Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36.533
Filtrar
1.
Chem Biol Drug Des ; 104(1): e14574, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38958121

RESUMO

To develop novel bovine lactoferrin (bLF) peptides targeting bLF-tumour necrosis factor (TNF) receptor-associated factor 6 (TRAF6) binding sites, we identified two peptides that could target bLF-TRAF6 binding sites using structural analysis. Moreover, another peptide that could bind to the TRAF6 dimerization area was selected from the bLF sequence. The effects of each peptide on cytokine expression in lipopolysaccharide (LPS)-stimulated osteoblasts (ST2) and on osteoclastogenesis were examined using an LPS-treated co-culture of primary bone marrow cells (BMCs) with ST2 cells and a single culture of osteoclast precursor cells (RAW-D) treated with soluble receptor activator of NF-κB ligand. Finally, the effectiveness of these peptides against LPS-induced alveolar bone destruction was assessed. Two of the three peptides significantly suppressed LPS-induced TNF-α and interleukin-1ß expression in ST2 cells. Additionally, these peptides inhibited and reversed LPS-induced receptor activator of NF-κB ligand (RANKL) upregulation and osteoprotegerin (OPG) downregulation, respectively. Furthermore, both peptides significantly reduced LPS-induced osteoclastogenesis in the BMC-ST2 co-culture and RANKL-induced osteoclastogenesis in RAW-D cells. In vivo, topical application of these peptides significantly reduced the osteoclast number by downregulating RANKL and upregulating OPG in the periodontal ligament. It is indicated that the novel bLF peptides can be used to treat periodontitis-associated bone destruction.


Assuntos
Lactoferrina , Lipopolissacarídeos , Osteoclastos , Peptídeos , Animais , Lactoferrina/farmacologia , Lactoferrina/química , Lactoferrina/metabolismo , Lipopolissacarídeos/farmacologia , Ratos , Peptídeos/farmacologia , Peptídeos/química , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Ligante RANK/metabolismo , Masculino , Perda do Osso Alveolar/tratamento farmacológico , Perda do Osso Alveolar/metabolismo , Perda do Osso Alveolar/patologia , Bovinos , Camundongos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/citologia , Ratos Sprague-Dawley , Osteogênese/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Sítios de Ligação , Técnicas de Cocultura , Osteoprotegerina/metabolismo , Modelos Animais de Doenças
2.
FASEB J ; 38(13): e23776, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38958998

RESUMO

This study aimed to explore how mechanical stress affects osteogenic differentiation via the miR-187-3p/CNR2 pathway. To conduct this study, 24 female C57BL/6 mice, aged 8 weeks, were used and divided into four groups. The Sham and OVX groups did not undergo treadmill exercise, while the Sham + EX and OVX + EX groups received a 8-week treadmill exercise. Post-training, bone marrow and fresh femur samples were collected for further analysis. Molecular biology analysis, histomorphology analysis, and micro-CT analysis were conducted on these samples. Moreover, primary osteoblasts were cultured under osteogenic conditions and divided into GM group and CTS group. The cells in the CTS group underwent a sinusoidal stretching regimen for either 3 or 7 days. The expression of early osteoblast markers (Runx2, OPN, and ALP) was measured to assess differentiation. The study findings revealed that mechanical stress has a regulatory impact on osteoblast differentiation. The expression of miR-187-3p was observed to decrease, facilitating osteogenic differentiation, while the expression of CNR2 increased significantly. These observations suggest that mechanical stress, miR-187-3p, and CNR2 play crucial roles in regulating osteogenic differentiation. Both in vivo and in vitro experiments have confirmed that mechanical stress downregulates miR-187-3p and upregulates CNR2, which leads to the restoration of distal femoral bone mass and enhancement of osteoblast differentiation. Therefore, mechanical stress promotes osteoblasts, resulting in improved osteoporosis through the miR-187-3p/CNR2 signaling pathway. These findings have broad prospect and provide molecular biology guidance for the basic research and clinical application of exercise in the prevention and treatment of PMOP.


Assuntos
Diferenciação Celular , Camundongos Endogâmicos C57BL , MicroRNAs , Osteoblastos , Osteogênese , Osteoporose Pós-Menopausa , Estresse Mecânico , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoblastos/metabolismo , Feminino , Osteoporose Pós-Menopausa/metabolismo , Osteoporose Pós-Menopausa/terapia , Osteoporose Pós-Menopausa/genética , Osteoporose Pós-Menopausa/patologia , Camundongos , Osteogênese/fisiologia , Humanos , Transdução de Sinais , Células Cultivadas
3.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39000355

