Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.676
Filtrar
1.
Braz. j. biol ; 83: e248024, 2023. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1355855

RESUMO

Abstract By applying the in-silico method, resveratrol was docked on those proteins which are responsible for bone loss. The Molecular docking data between the resveratrol and Receptor activator of nuclear factor-kappa-Β ligand [RANKL] receptors proved that resveratrol binds tightly to the receptors, showed the highest binding affinities of −6.9, −7.6, −7.1, −6.9, −6.7, and −7.1 kcal/mol. According to in-vitro data, Resveratrol reduced the osteoclasts after treating Marrow-Derived Macrophages [BMM] with Macrophage colony-stimulating factor [MCSF] 20ng / ml and RANKL 50ng / ml, with different concentrations of resveratrol (2.5, 10 μg / ml) For 7 days, the cells were treated with MCSF (20 ng / ml) and RANKL (40 ng / ml) together with concentrated trimethyl ether and resveratrol (2.5, 10 μg / ml) within 12 hours. Which, not affect cell survival. After fixing osteoclast cells with formaldehyde fixative on glass coverslip followed by incubation with 0.1% Triton X-100 in PBS for 5 min and after that stain with rhodamine phalloidin staining for actin and Hoechst for nuclei. Fluorescence microscopy was performed to see the distribution of filaments actin [F.actin]. Finally, resveratrol reduced the actin ring formation. Resveratrol is the best bioactive compound for drug preparation against bone loss.


Resumo Com a aplicação do método in-silico, o resveratrol foi ancorado nas proteínas responsáveis ​​pela perda óssea. Os dados de docking molecular entre o resveratrol e o ligante do receptor ativador do fator nuclear kappa-Β [Receptor Activator of Nuclear Factor kappa-B Ligant (RANKL)] provaram que o resveratrol se liga fortemente aos receptores, mostraram as afinidades de ligação mais altas de −6,9, −7,6, −7,1, −6,9, - 6,7 e -7,1 kcal / mol. De acordo com dados in-vitro, o resveratrol reduziu os osteoclastos após o tratamento de macrófagos derivados da medula óssea [Bone Marrow-derived Macrophage (BMM)] com fator estimulador de colônias de macrófagos [Macrophage Colony-Stimulating Factor (MCSF)] 20ng / ml e RANKL 50ng / ml, com diferentes concentrações de resveratrol (2,5, 10 μg / ml). Durante sete dias, as células foram tratadas com MCSF (20 ng / ml) e RANKL (40 ng / ml) juntamente com éter trimetílico concentrado e resveratrol (2,5, 10 μg / ml) em 12 horas, processo que não afeta a sobrevivência celular. Após a fixação de células de osteoclastos com fixador de formaldeído em lamela de vidro seguido de incubação com 0,1% Triton X-100 em PBS por 5 min, foi realizado posteriormente o procedimento para corar com rodamina faloidina a actina e Hoechst os núcleos. A microscopia de fluorescência foi realizada para ver a distribuição dos filamentos de actina [F.actina]. Finalmente, o resveratrol reduziu a formação do anel de actina. O resveratrol é o melhor composto bioativo para o preparo de medicamentos contra a perda óssea.


Assuntos
Osteoclastos , Ligante RANK , Diferenciação Celular , Simulação de Acoplamento Molecular , Resveratrol/farmacologia
2.
Int J Oral Sci ; 14(1): 39, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915088

RESUMO

Sympathetic cues via the adrenergic signaling critically regulate bone homeostasis and contribute to neurostress-induced bone loss, but the mechanisms and therapeutics remain incompletely elucidated. Here, we reveal an osteoclastogenesis-centered functionally important osteopenic pathogenesis under sympatho-adrenergic activation with characterized microRNA response and efficient therapeutics. We discovered that osteoclastic miR-21 was tightly regulated by sympatho-adrenergic cues downstream the ß2-adrenergic receptor (ß2AR) signaling, critically modulated osteoclastogenesis in vivo by inhibiting programmed cell death 4 (Pdcd4), and mediated detrimental effects of both isoproterenol (ISO) and chronic variable stress (CVS) on bone. Intriguingly, without affecting osteoblastic bone formation, bone protection against ISO and CVS was sufficiently achieved by a (D-Asp8)-lipid nanoparticle-mediated targeted inhibition of osteoclastic miR-21 or by clinically relevant drugs to suppress osteoclastogenesis. Collectively, these results unravel a previously underdetermined molecular and functional paradigm that osteoclastogenesis crucially contributes to sympatho-adrenergic regulation of bone and establish multiple targeted therapeutic strategies to counteract osteopenias under stresses.


