix degradation genes (Mmp13, Nos2 and so on), respectively. Additionally, loss of DDX5 prevented the unfolding Col2 promoter G-quadruplex, thereby reducing COL2 production. Together, our data suggest that strategies aimed at the upregulation of DDX5 hold significant potential for the treatment of cartilage fibrosis and degradation in OA.


Assuntos
Processamento Alternativo , RNA Helicases DEAD-box , Fibrose , Quadruplex G , Osteoartrite , Animais , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Camundongos , Osteoartrite/patologia , Osteoartrite/genética , Osteoartrite/metabolismo , Fibrose/metabolismo , Fibrose/genética , Fibrose/patologia , Humanos , Cartilagem Articular/patologia , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Condrócitos/patologia , Modelos Animais de Doenças , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...