RESUMO

Postmenopausal osteoporosis, characterized by an imbalance between osteoclast-mediated bone resorption and osteoblast-driven bone formation, presents substantial health implications. In this study, we investigated the role of black goat extract (BGE), derived from a domesticated native Korean goat, estrogen-like activity, and osteoprotective effects in vitro. BGE's mineral and fatty acid compositions were analyzed via the ICP-AES method and gas chromatography-mass spectrometry, respectively. In vitro experiments were conducted using MCF-7 breast cancer cells, MC3T3-E1 osteoblasts, and RAW264.7 osteoclasts. BGE exhibits a favorable amount of mineral and fatty acid content. It displayed antimenopausal activity by stimulating MCF-7 cell proliferation and augmenting estrogen-related gene expression (ERα, ERß, and pS2). Moreover, BGE positively impacted osteogenesis and mineralization in MC3T3-E1 cells through Wnt/ß-catenin pathway modulation, leading to heightened expression of Runt-related transcription factor 2, osteoprotegerin, and collagen type 1. Significantly, BGE effectively suppressed osteoclastogenesis by curtailing osteoclast formation and activity in RAW264.7 cells, concurrently downregulating pivotal signaling molecules, including receptor activator of nuclear factor κ B and tumor necrosis factor receptor-associated factor 6. This study offers a shred of preliminary evidence for the prospective use of BGE as an effective postmenopausal osteoporosis treatment.


Assuntos
Diferenciação Celular , Cabras , Osteoblastos , Osteoclastos , Osteogênese , Animais , Camundongos , Células RAW 264.7 , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoclastos/citologia , Humanos , Estrogênios/farmacologia , Proliferação de Células/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Células MCF-7 , Extratos de Tecidos/farmacologia
4.
Int J Implant Dent ; 10(1): 34, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963524

RESUMO

Dental implant therapy, established as standard-of-care nearly three decades ago with the advent of microrough titanium surfaces, revolutionized clinical outcomes through enhanced osseointegration. However, despite this pivotal advancement, challenges persist, including prolonged healing times, restricted clinical indications, plateauing success rates, and a notable incidence of peri-implantitis. This review explores the biological merits and constraints of microrough surfaces and evaluates the current landscape of nanofeatured dental implant surfaces, aiming to illuminate strategies for addressing existing impediments in implant therapy. Currently available nanofeatured dental implants incorporated nano-structures onto their predecessor microrough surfaces. While nanofeature integration into microrough surfaces demonstrates potential for enhancing early-stage osseointegration, it falls short of surpassing its predecessors in terms of osseointegration capacity. This discrepancy may be attributed, in part, to the inherent "dichotomy kinetics" of osteoblasts, wherein increased surface roughness by nanofeatures enhances osteoblast differentiation but concomitantly impedes cell attachment and proliferation. We also showcase a controllable, hybrid micro-nano titanium model surface and contrast it with commercially-available nanofeatured surfaces. Unlike the commercial nanofeatured surfaces, the controllable micro-nano hybrid surface exhibits superior potential for enhancing both cell differentiation and proliferation. Hence, present nanofeatured dental implants represent an evolutionary step from conventional microrough implants, yet they presently lack transformative capacity to surmount existing limitations. Further research and development endeavors are imperative to devise optimized surfaces rooted in fundamental science, thereby propelling technological progress in the field.


Assuntos
Implantes Dentários , Osseointegração , Propriedades de Superfície , Titânio , Humanos , Titânio/química , Nanoestruturas/química , Osteoblastos , Planejamento de Prótese Dentária
5.
Commun Biol ; 7(1): 892, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39039245

RESUMO

Bone is a highly dynamic tissue undergoing continuous formation and resorption. Here, we investigated differential but complementary roles of hypoxia-inducible factor (HIF)-1α and HIF-2α in regulating bone remodeling. Using RNA-seq analysis, we identified that specific genes involved in regulating osteoblast differentiation were similarly but slightly differently governed by HIF-1α and HIF-2α. We found that increased HIF-1α expression inhibited osteoblast differentiation via inhibiting RUNX2 function by upregulation of Twist2, confirmed using Hif1a conditional knockout (KO) mouse. Ectopic expression of HIF-1α via adenovirus transduction resulted in the increased expression and activity of RANKL, while knockdown of Hif1a expression via siRNA or osteoblast-specific depletion of Hif1a in conditional KO mice had no discernible effect on osteoblast-mediated osteoclast activation. The unexpected outcome was elucidated by the upregulation of HIF-2α upon Hif1a overexpression, providing evidence that Hif2a is a transcriptional target of HIF-1α in regulating RANKL expression, verified through an experiment of HIF-2α knockdown after HIF-1α overexpression. The above results were validated in an ovariectomized- and aging-induced osteoporosis model using Hif1a conditional KO mice. Our findings conclude that HIF-1α plays an important role in regulating bone homeostasis by controlling osteoblast differentiation, and in influencing osteoclast formation through the regulation of RANKL secretion via HIF-2α modulation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Homeostase , Subunidade alfa do Fator 1 Induzível por Hipóxia , Camundongos Knockout , Osteoblastos , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Camundongos , Osteoblastos/metabolismo , Feminino , Osso e Ossos/metabolismo , Diferenciação Celular , Osteoclastos/metabolismo , Osteogênese/genética , Camundongos Endogâmicos C57BL , Osteoporose/genética , Osteoporose/metabolismo
6.
FASEB J ; 38(14): e23810, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39042586