Assuntos
Doenças Ósseas Metabólicas , MicroRNAs , Adrenérgicos/metabolismo , Adrenérgicos/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/farmacologia , Doenças Ósseas Metabólicas/metabolismo , Humanos , Lipossomos , MicroRNAs/genética , Nanopartículas , Osteoclastos , Osteogênese/fisiologia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/farmacologia
4.
Front Endocrinol (Lausanne) ; 13: 891313, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909545

RESUMO

Osteoporosis is a bone metabolic disorder characterized by decreased bone density and deteriorated microstructure, which increases the risk of fractures. The imbalance between bone formation and bone resorption results in the occurrence and progression of osteoporosis. Osteoblast-mediated bone formation, osteoclast-mediated bone resorption and macrophage-regulated inflammatory response play a central role in the process of bone remodeling, which together maintain the balance of the osteoblast-osteoclast-macrophage (OB-OC-MΦ) axis under physiological conditions. Bone formation and bone resorption disorders caused by the imbalance of OB-OC-MΦ axis contribute to osteoporosis. Many microRNAs are involved in the regulation of OB-OC-MΦ axis homeostasis, with microRNA-23a (miR-23a) being particularly crucial. MiR-23a is highly expressed in the pathological process of osteoporosis, which eventually leads to the occurrence and further progression of osteoporosis by inhibiting osteogenesis, promoting bone resorption and inflammatory polarization of macrophages. This review focuses on the role and mechanism of miR-23a in regulating the OB-OC-MΦ axis to provide new clinical strategies for the prevention and treatment of osteoporosis.


Assuntos
Reabsorção Óssea , MicroRNAs , Osteoporose , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Humanos , Macrófagos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteoporose/etiologia , Osteoporose/genética , Osteoporose/fisiopatologia , Osteoporose/terapia
5.
Oncoimmunology ; 11(1): 2104070, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936985

RESUMO

Bone disease represents a major cause of morbidity and mortality in Multiple Myeloma (MM); primarily driven by osteoclasts whose differentiation is dependent on expression of RANKL by MM cells. Notably, costimulation by ITAM containing receptors (i.e., FcγR) can also play a crucial role in osteoclast differentiation. Modeling the pathology of the bone marrow microenvironment with an ex vivo culture system of primary human multiple myeloma cells, we herein demonstrate that FcγR-mediated signaling, via staphylococcal protein A (SpA) IgG immune-complexes, can act as a critical negative regulator of MM-driven osteoclast differentiation. Interrogation of the mode-of-action revealed that FcγR-mediated signaling causes epigenetic modulation of chromosomal 3D architecture at the RANK promoter; with altered spatial orientation of a proximal super enhancer. Combined this leads to substantial down-regulation of RANK at a transcript, protein, and functional level. These observations shed light on a novel mechanism regulating RANK expression and provide a rationale for targeting FcγR-signaling for the amelioration of osteolytic bone pathology in disease.


Assuntos
Mieloma Múltiplo , Osteogênese , Diferenciação Celular/genética , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Osteoclastos/metabolismo , Osteogênese/genética , Receptores de IgG/genética , Receptores de IgG/metabolismo , Microambiente Tumoral
6.
Front Endocrinol (Lausanne) ; 13: 885879, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937818

RESUMO

Progressive bone loss during aging makes osteoporosis one of the most common and life impacting conditions in geriatric populations. The bone homeostasis is maintained through persistent remodeling mediated by bone-forming osteoblast and bone-resorbing osteoclast. Inflammaging, a condition characterized by increased pro-inflammatory markers in the blood and other tissues during aging, has been reported to be associated with skeletal stem/progenitor cell dysfunction, which will result in impaired bone formation. However, the role of age-related inflammation and metabolites in regulation of osteoclast remains largely unknown. In the present study, we observed dichotomous phenotypes of anti-inflammatory metabolite itaconate in responding to inflammaging. Itaconate is upregulated in macrophages during aging but has less reactivity in responding to RANKL stimulation in aged macrophages. We confirmed the inhibitory effect of itaconate in regulating osteoclast differentiation and activation, and further verified the rescue role of itaconate in lipopolysaccharides induced inflammatory bone loss animal model. Our findings revealed that itaconate is a crucial regulatory metabolite during inflammaging that inhibits osteoclast to maintain bone homeostasis.