RESUMO

Osteofibrous dysplasia (OFD) is a rare, benign, fibro-osseous lesion that occurs most commonly in the tibia of children. Tibial involvement leads to bowing and predisposes to the development of a fracture which exhibit significantly delayed healing processes, leading to prolonged morbidity. We previously identified gain-of-function mutations in the MET gene as a cause for OFD. In our present study, we test the hypothesis that gain-of-function MET mutations impair bone repair due to reduced osteoblast differentiation. A heterozygous Met exon 15 skipping (MetΔ15-HET) mouse was created to imitate the human OFD mutation. The mutation results in aberrant and dysregulation of MET-related signaling determined by RNA-seq in the murine osteoblasts extracted from the wide-type and genetic mice. Although no gross skeletal defects were identified in the mice, fracture repair was delayed in MetΔ15-HET mice, with decreased bone formation observed 2-week postfracture. Our data are consistent with a novel role for MET-mediated signaling regulating osteogenesis.


Assuntos
Doenças do Desenvolvimento Ósseo , Modelos Animais de Doenças , Displasia Fibrosa Óssea , Consolidação da Fratura , Osteogênese , Proteínas Proto-Oncogênicas c-met , Animais , Camundongos , Osteogênese/genética , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Consolidação da Fratura/genética , Doenças do Desenvolvimento Ósseo/genética , Doenças do Desenvolvimento Ósseo/patologia , Humanos , Displasia Fibrosa Óssea/genética , Displasia Fibrosa Óssea/patologia , Displasia Fibrosa Óssea/metabolismo , Osteoblastos/metabolismo , Osteoblastos/patologia , Mutação , Diferenciação Celular , Camundongos Endogâmicos C57BL , Masculino
7.
Biomed Mater ; 19(5)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38986475

RESUMO

Bioactive and biodegradable scaffolds that mimic the natural extracellular matrix of bone serve as temporary structures to guide new bone tissue growth. In this study, 3D-printed scaffolds composed of poly (lactic acid) (PLA)-tricalcium phosphate (TCP) (90-10 wt.%) were modified with 1%, 5%, and 10 wt.% of ZnO to enhance bone tissue regeneration. A commercial chain extender named Joncryl was incorporated alongside ZnO to ensure the printability of the composites. Filaments were manufactured using a twin-screw extruder and subsequently used to print 3D scaffolds via fused filament fabrication (FFF). The scaffolds exhibited a homogeneous distribution of ZnO and TCP particles, a reproducible structure with 300 µm pores, and mechanical properties suitable for bone tissue engineering, with an elastic modulus around 100 MPa. The addition of ZnO resulted in enhanced surface roughness on the scaffolds, particularly for ZnO microparticles, achieving values up to 241 nm. This rougher topography was responsible for enhancing protein adsorption on the scaffolds, with an increase of up to 85% compared to the PLA-TCP matrix. Biological analyses demonstrated that the presence of ZnO promotes mesenchymal stem cell (MSC) proliferation and differentiation into osteoblasts. Alkaline phosphatase (ALP) activity, an important indicator of early osteogenic differentiation, increased up to 29%. The PLA-TCP composite containing 5% ZnO microparticles exhibited an optimized degradation rate and enhanced bioactivity, indicating its promising potential for bone repair applications.


Assuntos
Materiais Biocompatíveis , Regeneração Óssea , Fosfatos de Cálcio , Diferenciação Celular , Proliferação de Células , Células-Tronco Mesenquimais , Osteoblastos , Poliésteres , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Óxido de Zinco , Alicerces Teciduais/química , Fosfatos de Cálcio/química , Poliésteres/química , Regeneração Óssea/efeitos dos fármacos , Engenharia Tecidual/métodos , Células-Tronco Mesenquimais/citologia , Óxido de Zinco/química , Materiais Biocompatíveis/química , Diferenciação Celular/efeitos dos fármacos , Osteoblastos/citologia , Osteogênese/efeitos dos fármacos , Teste de Materiais , Osso e Ossos , Regeneração Tecidual Guiada/métodos , Humanos , Animais , Fosfatase Alcalina/metabolismo , Módulo de Elasticidade , Porosidade , Propriedades de Superfície
8.
Sci Rep ; 14(1): 16767, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39034354

RESUMO

Alveolar bone loss resulting from periodontal disease ultimately leads to tooth loss. Periodontal ligament mesenchymal stem cells (PDLMSCs) are the tissue-specific cells responsible for maintaining and repairing the periodontal ligament, cementum, and alveolar bone. In this study, we explored the role of aldehyde oxidase 1 (AOX1) in regulating the osteoinduction of human periodontal ligament stem cells (hPDLMSCs). hPDLMSCs were isolated from clinically healthy donors, and AOX1 expression was assessed by comparing inducted and non-inducted hPDLMSCs. Remarkably, we observed a significant upregulation of AOX1 expression during osteoinduction, while AOX1 silencing resulted in the enhanced osteogenic potential of hPDLMSCs. Subsequent experiments and analysis unveiled the involvement of retinoid X receptor (RXR) signaling in the inhibition of osteogenesis in hPDLMSCs. Ligands targeting the RXR receptor mirrored the effects of AOX1 on osteogenesis, as evidenced by alterations in alkaline phosphatase (ALP) activity and bone formation levels. Collectively, these findings underscore the potential regulatory role of AOX1 via RXR signaling in the osteogenesis of hPDLMSCs. This elucidation is pivotal for advancing hPDLMSC-based periodontal regeneration strategies and lays the groundwork for the development of targeted therapeutic interventions aimed at enhancing bone formation in the context of periodontal disease.


Assuntos
Aldeído Oxidase , Células-Tronco Mesenquimais , Osteogênese , Ligamento Periodontal , Receptores X de Retinoides , Transdução de Sinais , Humanos , Aldeído Oxidase/metabolismo , Aldeído Oxidase/genética , Diferenciação Celular , Células Cultivadas , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Ligamento Periodontal/metabolismo , Ligamento Periodontal/citologia , Receptores X de Retinoides/metabolismo , Receptores X de Retinoides/genética
9.
Mol Biol Rep ; 51(1): 838, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042226

RESUMO

BACKGROUND: Bioglass materials have gained significant attention in the field of tissue engineering due to their osteoinductive and biocompatible properties that promote bone cell differentiation. In this study, a novel composite scaffold was developed using a sol-gel technique to combine bioglass (BG) 58 S with a poly L-lactic acid (PLLA). METHODS AND RESULTS: The physiochemical properties, morphology, and osteoinductive potential of the scaffolds were investigated by X-ray diffraction analysis, scanning electron microscopy, and Fourier-transform infrared spectroscopy. The results showed that the SiO2-CaO-P2O5 system was successfully synthesized by the sol-gel method. The PLLA scaffolds containing BG was found to be osteoinductive and promoted mineralization, as demonstrated by calcium deposition assay, upregulation of alkaline phosphatase enzyme activity, and Alizarin red staining data. CONCLUSIONS: These in vitro studies suggest that composite scaffolds incorporating hBMSCs are a promising substitute material to be implemented in bone tissue engineering. The PLLA/BG scaffolds promote osteogenesis and support the differentiation of bone cells, such as osteoblasts, due to their osteoinductive properties.


Assuntos
Materiais Biocompatíveis , Diferenciação Celular , Cerâmica , Osteogênese , Poliésteres , Engenharia Tecidual , Alicerces Teciduais , Poliésteres/química , Alicerces Teciduais/química , Cerâmica/química , Cerâmica/farmacologia , Engenharia Tecidual/métodos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Osteogênese/efeitos dos fármacos , Humanos , Diferenciação Celular/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Difração de Raios X , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Fosfatase Alcalina/metabolismo , Microscopia Eletrônica de Varredura
10.
BMC Pharmacol Toxicol ; 25(1): 40, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997762

RESUMO

BACKGROUND: Periapical lesions are characterized by periapical inflammation and damage to periapical tissues and eventually lead to bone resorption and even tooth loss. H2O2 is widely used in root canal therapy for patients with periapical inflammation. Luteolin possesses high anti-inflammatory, antioxidant, and anticancer potential. However, the underlying mechanism of the efficacy of H2O2 and luteolin on oxidative stress and inflammatory tissue has not been previously addressed. We aimed to investigate the anti-inflammatory and antioxidative effects of luteolin on H2O2-induced cellular oxidative inflammation. METHODS: After human osteoblasts (hFOB1.19) were treated with lipopolysaccharide (LPS), luteolin, or H2O2, cell proliferation was analysed by using a cell counting kit-8 (CCK-8), cell apoptosis was measured by using flow cytometry, the production of reactive oxygen species (ROS) was evaluated by using an oxidation-sensitive probe DCFH-DA ROS assay kit, and the expression of genes and proteins was detected by using reverse transcription quantitative polymerase chain reaction (RT‒qPCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). RESULTS: We demonstrated that inflammation is closely related to oxidative stress and that the oxidative stress level in the inflammatory environment is increased. Luteolin inhibited the H2O2-induced increase in the expression of interleukin-6 (IL-6), interleukin-8 (IL-8) and tumour necrosis factor α (TNF-α) and significantly repressed the H2O2-induced increase in ROS, as well as markedly strengthened superoxide dismutase (SOD) activity in hFOB1.19 cells. Moreover, we detected that luteolin may inhibit H2O2-induced hFOB1.19 cell injury by suppressing the NF-κB pathway. CONCLUSION: We elucidated that luteolin protected human osteoblasts (hFOB1.19) from H2O2-induced cell injury and inhibited the production of proinflammatory cytokines by suppressing the NF-κB signalling pathway. Our findings provide a potential drug for treating H2O2-induced periodontitis and cell injury.