Assuntos
Osteoclastos , Succinatos , Envelhecimento , Animais , Osteoblastos/fisiologia , Osteoclastos/metabolismo , Succinatos/metabolismo , Succinatos/farmacologia , Succinatos/uso terapêutico
7.
Front Endocrinol (Lausanne) ; 13: 922070, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937845

RESUMO

Background: Osteoblasts-Osteoclasts has been a major area in bone disease research for a long time. However, there are few systematic studies in this field using bibliometric analysis. We aimed to perform a bibliometric analysis and visualization study to determine hotspots and trends of osteoblasts-osteoclasts in bone diseases, identify collaboration and influence among authors, countries, institutions, and journals, and assess the knowledge base to develop basic and clinical research in the future. Methods: We collected articles and reviews for osteoblasts-osteoclasts in bone diseases from the Web of Science Core Collection. In addition, we utilized scientometrics software (CiteSpace5.8 and VOSviewer1.6.18) for visual analysis of countries/regions, institutions, authors, references, and keywords in the field. Results: In total, 16,832 authors from 579 institutions in 73 countries/regions have published 3,490 papers in 928 academic journals. The literature in this field is rapidly increasing, with Bone publishing the most articles, whereas Journal of Bone and Mineral Research had the most co-cited journals. These two journals mainly focused on molecular biology and the clinical medicine domain. The countries with the highest number of publications were the US and China, and the University of Arkansas for Medical Sciences was the most active institution. Regarding authors, Stavros C. Manolagas published the most articles, and Hiroshi Takayanagi had the most co-cited papers. Research in this field mainly includes molecular expression and regulatory mechanisms, differentiation, osteoprotection, inflammation, and tumors. The latest research hotspots are oxidative stress, mutation, osteocyte formation and absorption, bone metabolism, tumor therapy, and in-depth mechanisms. Conclusion: We identified the research hotspots and development process of osteoblasts-osteoclasts in bone disease using bibliometric and visual methods. Osteoblasts-osteoclasts have attracted increasing attention in bone disease. This study will provide a valuable reference for researchers concerned with osteoblasts-osteoclasts in bone diseases.


Assuntos
Doenças Ósseas , Osteoclastos , Bibliometria , Humanos , Osteoblastos , Publicações
8.
Vitam Horm ; 120: 231-270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35953112

RESUMO

Osteoporosis is a significant health problem, with skeletal fractures increasing morbidity and mortality. Excess glucocorticoids (GC) represents the leading cause of secondary osteoporosis. The first phase of glucocorticoid-induced osteoporosis is increased bone resorption. In this Chapter, in vitro studies of the direct glucocorticoid receptor (GR) mediated cellular effects of GC on osteoclasts to affect bone resorption and indirect effects on osteoblast lineage cells to increase the RANKL/OPG ratio and stimulate osteoclastogenesis and bone resorption are reviewed in detail, together with detailed descriptions of in vivo effects of GC in different portions of the skeleton in research animals and humans. Brief sections are devoted to contrasting functions of GC in osteonecrosis, vitamin D formation, in vitro and in vivo bone resorptive actions dependent on vitamin D receptor and vitamin D toxicity, as well as the molecular basis of GR action. Included are also more detailed assessments of the interactions of GC with the major calcium regulating hormones, 1,25(OH)2-vitamin D3 and parathyroid hormone, describing the in vitro increases in RANKL/OPG ratios, osteoclastogenesis and synergistic bone resorption that occurs when GC is combined with either 1,25(OH)2-vitamin D3 or parathyroid hormone. Additionally, a molecular basic for the synergistic interaction of GC with 1,25(OH)2-vitamin D3 is provided along with a suggested molecular basic for the interaction between GC and parathyroid hormone.