Assuntos
Anti-Inflamatórios , Peróxido de Hidrogênio , Inflamação , Luteolina , Osteoblastos , Estresse Oxidativo , Luteolina/farmacologia , Humanos , Estresse Oxidativo/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Peróxido de Hidrogênio/toxicidade , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Linhagem Celular , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Lipopolissacarídeos/farmacologia , Proliferação de Células/efeitos dos fármacos , Antioxidantes/farmacologia , NF-kappa B/metabolismo , Microambiente Celular/efeitos dos fármacos , Citocinas/metabolismo
11.
Biomed Mater ; 19(5)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38955344

RESUMO

Artificial bone substitutes for bone repair and reconstruction still face enormous challenges. Previous studies have shown that calcium magnesium phosphate cements (CMPCs) possess an excellent bioactive surface, but its clinical application is restricted due to short setting time. This study aimed to develop new CMPC/carboxymethyl chitosan (CMCS) comg of mixed powders of active MgO, calcined MgO and calcium dihydrogen phosphate monohydrate. With this novel strategy, it can adjust the setting time and improve the compressive strength. The results confirmed that CMPC/CMCS composite bone cements were successfully developed with a controllable setting time (18-70 min) and high compressive strength (87 MPa). In addition, the composite bone cements could gradually degrade in PBS with weight loss up to 32% at 28 d. They also promoted the proliferation of pre-osteoblasts, and induced osteogenic differentiation. The findings indicate that CMPC/CMCS composite bone cements hold great promise as a new type of bone repair material in further and in-depth studies.


Assuntos
Materiais Biocompatíveis , Cimentos Ósseos , Fosfatos de Cálcio , Diferenciação Celular , Proliferação de Células , Quitosana , Força Compressiva , Compostos de Magnésio , Teste de Materiais , Osteoblastos , Osteogênese , Quitosana/química , Quitosana/análogos & derivados , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Osteogênese/efeitos dos fármacos , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Diferenciação Celular/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Camundongos , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Compostos de Magnésio/química , Compostos de Magnésio/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Fosfatos
12.
Sci Rep ; 14(1): 15837, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982204

RESUMO

45S5 Bioglass (BG) is composed of a glass network with silicate based on the component and can be doped with various therapeutic ions for the enhancement of hard tissue therapy. Nanoceria (CeO2) has been shown to indicate redox reaction and enhance the biological response. However, few studies focus on the proportion of CeO2-doped and its effect on the cellular bioactivity of CeO2-doped BG (CBG). In this study, we synthesized the CBG series with increasing amounts of doping CeO2 ranging (1 to 12) wt.%. The synthesized CBG series examined the characterization, mineralization capacity, and cellular activity against BG. Our results showed that the CBG series exhibited a glass structure and indicated the redox states between Ce3+ and Ce4+, thus they showed the antioxidant activity by characterization of Ce. The CBG series had a stable glass network structure similar to BG, which showed the preservation of bioactivity by exhibiting mineralization on the surface. In terms of biological response, although the CBG series showed the proliferative activity of pre-osteoblastic cells similar to BG, the CBG series augmented not only the alkaline phosphatase activity but also the osteogenic marker in the mRNA level. As stimulated the osteogenic activity, the CBG series improved the biomineralization. In conclusion, the CBG series might have a potential application for hard tissue therapeutic purposes.


Assuntos
Cerâmica , Cério , Vidro , Oxirredução , Cério/química , Cério/farmacologia , Oxirredução/efeitos dos fármacos , Vidro/química , Camundongos , Cerâmica/química , Cerâmica/farmacologia , Animais , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Proliferação de Células/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Linhagem Celular , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Fosfatase Alcalina/metabolismo
13.
Int J Implant Dent ; 10(1): 35, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967690

RESUMO

Considering the biological activity of osteoblasts is crucial when devising new approaches to enhance the osseointegration of implant surfaces, as their behavior profoundly influences clinical outcomes. An established inverse correlation exists between osteoblast proliferation and their functional differentiation, which constrains the rapid generation of a significant amount of bone. Examining the surface morphology of implants reveals that roughened titanium surfaces facilitate rapid but thin bone formation, whereas smooth, machined surfaces promote greater volumes of bone formation albeit at a slower pace. Consequently, osteoblasts differentiate faster on roughened surfaces but at the expense of proliferation speed. Moreover, the attachment and initial spreading behavior of osteoblasts are notably compromised on microrough surfaces. This review delves into our current understanding and recent advances in nanonodular texturing, meso-scale texturing, and UV photofunctionalization as potential strategies to address the "biological dilemma" of osteoblast kinetics, aiming to improve the quality and quantity of osseointegration. We discuss how these topographical and physicochemical strategies effectively mitigate and even overcome the dichotomy of osteoblast behavior and the biological challenges posed by microrough surfaces. Indeed, surfaces modified with these strategies exhibit enhanced recruitment, attachment, spread, and proliferation of osteoblasts compared to smooth surfaces, while maintaining or amplifying the inherent advantage of cell differentiation. These technology platforms suggest promising avenues for the development of future implants.