Assuntos
Reabsorção Óssea , Osteoporose , Animais , Reabsorção Óssea/induzido quimicamente , Cálcio , Hormônios e Agentes Reguladores de Cálcio/farmacologia , Colecalciferol/farmacologia , Glucocorticoides/efeitos adversos , Humanos , Osteoclastos/fisiologia , Hormônio Paratireóideo/farmacologia
9.
Sci Rep ; 12(1): 13672, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953700

RESUMO

This study used a novel 3D analysis to longitudinally evaluate orthodontic tooth movement (OTM) and bone morphometry. Twelve-week-old male Wistar rats were subjected to OTM by applying a constant orthodontic force (OF) of 25cN between one of the upper first molars and a mini-screw. In vivo micro-CTs were taken before and after 10, 17, 24 and 31 days of force application, and superimposed by a novel and rigid voxel-based registration method. Then the tooth and alveolar bone segment at different time points became comparable in the same coordinate system, which facilitated the analysis of their dynamic changes in 3D. By comparison between time points and between OF and no OF sides, this study showed that the OTM rate was not constant through time, but conformed to a 'V' shape changing pattern. Besides, OF induced displacement of both loaded and unloaded teeth, and the latter mirrored the former in a delayed manner. In addition, bone morphometric changes synchronized with OTM rate changes, implying that a higher OTM rate was concomitant with more alveolar bone loss. The pressure and tension areas might not be in two opposite sides, but actually adjacent and connected. These findings might provide instructive evidence for both clinical, translational and basic research in orthodontics.


Assuntos
Má Oclusão , Técnicas de Movimentação Dentária , Animais , Osso e Ossos , Masculino , Dente Molar , Osteoclastos , Ratos , Ratos Wistar , Microtomografia por Raio-X/métodos
10.
BMC Oral Health ; 22(1): 345, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953782

RESUMO

BACKGROUND: Phosphoinositide 3-kinase (PI3K) is located within cells, and is involved in regulating cell survival, proliferation, apoptosis and angiogenesis. The purpose of this study was to investigate the role of PI3K in the process of bone destruction in apical periodontitis, and provide reference data for the treatment of this disease. METHODS: The relative mRNA expression of PI3K, Acp5 and NFATc1 in the normal human periodontal ligament and in chronic apical periodontitis were analyzed by real-time quantitative polymerase chain reaction (RT-qPCR). A mouse model of apical periodontitis was established by root canal exposure to the oral cavity, and HE staining was used to observe the progress of apical periodontitis. Immunohistochemical staining was used to detect the expression of PI3K and AKT in different stages of apical periodontitis, while enzymatic histochemical staining was used for detection of osteoclasts. An Escherichia coli lipopolysaccharide (LPS)-mediated inflammatory environment was also established at the osteoclast and osteoblast level, and osteoclasts or osteoblasts were treated with the PI3K inhibitor LY294002 to examine the role of PI3K in bone resorption. RESULTS: The expression of PI3K, Acp5 and NFATc1 genes in chronic apical periodontitis sample groups was significantly increased relative to healthy periodontal ligament tissue (P < 0.05). Mouse apical periodontitis was successfully established and bone resorption peaked between 2 and 3 weeks (P < 0.05). The expression of PI3K and Akt increased with the progression of inflammation, and reached a peak at 14 days (P < 0.05). The gene and protein expression of PI3K, TRAP and NFATc1 in osteoclasts were significantly increased (P < 0.05) in the E. coli LPS-mediated inflammatory microenvironment compared to the normal control group. Meanwhile in osteoblasts, the gene and protein expression of PI3K, BMP-2 and Runx2 were significantly reduced (P < 0.05) in the inflammatory microenvironment. With the addition of LY294002, expressions of bone resorption-related factors (TRAP, NFATc1) and bone formation-related factors (BMP-2, Runx2) significantly decreased (P < 0.05). CONCLUSIONS: Under the inflammatory environment induced by LPS, PI3K participates in the occurrence and development of chronic apical periodontitis by regulating the proliferation and differentiation of osteoclasts and osteoblasts.


Assuntos
Reabsorção Óssea , Periodontite Periapical , Periodontite , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Escherichia coli , Humanos , Lipopolissacarídeos/farmacologia , Camundongos , Osteoclastos , Periodontite/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
11.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35955464

RESUMO

Changes in mitochondrial bioenergetics are believed to take place during osteoclastogenesis. This study aims to assess changes in mitochondrial bioenergetics and reactive oxygen species (ROS) levels during polyethylene (PE)-induced osteoclastogenesis in vitro. For this purpose, RAW264.7 cells were cultured for nine days and allowed to differentiate into osteoclasts in the presence of PE and RANKL. The total TRAP-positive cells, resorption activity, expression of osteoclast marker genes, ROS level, mitochondrial bioenergetics, glycolysis, and substrate utilization were measured. The effect of tocotrienols-rich fraction (TRF) treatment (50 ng/mL) on those parameters during PE-induced osteoclastogenesis was also studied. During PE-induced osteoclastogenesis, as depicted by an increase in TRAP-positive cells and gene expression of osteoclast-related markers, higher proton leak, higher extracellular acidification rate (ECAR), as well as higher levels of ROS and NADPH oxidases (NOXs) were observed in the differentiated cells. The oxidation level of some substrates in the differentiated group was higher than in other groups. TRF treatment significantly reduced the number of TRAP-positive osteoclasts, bone resorption activity, and ROS levels, as well as modulating the gene expression of antioxidant-related genes and mitochondrial function. In conclusion, changes in mitochondrial bioenergetics and substrate utilization were observed during PE-induced osteoclastogenesis, while TRF treatment modulated these changes.


Assuntos
Osteogênese , Polietileno , Diferenciação Celular , Metabolismo Energético , Mitocôndrias/metabolismo , Osteoclastos/metabolismo , Polietileno/metabolismo , Ligante RANK/metabolismo , Espécies Reativas de Oxigênio/metabolismo
12.
Int J Mol Sci ; 23(15)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35955685

RESUMO

Parathyroid hormone-related protein (PTHrP) C-terminal peptides regulate the metabolism of bone cells. PHTrP [107-111] (osteostatin) promotes bone repair in animal models of bone defects and prevents bone erosion in inflammatory arthritis. In addition to its positive effects on osteoblasts, osteostatin may inhibit bone resorption. The aim of this study was to determine the effects of osteostatin on human osteoclast differentiation and function. We used macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor κB ligand (RANKL) to induce the osteoclast differentiation of adherent human peripheral blood mononuclear cells. Tartrate-resistant acid phosphatase (TRAP) staining was performed for the detection of the osteoclasts. The function of mature osteoclasts was assessed with a pit resorption assay. Gene expression was evaluated with qRT-PCR, and nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) nuclear translocation was studied by immunofluorescence. We observed that osteostatin (100, 250 and 500 nM) decreased the differentiation of osteoclasts in a concentration-dependent manner, but it did not modify the resorptive ability of mature osteoclasts. In addition, osteostatin decreased the mRNA levels of cathepsin K, osteoclast associated Ig-like receptor (OSCAR) and NFATc1. The nuclear translocation of the master transcription factor in osteoclast differentiation NFATc1 was reduced by osteostatin. Our results suggest that the anti-resorptive effects of osteostatin may be dependent on the inhibition of osteoclastogenesis. This study has shown that osteostatin controls human osteoclast differentiation in vitro through the downregulation of NFATc1.


Assuntos
Reabsorção Óssea , Ligante RANK , Animais , Reabsorção Óssea/metabolismo , Diferenciação Celular , Humanos , Leucócitos Mononucleares/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Fragmentos de Peptídeos , Ligante RANK/metabolismo , Ligante RANK/farmacologia
13.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35955873

RESUMO

Rheumatoid arthritis (RA), an autoimmune disease, is characterized by the presence of symmetric polyarthritis predominantly of the small joints that leads to severe cartilage and bone destruction. Based on animal and human data, the pathophysiology of osteoporosis, a frequent comorbidity in conjunction with RA, was delineated. Autoimmune inflammatory processes, which lead to a systemic upregulation of inflammatory and osteoclastogenic cytokines, the production of autoantibodies, and Th cell senescence with a presumed disability to control the systemic immune system's and osteoclastogenic status, may play important roles in the pathophysiology of osteoporosis in RA. Consequently, osteoclast activity increases, osteoblast function decreases and bone metabolic and mechanical properties deteriorate. Although a number of disease-modifying drugs to treat joint inflammation are available, data on the ability of these drugs to prevent fragility fractures are limited. Thus, specific treatment of osteoporosis should be considered in patients with RA and an associated increased risk of fragility fractures.


Assuntos
Artrite Reumatoide , Fraturas Ósseas , Osteoporose , Animais , Artrite Reumatoide/metabolismo , Osso e Ossos/metabolismo , Fraturas Ósseas/complicações , Humanos , Osteoclastos/metabolismo , Osteoporose/tratamento farmacológico
14.
Nutrients ; 14(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35956385

RESUMO

Bone physiology is regulated by osteoblast and osteoclast activities, both involved in the bone remodeling process, through deposition and resorption mechanisms, respectively. The imbalance between these two phenomena contributes to the onset of bone diseases. Among these, osteoporosis is the most common metabolic bone disorder. The therapies currently used for its treatment include antiresorptive and anabolic agents associated with side effects. Therefore, alternative therapeutic approaches, including natural molecules such as coumarin and their derivatives, have recently shown positive results. Thus, our proposal was to investigate the effect of the coumarin derivative umbelliferon (UF) using an interesting model of human osteoblasts (hOBs) isolated from osteoporotic patients. UF significantly improved the activity of osteoporotic-patient-derived hOBs via estrogen receptor 1 (ESR1) and the downstream activation of ß-catenin pathway. Additionally, hOBs were co-cultured in microgravity with human osteoclasts (hOCs) using a 3D system bioreactor, able to reproduce the bone remodeling unit in bone loss conditions in vitro. Notably, UF exerted its anabolic role by reducing the multinucleated cells. Overall, our study confirms the potential efficacy of UF in bone health, and identified, for the first time, a prospective alternative natural compound useful to prevent/treat bone loss diseases such as osteoporosis.


Assuntos
Doenças Ósseas Metabólicas , Reabsorção Óssea , Osteoporose , Doenças Ósseas Metabólicas/metabolismo , Reabsorção Óssea/tratamento farmacológico , Calcificação Fisiológica , Diferenciação Celular , Cumarínicos/uso terapêutico , Receptor alfa de Estrogênio/metabolismo , Humanos , Osteoblastos , Osteoclastos , Osteogênese , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Estudos Prospectivos , beta Catenina/metabolismo
15.
BMC Complement Med Ther ; 22(1): 214, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948905

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that causes local bone erosion and systemic osteoporosis. Harpagoside (HAR), an iridoid glycoside, has various pharmacological effects on pain, arthritis, and inflammation. Our previous study suggests that HAR is more deeply involved in the mechanism of bone loss caused by inflammatory stimuli than hormonal changes. Here, we identified the local and systemic bone loss inhibitory effects of HAR on RA and its intracellular mechanisms using a type 2 collagen-induced arthritis (CIA) mouse model. METHODS: The anti-osteoporosis and anti-arthritic effects of HAR were evaluated on bone marrow macrophage in vitro and CIA in mice in vivo by obtaining clinical scores, measuring hind paw thickness and inflammatory cytokine levels, micro-CT and histopathological assessments, and cell-based assay. RESULTS: HAR markedly reduced the clinical score and incidence rate of CIA in both the prevention and therapy groups. Histological analysis demonstrated that HAR locally ameliorated the destruction of bone and cartilage and the formation of pannus. In this process, HAR decreased the expression of inflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-6, and IL-1ß in the serum of CIA mice. Additionally, HAR downregulated the expression of receptor activator of nuclear factor-κB ligand and upregulated that of osteoprotegerin. HAR suppressed systemic bone loss by inhibiting osteoclast differentiation and osteoclast marker gene expression in a CIA mouse model. CONCLUSIONS: Taken together, these findings show the beneficial effect of HAR on local symptoms and systemic bone erosion triggered by inflammatory arthritis.


Assuntos
Artrite Experimental , Artrite Reumatoide , Osteoporose , Animais , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Citocinas/metabolismo , Modelos Animais de Doenças , Glicosídeos/metabolismo , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Camundongos , Osteoclastos , Osteoporose/tratamento farmacológico , Piranos/metabolismo , Piranos/farmacologia , Piranos/uso terapêutico
16.
Front Endocrinol (Lausanne) ; 13: 932343, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909523

RESUMO

Bone is a highly dynamic tissue that undergoes continuous remodeling by bone resorbing osteoclasts and bone forming osteoblasts, a process regulated in large part by osteocytes. Dysregulation of these coupled catabolic and anabolic processes as in the case of menopause, type 2 diabetes mellitus, anorexia nervosa, and chronic kidney disease is known to increase fracture risk. Recent advances in the field of bone cell metabolism and bioenergetics have revealed that maintenance of the skeleton places a high energy demand on these cells involved in bone remodeling. These new insights highlight the reason that bone tissue is the beneficiary of a substantial proportion of cardiac output and post-prandial chylomicron remnants and requires a rich supply of nutrients. Studies designed for the specific purpose of investigating the impact of dietary modifications on bone homeostasis or that alter diet composition and food intake to produce the model can be found throughout the literature; however, confounding dietary factors are often overlooked in some of the preclinical models. This review will examine some of the common pre-clinical models used to study skeletal biology and its pathologies and the subsequent impact of various dietary factors on these model systems. Furthermore, the review will include how inadvertent effects of some of these dietary components can influence bone cell function and study outcomes.


Assuntos
Diabetes Mellitus Tipo 2 , Remodelação Óssea/fisiologia , Osso e Ossos , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Osteoclastos/metabolismo , Osteócitos/metabolismo
17.
FASEB J ; 36(9): e22471, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35959867

RESUMO

Autosomal dominant osteopetrosis type II (ADO2) is a heritable bone disease of impaired osteoclastic bone resorption caused by missense mutations in the chloride channel 7 (CLCN7) gene. Clinical features of ADO2 include fractures, osteomyelitis of jaw, vision loss, and in severe cases, bone marrow failure. Currently, there is no effective therapy for ADO2, and patients usually receive symptomatic treatments. Theoretically, bone marrow transplantation (BMT), which is commonly used in recessive osteopetrosis, could be used to treat ADO2, although the frequency of complications related to BMT is quite high. We created an ADO2 knock-in (p.G213R mutation) mouse model on the 129 genetic background, and their phenotypes mimic the human disease of ADO2. To test whether BMT could restore osteoclast function and rescue the bone phenotypes in ADO2 mice, we transplanted bone marrow cells from 6-8 weeks old male WT donor mice into recipient female ADO2 mice. Also, to determine whether age at the time of transplant may play a role in transplant success, we performed BMT in young (12-week-old) and old (9-month-old) ADO2 mice. Our data indicate that ADO2 mice transplanted with WT marrow achieved more than 90% engraftment up to 6 months post-transplantation at both young and old ages. The in-vivo DXA data revealed that young ADO2 mice transplanted with WT marrow had significantly lower whole body and spine areal bone mineral density (aBMD) at month 6 post-transplantation compared to the ADO2 control mice. The old ADO2 mice also displayed significantly lower whole body, femur, and spine aBMD at months 4 and 5 post-transplantation compared to the age-matched control mice. The in-vivo micro-CT data showed that ADO2 experimental mice transplanted with WT marrow had significantly lower BV/TV at months 2 and 4 post-transplantation compared to the ADO2 control mice at a young age. In contrast, ADO2 control and experimental mice displayed similar BV/TV values for all post-transplantation time points at old age. In addition, serum CTX was significantly higher at month 2 post-transplantation in both young and old ADO2 experimental mice compared to the ADO2 control mice. Serum P1NP levels in young ADO2 experimental mice were significantly higher at baseline and month 2 post-transplantation compared to the ADO2 control mice. These data suggest that BMT may provide, at least, some beneficial effect at both young and adult ages.


Assuntos
Reabsorção Óssea , Osteopetrose , Animais , Biomarcadores , Transplante de Medula Óssea , Canais de Cloreto/genética , Feminino , Humanos , Lactente , Masculino , Camundongos , Osteoclastos , Osteopetrose/genética , Osteopetrose/terapia
18.
Zoolog Sci ; 39(4)2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35960027

RESUMO

It is known that the bone matrix plays an important role in the response to physical stresses such as hypergravity and microgravity. In order to accurately analyze the response of bone to hypergravity and microgravity, a culture system under the conditions of coexistence of osteoclasts, osteoblasts, and bone matrix was earnestly desired. The teleost scale is a unique calcified organ in which osteoclasts, osteoblasts, and the two layers of bone matrix, i.e., a bony layer and a fibrillary layer, coexist. Therefore, we have developed in vitro organ culture systems of osteoclasts and osteoblasts with the intact bone matrix using goldfish scales. Using the scale culture system, we examined the effects of hypergravity with a centrifuge and simulated ground microgravity (g-µG) with a three-dimensional clinostat on osteoclasts and osteoblasts. Under 3-gravity (3G) loading for 1 day, osteoclastic marker mRNA expression levels decreased, while the mRNA expression of the osteoblastic marker increased. Upon 1 day of exposure, the simulated g-µG induced remarkable enhancement of osteoclastic marker mRNA expression, whereas the osteoblastic marker mRNA expression decreased. In response to these gravitational stimuli, osteoclasts underwent major morphological changes. By simulated g-µG treatments, morphological osteoclastic activation was induced, while osteoclastic deactivation was observed in the 3G-treated scales. In space experiments, the results that had been obtained with simulated g-µG were reproduced. RNA-sequencing analysis showed that osteoclastic activation was induced by the down-regulation of Wnt signaling under flight-microgravity. Thus, goldfish scales can be utilized as a bone model to analyze the responses of osteoclasts and osteoblasts to gravity.


Assuntos
Hipergravidade , Ausência de Peso , Animais , Carpa Dourada/genética , Carpa Dourada/metabolismo , Osteoblastos , Osteoclastos/metabolismo , RNA Mensageiro/genética
19.
J Vis Exp ; (185)2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35913187

RESUMO

With a decrease of bone mineral density, bones are more likely to fracture, thus negatively affecting a patient's quality of life. The growth and development of bones are mainly regulated by osteoblasts and osteoclasts. It has been widely accepted that osteoclasts are derived from bone marrow monocyte-macrophage cells (BMMs). BMMs and other hematopoietic stem cells are located in the bone marrow cavity. Therefore, isolating single stable BMMs from different and heterogeneous cell populations is a huge challenge. Here we present a protocol for the isolation of BMMs from SD rats, called the secondary adherence method. Adherent cells cultured for 24-48 h in primary culture were collected. Flow cytometric analysis showed that approximately 37.94% of the cells were CD11b/c+ (monocyte-macrophage surface antigen). Tartrate resistant acid phosphatase (TRAP) staining and western blot analysis demonstrated that BMMs could differentiate into osteoclasts in vitro. The above findings suggested that the secondary adherence cells could be considered as a suitable cellular model for osteoclast differentiation research.


Assuntos
Monócitos , Qualidade de Vida , Animais , Células da Medula Óssea , Diferenciação Celular , Células Cultivadas , Macrófagos/metabolismo , Monócitos/metabolismo , Osteoclastos , Ligante RANK/metabolismo , Ratos , Ratos Sprague-Dawley
20.
PLoS One ; 17(7): e0271730, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35862357

RESUMO

Childhood cancer survivors (CCS) are predisposed to the onset of osteoporosis (OP). It is known that iron overload induces osteoclasts (OCs) overactivity and that the iron chelator Deferasirox (DFX) can counteract it. The Cannabinoid Receptor type 2 (CB2) and the transient receptor potential vanilloid type-1 (TRPV1) are potential therapeutic targets for OP. In this study we isolated OCs from peripheral blood of 20 CCS and investigated osteoclast biomarkers expression and iron metabolism evaluating iron release by OCs and the expression of several molecules involved in its regulation. Moreover, we analyzed the effects of CB2 and TRPV1 stimulation in combination with DFX on osteoclast activity and iron metabolism. We observed, for the first time, an osteoclast hyperactivation in CCS suggesting a role for iron in its development. Moreover, we confirmed the well-known role of CB2 and TRPV1 receptors in bone metabolism, suggesting the receptors as possible key biomarkers of bone damage. Moreover, we demonstrated a promising synergism between pharmacological compounds, stimulating CB2 or inhibiting/desensitizing TRPV1 and DFX, in counteracting osteoclast overactivity in CCS to improve their quality of life.


Assuntos
Ferro , Neoplasias , Osteoporose , Receptor CB2 de Canabinoide , Canais de Cátion TRPV , Biomarcadores/metabolismo , Sobreviventes de Câncer , Criança , Humanos , Ferro/metabolismo , Neoplasias/metabolismo , Osteoclastos/metabolismo , Osteoporose/metabolismo , Qualidade de Vida , Receptor CB2 de Canabinoide/metabolismo , Canais de Cátion TRPV/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...