Assuntos
Implantes Dentários , Osseointegração , Osteoblastos , Propriedades de Superfície , Osteoblastos/fisiologia , Osteoblastos/citologia , Humanos , Diferenciação Celular , Proliferação de Células , Titânio/química , Osteogênese/fisiologia
14.
ACS Appl Mater Interfaces ; 16(28): 36983-37006, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38953207

RESUMO

Repairing multiphasic defects is cumbersome. This study presents new soft and hard scaffold designs aimed at facilitating the regeneration of multiphasic defects by enhancing angiogenesis and improving cell attachment. Here, the nonimmunogenic, nontoxic, and cost-effective human serum albumin (HSA) fibril (HSA-F) was used to fabricate thermostable (up to 90 °C) and hard printable polymers. Additionally, using a 10.0 mg/mL HSA-F, an innovative hydrogel was synthesized in a mixture with 2.0% chitosan-conjugated arginine, which can gel in a cell-friendly and pH physiological environment (pH 7.4). The presence of HSA-F in both hard and soft scaffolds led to an increase in significant attachment of the scaffolds to the human periodontal ligament fibroblast (PDLF), human umbilical vein endothelial cell (HUVEC), and human osteoblast. Further studies showed that migration (up to 157%), proliferation (up to 400%), and metabolism (up to 210%) of these cells have also improved in the direction of tissue repair. By examining different in vitro and ex ovo experiments, we observed that the final multiphasic scaffold can increase blood vessel density in the process of per-vascularization as well as angiogenesis. By providing a coculture environment including PDLF and HUVEC, important cross-talk between these two cells prevails in the presence of roxadustat drug, a proangiogenic in this study. In vitro and ex ovo results demonstrated significant enhancements in the angiogenic response and cell attachment, indicating the effectiveness of the proposed design. This approach holds promise for the regeneration of complex tissue defects by providing a conducive environment for vascularization and cellular integration, thus promoting tissue healing.


Assuntos
Células Endoteliais da Veia Umbilical Humana , Neovascularização Fisiológica , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Neovascularização Fisiológica/efeitos dos fármacos , Albumina Sérica Humana/química , Glicina/química , Glicina/farmacologia , Glicina/análogos & derivados , Fibroblastos/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/metabolismo , Proliferação de Células/efeitos dos fármacos , Amiloide/química , Amiloide/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Osteoblastos/metabolismo , Ligamento Periodontal/citologia , Ligamento Periodontal/efeitos dos fármacos , Engenharia Tecidual , Hidrogéis/química , Hidrogéis/farmacologia , Temperatura , Isoquinolinas
15.
ACS Appl Mater Interfaces ; 16(28): 35964-35984, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38968558

RESUMO

Developing a neurovascular bone repair scaffold with an appropriate mechanical strength remains a challenge. Calcium phosphate (CaP) is similar to human bone, but its scaffolds are inherently brittle and inactive, which require recombination with active ions and polymers for bioactivity and suitable strength. This work discussed the synthesis of amorphous magnesium-calcium pyrophosphate (AMCP) and the subsequent development of a humidity-responsive AMCP/cassava starch (CS) scaffold. The scaffold demonstrated enhanced mechanical properties by strengthening the intermolecular hydrogen bonds and ionic bonds between AMCP and CS during the gelatinization and freeze-thawing processes. The release of active ions was rapid initially and stabilized into a long-term stable release after 3 days, which is well-matched with new bone growth. The release of pyrophosphate ions endowed the scaffold with antibacterial properties. At the cellular level, the released active ions simultaneously promoted the proliferation and mineralization of osteoblasts, the proliferation and migration of endothelial cells, and the proliferation of Schwann cells. At the animal level, the scaffold was demonstrated to promote vascular growth and peripheral nerve regeneration in a rat skull defect experiment, ultimately resulting in the significant and rapid repair of bone defects. The construction of the AMCP/CS scaffold offers practical suggestions and references for neurovascular bone repair.


Assuntos
Regeneração Óssea , Amido , Alicerces Teciduais , Animais , Regeneração Óssea/efeitos dos fármacos , Alicerces Teciduais/química , Ratos , Amido/química , Umidade , Humanos , Proliferação de Células/efeitos dos fármacos , Ratos Sprague-Dawley , Difosfatos/química , Difosfatos/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Pirofosfato de Cálcio/química , Pirofosfato de Cálcio/farmacologia , Células de Schwann/efeitos dos fármacos , Células de Schwann/citologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Crânio/efeitos dos fármacos
16.
Theranostics ; 14(10): 3945-3962, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994035

RESUMO

Rationale: NLRP3 inflammasome is critical in the development and progression of many metabolic diseases driven by chronic inflammation, but its effect on the pathology of postmenopausal osteoporosis (PMOP) remains poorly understood. Methods: We here firstly examined the levels of NLRP3 inflammasome in PMOP patients by ELISA. Then we investigated the possible mechanisms underlying the effect of NLRP3 inflammasome on PMOP by RNA sequencing of osteoblasts treated with NLRP3 siRNA and qPCR. Lastly, we accessed the effect of decreased NLRP3 levels on ovariectomized (OVX) rats. To specifically deliver NLRP3 siRNA to osteoblasts, we constructed NLRP3 siRNA wrapping osteoblast-specific aptamer (CH6)-functionalized lipid nanoparticles (termed as CH6-LNPs-siNLRP3). Results: We found that the levels of NLRP3 inflammasome were significantly increased in patients with PMOP, and were negatively correlated with estradiol levels. NLRP3 knock-down influenced signal pathways including immune system process, interferon signal pathway. Notably, of the top ten up-regulated genes in NLRP3-reduced osteoblasts, nine genes (except Mx2) were enriched in immune system process, and five genes were related to interferon signal pathway. The in vitro results showed that CH6-LNPs-siNLRP3 was relatively uniform with a dimeter of 96.64 ± 16.83 nm and zeta potential of 38.37 ± 1.86 mV. CH6-LNPs-siNLRP3 did not show obvious cytotoxicity and selectively delivered siRNA to bone tissue. Moreover, CH6-LNPs-siNLRP3 stimulated osteoblast differentiation by activating ALP and enhancing osteoblast matrix mineralization. When administrated to OVX rats, CH6-LNPs-siNLRP3 promoted bone formation and bone mass, improved bone microarchitecture and mechanical properties by decreasing the levels of NLRP3, IL-1ß and IL-18 and increasing the levels of OCN and Runx2. Conclusion: NLRP3 inflammasome may be a new biomarker for PMOP diagnosis and plays a key role in the pathology of PMOP. CH6-LNPs-siNLRP3 has potential application for the treatment of PMOP.


Assuntos
Inflamassomos , Lipossomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Nanopartículas , Osteoblastos , Osteoporose Pós-Menopausa , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Feminino , Humanos , Ratos , Inflamassomos/metabolismo , Nanopartículas/química , Osteoporose Pós-Menopausa/metabolismo , Regulação para Baixo/efeitos dos fármacos , Ratos Sprague-Dawley , RNA Interferente Pequeno/administração & dosagem , Aptâmeros de Nucleotídeos/farmacologia , Aptâmeros de Nucleotídeos/administração & dosagem , Modelos Animais de Doenças , Pessoa de Meia-Idade , Ovariectomia
17.
Front Endocrinol (Lausanne) ; 15: 1346094, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39022341

RESUMO

Background: The revolution of orthopedic implant manufacturing is being driven by 3D printing of titanium implants for large bony defects such as those caused by diabetic Charcot arthropathy. Unlike traditional subtractive manufacturing of orthopedic implants, 3D printing fuses titanium powder layer-by-layer, creating a unique surface roughness that could potentially enhance osseointegration. However, the metabolic impairments caused by diabetes, including negative alterations of bone metabolism, can lead to nonunion and decreased osseointegration with traditionally manufactured orthopedic implants. This study aimed to characterize the response of both healthy and diabetic primary human osteoblasts cultured on a medical-grade 3D-printed titanium surface under high and low glucose conditions. Methods: Bone samples were obtained from six patients, three with Type 2 Diabetes Mellitus and three without. Primary osteoblasts were isolated and cultured on 3D-printed titanium discs in high (4.5 g/L D-glucose) and low glucose (1 g/L D-Glucose) media. Cellular morphology, matrix deposition, and mineralization were assessed using scanning electron microscopy and alizarin red staining. Alkaline phosphatase activity and L-lactate concentration was measured in vitro to assess functional osteoblastic activity and cellular metabolism. Osteogenic gene expression of BGLAP, COL1A1, and BMP7 was analyzed using reverse-transcription quantitative polymerase chain reaction. Results: Diabetic osteoblasts were nonresponsive to variations in glucose levels compared to their healthy counterparts. Alkaline phosphatase activity, L-lactate production, mineral deposition, and osteogenic gene expression remained unchanged in diabetic osteoblasts under both glucose conditions. In contrast, healthy osteoblasts exhibited enhanced functional responsiveness in a high glucose environment and showed a significant increase in osteogenic gene expression of BGLAP, COL1A1, and BMP7 (p<.05). Conclusion: Our findings suggest that diabetic osteoblasts exhibit impaired responsiveness to variations in glucose concentrations, emphasizing potential osteoblast dysfunction in diabetes. This could have implications for post-surgery glucose management strategies in patients with diabetes. Despite the potential benefits of 3D printing for orthopedic implants, particularly for diabetic Charcot collapse, our results call for further research to optimize these interventions for improved patient outcomes.


Assuntos
Diabetes Mellitus Tipo 2 , Glucose , Osteoblastos , Impressão Tridimensional , Titânio , Humanos , Titânio/farmacologia , Osteoblastos/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Células Cultivadas , Masculino , Fenótipo , Propriedades de Superfície , Feminino , Pessoa de Meia-Idade , Proteína Morfogenética Óssea 7/metabolismo , Osteogênese/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I/genética , Idoso
18.
J Biomed Mater Res B Appl Biomater ; 112(8): e35456, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39031923

RESUMO

Tissue engineered scaffolds aimed at the repair of critical-sized bone defects lack adequate consideration for our aging society. Establishing an effective aged in vitro model that translates to animals is a significant unmet challenge. The in vivo aged environment is complex and highly nuanced, making it difficult to model in the context of bone repair. In this work, 3D nanofibrous scaffolds generated by the thermally-induced self-agglomeration (TISA) technique were functionalized with polydopamine nanoparticles (PD NPs) as a tool to improve drug binding capacity and scavenge reactive oxygen species (ROS), an excessive build-up that dampens the healing process in aged tissues. PD NPs were reduced by ascorbic acid (rPD) to further improve hydrogen peroxide (H2O2) scavenging capabilities, where we hypothesized that these functionalized scaffolds could rescue ROS-affected osteoblastic differentiation in vitro and improve new bone formation in an aged mouse model. rPDs demonstrated improved H2O2 scavenging activity compared to neat PD NPs, although both NP groups rescued the alkaline phosphatase activity (ALP) of MC3T3-E1 cells in presence of H2O2. Additionally, BMP2-induced osteogenic differentiation, both ALP and mineralization, was significantly improved in the presence of PD or rPD NPs on TISA scaffolds. While in vitro data showed favorable results aimed at improving osteogenic differentiation by PD or rPD NPs, in vivo studies did not note similar improvements in ectopic bone formation an aged model, suggesting that further nuance in material design is required to effectively translate to improved in vivo results in aged animal models.


Assuntos
Regeneração Óssea , Indóis , Nanopartículas , Osteogênese , Polímeros , Espécies Reativas de Oxigênio , Alicerces Teciduais , Animais , Camundongos , Indóis/química , Indóis/farmacologia , Osteogênese/efeitos dos fármacos , Polímeros/química , Polímeros/farmacologia , Alicerces Teciduais/química , Regeneração Óssea/efeitos dos fármacos , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Nanofibras/química , Peróxido de Hidrogênio/química , Envelhecimento/metabolismo , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/química , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Osteoblastos/metabolismo
19.
J Biomed Mater Res B Appl Biomater ; 112(8): e35457, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39032140

RESUMO

Calcined bone is an attractive natural material for use as a bone substitute because of its cost-effectiveness and high biocompatibility, which are comparable to that of synthetic hydroxyapatite. However, the calcination process has significantly weakened the mechanical properties. In this study, a composite of calcined bovine bone powder reinforced with silane cross-linked alginate was prepared to assess its biocompatibility, osteoconductivity, and mechanical compatibility as a bone substitute material. Culture studies with osteoblast-like cells (MC3T3-E1) showed no cytotoxicity toward the composite and exhibited general cell proliferative properties in its presence. In contrast, the composite reduced the alkaline phosphatase activity of osteoblasts but led to significant noncellular apatite deposition on the surface. In addition, quasi-static compression tests of the composite revealed mechanical properties comparable to those of human cancellous bone. The mechanical properties remained stable under wet conditions and did not deteriorate significantly even after 2 weeks of immersion in simulated body fluid at 37°C. The results show that this composite, composed of calcined bone powder and silane cross-linked alginate, is a promising bone substitute material with biocompatibility, osteoconductivity, and mechanical compatibility.


Assuntos
Alginatos , Substitutos Ósseos , Teste de Materiais , Osteoblastos , Silanos , Alginatos/química , Animais , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Camundongos , Bovinos , Osteoblastos/metabolismo , Osteoblastos/citologia , Silanos/química , Humanos , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Pós , Reagentes de Ligações Cruzadas/química , Linhagem Celular
20.
FASEB J ; 38(14): e23824, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39012304

RESUMO

The regenerative ability of limb bones after injury decreases during aging, but whether a similar phenomenon occurs in jawbones and whether autophagy plays a role in this process remain unclear. Through retrospective analysis of clinical data and studies on a mouse model of jawbone defects, we confirmed the presence of delayed or impaired bone regeneration in the jawbones of old individuals and mice. Subsequently, osteoblasts (OBs) derived from mouse jawbones were isolated, showing reduced osteogenesis in senescent osteoblasts (S-OBs). We observed a reduction in autophagy within both aged jawbones and S-OBs. Additionally, pharmacological inhibition of autophagy in normal OBs (N-OBs) led to cell aging and decreased osteogenesis, while autophagic activation reversed the aging phenotype of S-OBs. The activator rapamycin (RAPA) increased the autophagy level and bone regeneration in aged jawbones. Finally, we found that fatty acid-binding protein 3 (FABP3) was degraded by autolysosomes through its interaction with sequestosome 1 (P62/SQSTM1). Autophagy inhibition within senescent jawbones and S-OBs led to the excessive accumulation of FABP3, and FABP3 knockdown partially rescued the decreased osteogenesis in S-OBs and alleviated age-related compromised jawbone regeneration. In summary, we confirmed that autophagy inhibition plays an important role in delaying bone regeneration in aging jawbones. Autophagic activation or FABP3 knockdown can partially rescue the osteogenesis of S-OBs and the regeneration of aging jawbones, providing insight into jawbone aging.


Assuntos
Envelhecimento , Autofagia , Regeneração Óssea , Proteínas de Ligação a Ácido Graxo , Osteoblastos , Osteogênese , Animais , Autofagia/fisiologia , Osteoblastos/metabolismo , Camundongos , Osteogênese/fisiologia , Envelhecimento/fisiologia , Envelhecimento/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Masculino , Humanos , Camundongos Endogâmicos C57BL , Arcada Osseodentária , Feminino , Senescência Celular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA