Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.014
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1344262, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559696

RESUMO

Obesity, a multifactorial disease with many complications, has become a global epidemic. Weight management, including dietary supplementation, has been confirmed to provide relevant health benefits. However, experimental evidence and mechanistic elucidation of dietary supplements in this regard are limited. Here, the weight loss efficacy of MHP, a commercial solid beverage consisting of mulberry leaf aqueous extract and Hippophae protein peptides, was evaluated in a high-fat high-fructose (HFF) diet-induced rat model of obesity. Body component analysis and histopathologic examination confirmed that MHP was effective to facilitate weight loss and adiposity decrease. Pathway enrichment analysis with differential metabolites generated by serum metabolomic profiling suggests that PPAR signal pathway was significantly altered when the rats were challenged by HFF diet but it was rectified after MHP intervention. RNA-Seq based transcriptome data also indicates that MHP intervention rectified the alterations of white adipose tissue mRNA expressions in HFF-induced obese rats. Integrated omics reveals that the efficacy of MHP against obesogenic adipogenesis was potentially associated with its regulation of PPARγ and FGFR1 signaling pathway. Collectively, our findings suggest that MHP could improve obesity, providing an insight into the use of MHP in body weight management.


Assuntos
Hippophae , Morus , Ratos , Animais , PPAR gama/genética , PPAR gama/metabolismo , Hippophae/metabolismo , Morus/metabolismo , Dieta Hiperlipídica/efeitos adversos , Obesidade/metabolismo , Tecido Adiposo Branco/metabolismo , Transdução de Sinais , Redução de Peso
2.
PLoS One ; 19(4): e0300022, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38573982

RESUMO

BACKGROUND: Inflammation is the common pathogenesis of coronary atherosclerosis disease (CAD) and rheumatoid arthritis (RA). Although it is established that RA increases the risk of CAD, the underlining mechanism remained indefinite. This study seeks to explore the molecular mechanisms of RA linked CAD and identify potential target gene for early prediction of CAD in RA patients. MATERIALS AND METHODS: The study utilized five raw datasets: GSE55235, GSE55457, GSE12021 for RA patients, and GSE42148 and GSE20680 for CAD patients. Gene Set Enrichment Analysis (GSEA) was used to investigate common signaling pathways associated with RA and CAD. Then, weighted gene co-expression network analysis (WGCNA) was performed on RA and CAD training datasets to identify gene modules related to single-sample GSEA (ssGSEA) scores. Overlapping module genes and differentially expressed genes (DEGs) were considered as co-susceptible genes for both diseases. Three hub genes were screened using a protein-protein interaction (PPI) network analysis via Cytoscape plug-ins. The signaling pathways, immune infiltration, and transcription factors associated with these hub genes were analyzed to explore the underlying mechanism connecting both diseases. Immunohistochemistry and qRT-PCR were conducted to validate the expression of the key candidate gene, PPARG, in macrophages of synovial tissue and arterial walls from RA and CAD patients. RESULTS: The study found that Fc-gamma receptor-mediated endocytosis is a common signaling pathway for both RA and CAD. A total of 25 genes were screened by WGCNA and DEGs, which are involved in inflammation-related ligand-receptor interactions, cytoskeleton, and endocytosis signaling pathways. The principal component analysis(PCA) and support vector machine (SVM) and receiver-operator characteristic (ROC) analysis demonstrate that 25 DEGs can effectively distinguish RA and CAD groups from normal groups. Three hub genes TUBB2A, FKBP5, and PPARG were further identified by the Cytoscape software. Both FKBP5 and PPARG were downregulated in synovial tissue of RA and upregulated in the peripheral blood of CAD patients and differential mRNAexpreesion between normal and disease groups in both diseases were validated by qRT-PCR.Association of PPARG with monocyte was demonstrated across both training and validation datasets in CAD. PPARG expression is observed in control synovial epithelial cells and foamy macrophages of arterial walls, but was decreased in synovial epithelium of RA patients. Its expression in foamy macrophages of atherosclerotic vascular walls exhibits a positive correlation (r = 0.6276, p = 0.0002) with CD68. CONCLUSION: Our findings suggest that PPARG may serve as a potentially predictive marker for CAD in RA patients, which provides new insights into the molecular mechanism underling RA linked CAD.


Assuntos
Artrite Reumatoide , Aterosclerose , Doença da Artéria Coronariana , Humanos , Artrite Reumatoide/genética , Aterosclerose/genética , Biologia Computacional , Doença da Artéria Coronariana/genética , Análise de Dados , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Inflamação , PPAR gama/genética
3.
Commun Biol ; 7(1): 429, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594496

RESUMO

The study aims to explore the effect of PPARγ signaling on ferroptosis and preeclampsia (PE) development. Serum and placental tissue are collected from healthy subjects and PE patients. The PPARγ and Nrf2 decreases in the PE. Rosiglitazone intervention reverses hypoxia-induced trophoblast ferroptosis and decreases lipid synthesis by regulating Nfr2 and SREBP1. Compared to the Hypoxia group, the migratory and invasive abilities enhance after rosiglitazone and ferr1 treatment. Rosiglitazone reduces the effect of hypoxia and erastin. The si-Nrf2 treatment attenuats the effects of rosiglitazone on proliferation, migration, and invasion. The si-Nrf2 does not affect SREBP1 expression. PPARγ agonists alleviates ferroptosis in the placenta of the PE rats. The study confirms that PPARγ signaling and ferroptosis-related indicators were dysregulated in PE. PPARγ/Nrf2 signaling affects ferroptosis by regulating lipid oxidation rather than SREBP1-mediated lipid synthesis. In conclusion, our study find that PPARγ can alleviate PE development by regulating lipid oxidation and ferroptosis.


Assuntos
Ferroptose , Pré-Eclâmpsia , Humanos , Feminino , Gravidez , Ratos , Animais , Rosiglitazona/farmacologia , Rosiglitazona/metabolismo , PPAR gama/metabolismo , Metabolismo dos Lipídeos , Placenta/metabolismo , Pré-Eclâmpsia/tratamento farmacológico , Pré-Eclâmpsia/prevenção & controle , Pré-Eclâmpsia/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Hipóxia/metabolismo , Lipídeos
4.
Physiol Res ; 73(1): 105-115, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466009

RESUMO

Although electrical muscle stimulation (EMS) of skeletal muscle effectively prevents muscle atrophy, its effect on the breakdown of muscle component proteins is unknown. In this study, we investigated the biological mechanisms by which EMS-induced muscle contraction inhibits disuse muscle atrophy progression. Experimental animals were divided into a control group and three experimental groups: immobilized (Im; immobilization treatment), low-frequency (LF; immobilization treatment and low-frequency muscle contraction exercise), and high-frequency (HF; immobilization treatment and high-frequency muscle contraction exercise). Following the experimental period, bilateral soleus muscles were collected and analyzed. Atrogin-1 and Muscle RING finger 1 (MuRF-1) mRNA expression levels were significantly higher for the experimental groups than for the control group but were significantly lower for the HF group than for the Im group. Peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) mRNA and protein expression levels in the HF group were significantly higher than those in the Im group, with no significant differences compared to the Con group. Both the Forkhead box O (FoxO)/phosphorylated FoxO and protein kinase B (AKT)/phosphorylated AKT ratios were significantly lower for the Im group than for the control group and significantly higher for the HF group than for the Im group. These results, the suppression of atrogin-1 and MuRF-1 expression for the HF group may be due to decreased nuclear expression of FoxO by AKT phosphorylation and suppression of FoxO transcriptional activity by PGC-1alpha. Furthermore, the number of muscle contractions might be important for effective EMS.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Fatores de Transcrição , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , PPAR gama/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/prevenção & controle , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Proteínas Musculares/metabolismo , RNA Mensageiro/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
5.
Lipids Health Dis ; 23(1): 76, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468335

RESUMO

BACKGROUND: Atherosclerosis (AS) is a persistent inflammatory condition triggered and exacerbated by several factors including lipid accumulation, endothelial dysfunction and macrophages infiltration. Nobiletin (NOB) has been reported to alleviate atherosclerosis; however, the underlying mechanism remains incompletely understood. METHODS: This study involved comprehensive bioinformatic analysis, including multidatabase target prediction; GO and KEGG enrichment analyses for function and pathway exploration; DeepSite and AutoDock for drug binding site prediction; and CIBERSORT for immune cell involvement. In addition, target intervention was verified via cell scratch assays, oil red O staining, ELISA, flow cytometry, qRT‒PCR and Western blotting. In addition, by establishing a mouse model of AS, it was demonstrated that NOB attenuated lipid accumulation and the extent of atherosclerotic lesions. RESULTS: (1) Altogether, 141 potentially targetable genes were identified through which NOB could intervene in atherosclerosis. (2) Lipid and atherosclerosis, fluid shear stress and atherosclerosis may be the dominant pathways and potential mechanisms. (3) ALB, AKT1, CASP3 and 7 other genes were identified as the top 10 target genes. (4) Six genes, including PPARG, MMP9, SRC and 3 other genes, were related to the M0 fraction. (5) CD36 and PPARG were upregulated in atherosclerosis samples compared to the normal control. (6) By inhibiting lipid uptake in RAW264.7 cells, NOB prevents the formation of foam cell. (7) In RAW264.7 cells, the inhibitory effect of oxidized low-density lipoprotein on foam cells formation and lipid accumulation was closely associated with the PPARG signaling pathway. (8) In vivo validation showed that NOB significantly attenuated intra-arterial lipid accumulation and macrophage infiltration and reduced CD36 expression. CONCLUSIONS: Nobiletin alleviates atherosclerosis by inhibiting lipid uptake via the PPARG/CD36 pathway.


Assuntos
Aterosclerose , Flavonas , PPAR gama , Animais , Camundongos , PPAR gama/genética , PPAR gama/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Macrófagos , Células Espumosas , Lipoproteínas LDL/farmacologia , Antígenos CD36/genética , Antígenos CD36/metabolismo
6.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473849

RESUMO

Natural compounds such as curcumin, a polyphenolic compound derived from the rhizome of turmeric, have gathered remarkable scientific interest due to their diverse metabolic benefits including anti-obesity potential. However, curcumin faces challenges stemming from its unfavorable pharmacokinetic profile. To address this issue, synthetic curcumin derivatives aimed at enhancing the biological efficacy of curcumin have previously been developed. In silico modelling techniques have gained significant recognition in screening synthetic compounds as drug candidates. Therefore, the primary objective of this study was to assess the pharmacokinetic and pharmacodynamic characteristics of three synthetic derivatives of curcumin. This evaluation was conducted in comparison to curcumin, with a specific emphasis on examining their impact on adipogenesis, inflammation, and lipid metabolism as potential therapeutic targets of obesity mechanisms. In this study, predictive toxicity screening confirmed the safety of curcumin, with the curcumin derivatives demonstrating a safe profile based on their LD50 values. The synthetic curcumin derivative 1A8 exhibited inactivity across all selected toxicity endpoints. Furthermore, these compounds were deemed viable candidate drugs as they adhered to Lipinski's rules and exhibited favorable metabolic profiles. Molecular docking studies revealed that both curcumin and its synthetic derivatives exhibited favorable binding scores, whilst molecular dynamic simulations showed stable binding with peroxisome proliferator-activated receptor gamma (PPARγ), csyclooxygenase-2 (COX2), and fatty acid synthase (FAS) proteins. The binding free energy calculations indicated that curcumin displayed potential as a strong regulator of PPARγ (-60.2 ± 0.4 kcal/mol) and FAS (-37.9 ± 0.3 kcal/mol), whereas 1A8 demonstrated robust binding affinity with COX2 (-64.9 ± 0.2 kcal/mol). In conclusion, the results from this study suggest that the three synthetic curcumin derivatives have similar molecular interactions to curcumin with selected biological targets. However, in vitro and in vivo experimental studies are recommended to validate these findings.


Assuntos
Curcumina , Humanos , Curcumina/farmacologia , Simulação de Acoplamento Molecular , PPAR gama/metabolismo , Ciclo-Oxigenase 2/metabolismo , Simulação de Dinâmica Molecular , Obesidade
7.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474201

RESUMO

In recent years, the potent influence of tocotrienol (T3) on diminishing blood glucose and lipid concentrations in both Mus musculus (rats) and Homo sapiens (humans) has been established. However, the comprehensive exploration of tocotrienol's hypolipidemic impact and the corresponding mechanisms in aquatic species remains inadequate. In this study, we established a zebrafish model of a type 2 diabetes mellitus (T2DM) model through high-fat diet administration to zebrafish. In the T2DM zebrafish, the thickness of ocular vascular walls significantly increased compared to the control group, which was mitigated after treatment with T3. Additionally, our findings demonstrate the regulatory effect of T3 on lipid metabolism, leading to the reduced synthesis and storage of adipose tissue in zebrafish. We validated the expression patterns of genes relevant to these processes using RT-qPCR. In the T2DM model, there was an almost two-fold upregulation in pparγ and cyp7a1 mRNA levels, coupled with a significant downregulation in cpt1a mRNA (p < 0.01) compared to the control group. The ELISA revealed that the protein expression levels of Pparγ and Rxrα exhibited a two-fold elevation in the T2DM group relative to the control. In the T3-treated group, Pparγ and Rxrα protein expression levels consistently exhibited a two-fold decrease compared to the model group. Lipid metabolomics showed that T3 could affect the metabolic pathways of zebrafish lipid regulation, including lipid synthesis and decomposition. We provided experimental evidence that T3 could mitigate lipid accumulation in our zebrafish T2DM model. Elucidating the lipid-lowering effects of T3 could help to minimize the detrimental impacts of overfeeding in aquaculture.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperlipidemias , Tocotrienóis , Humanos , Camundongos , Ratos , Animais , Tocotrienóis/metabolismo , Peixe-Zebra/metabolismo , Dieta Hiperlipídica , Hiperlipidemias/metabolismo , Óleo de Farelo de Arroz , Diabetes Mellitus Tipo 2/metabolismo , PPAR gama/metabolismo , RNA Mensageiro/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo
8.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474216

RESUMO

Excessive lipid accumulation in adipocytes is a primary contributor to the development of metabolic disorders, including obesity. The consumption of bioactive compounds derived from natural sources has been recognized as being safe and effective in preventing and alleviating obesity. Therefore, we aimed to explore the antilipidemic effects of pennogenin 3-O-ß-chacotrioside (P3C), a steroid glycoside, on hypertrophied 3T3-L1 adipocytes. Oil Red O and Nile red staining demonstrated a P3C-induced reduction in lipid droplet accumulation. Additionally, the increased expression of adipogenic and lipogenic factors, including PPARγ and C/EBPα, during the differentiation process was significantly decreased by P3C treatment at both the protein and mRNA levels. Furthermore, P3C treatment upregulated the expression of fatty acid oxidation-related genes such as PGC1α and CPT1a. Moreover, mitochondrial respiration and ATP generation increased following P3C treatment, as determined using the Seahorse XF analyzer. P3C treatment also increased the protein expression of mitochondrial oxidative phosphorylation in hypertrophied adipocytes. Our findings suggest that P3C could serve as a natural lipid-lowering agent, reducing lipogenesis and enhancing mitochondrial oxidative capacity. Therefore, P3C may be a promising candidate as a therapeutic agent for obesity-related diseases.


Assuntos
Adipogenia , Metabolismo dos Lipídeos , Camundongos , Animais , Adipogenia/genética , Obesidade/metabolismo , Hipertrofia , Lipídeos/farmacologia , Estresse Oxidativo , Células 3T3-L1 , PPAR gama/metabolismo
9.
Pestic Biochem Physiol ; 199: 105757, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458660

RESUMO

Fenhexamid are fungicides that act against plant pathogens by inhibiting sterol biosynthesis. Nonetheless, it can trigger endocrine disruption and promote breast cancer cell growth. In a recent study, we investigated the mechanism underlying the lipid accumulation induced by fenhexamid hydroxyanilide fungicides in 3 T3-L1 adipocytes. To examine the estrogen receptor alpha (ERα)-agonistic effect, ER transactivation assay using the ERα-HeLa-9903 cell line was applied, and fenhexamid-induced ERα agonist effect was confirmed. Further confirmation that ERα-dependent lipid accumulation occurred was provided by treating 3 T3-L1 adipocytes with Methyl-piperidino-pyrazole hydrate (MPP), an ERα-selective antagonist. Fenhexamid mimicked the actions of ERα agonists and impacted lipid metabolism, and its mechanism involves upregulation of the expression of transcription factors that facilitate adipogenesis and lipogenesis. Additionally, it stimulated the expression of peroxisome proliferator-activated receptor (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), fatty acid synthase (FAS), and sterol regulatory element-binding protein 1 (SREBP1) and significantly elevated the expression of fatty acid-binding protein 4 (FABP4). In contrast, in combination with an ERα-selective antagonist, fenhexamid suppressed the expression of adipogenic/lipogenic transcription factors. These results suggest that fenhexamid affects the endocrine system and leads to lipid accumulation by interfering with processes influenced by ERα activation.


Assuntos
Amidas , Receptor alfa de Estrogênio , Fungicidas Industriais , Camundongos , Animais , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Fungicidas Industriais/toxicidade , Fungicidas Industriais/metabolismo , Adipócitos/metabolismo , Adipogenia , Metabolismo dos Lipídeos , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/farmacologia , Lipídeos , Células 3T3-L1 , PPAR gama/metabolismo
10.
J Agric Food Chem ; 72(10): 5452-5462, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38428036

RESUMO

Deoxynivalenol (DON) is a common mycotoxin that induces intestinal inflammation and oxidative damage in humans and animals. Given that lithocholic acid (LCA) has been suggested to inhibit intestinal inflammation, we aimed to investigate the protective effects of LCA on DON-exposed porcine intestinal epithelial IPI-2I cells and the underlying mechanisms. Indeed, LCA rescued DON-induced cell death in IPI-2I cells and reduced DON-stimulated inflammatory cytokine levels and oxidative stress. Importantly, the nuclear receptor PPARγ was identified as a key transcriptional factor involved in the DON-induced inflammation and oxidative stress processes in IPI-2I cells. The PPARγ function was found compromised, likely due to the hyperphosphorylation of the p38 and ERK signaling pathways. In contrast, the DON-induced inflammatory responses and oxidative stress were restrained by LCA via PPARγ-mediated reprogramming of the core inflammatory and antioxidant genes. Notably, the PPARγ-modulated transcriptional regulations could be attributed to the altered recruitments of coactivator SRC-1/3 and corepressor NCOR1/2, along with the modified histone marks H3K27ac and H3K18la. This study emphasizes the protective actions of LCA on DON-induced inflammatory damage and oxidative stress in intestinal epithelial cells via PPARγ-mediated epigenetically transcriptional reprogramming, including histone acetylation and lactylation.


Assuntos
Ácido Litocólico , PPAR gama , Tricotecenos , Humanos , Animais , Suínos , PPAR gama/metabolismo , Ácido Litocólico/efeitos adversos , Ácido Litocólico/metabolismo , Células Epiteliais/metabolismo , Estresse Oxidativo , Inflamação/metabolismo
11.
Sci Rep ; 14(1): 6656, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509237

RESUMO

The feed-forward loop between the transcription factors Ppar-gamma and C/ebp-alpha is critical for lineage commitment during adipocytic differentiation. Ppar-gamma interacts with epigenetic cofactors to activate C/ebp-alpha and the downstream adipocytic gene expression program. Therefore, knowledge of the epigenetic cofactors associated with Ppar-gamma, is central to understanding adipocyte differentiation in normal differentiation and disease. We found that Prmt6 is present with Ppar-gamma on the Ppar-gamma and C/ebp-alpha promoter. It contributes to the repression of C/ebp-alpha expression, in part through its ability to induce H3R2me2a. During adipocyte differentiation, Prmt6 expression is reduced and the methyltransferase leaves the promoters. As a result, the expression of Ppar-gamma and C/ebp-alpha is upregulated and the adipocytic gene expression program is established. Inhibition of Prmt6 by a small molecule enhances adipogenesis, opening up the possibility of epigenetic manipulation of differentiation. Our data provide detailed information on the molecular mechanism controlling the Ppar-gamma-C/ebp-alpha feed-forward loop. Thus, they advance our understanding of adipogenesis in normal and aberrant adipogenesis.


Assuntos
Adipogenia , Fatores de Transcrição , Camundongos , Animais , Fatores de Transcrição/metabolismo , Adipogenia/genética , PPAR alfa/metabolismo , Regulação da Expressão Gênica , Adipócitos/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Diferenciação Celular/genética , PPAR gama/genética , PPAR gama/metabolismo , Células 3T3-L1
12.
Biochem Pharmacol ; 222: 116097, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428827

RESUMO

OBJECTIVES: Chemoprevention, consisting of the administration of natural and/or synthetic compounds, appears to be an alternative way to common therapeutical approaches to preventing the occurrence of various cancers. Cladosporols, secondary metabolites from Cladosporium tenuissimum, showed a powerful ability in controlling human colon cancer cell proliferation through a peroxisome proliferator-activated receptor gamma (PPARγ)-mediated modulation of gene expression. Hence, we carried out experiments to verify the anticancer properties of cladosporols in human prostate cancer cells. Prostate cancer represents one of the most widespread tumors in which several risk factors play a role in determining its high mortality rate in men. MATERIALS AND METHODS: We assessed, by viability assays, PPARγ silencing and overexpression experiments and western blotting analysis, the anticancer properties of cladosporols in cancer prostate cell lines. RESULTS: Cladosporols A and B selectively inhibited the proliferation of human prostate PNT-1A, LNCaP and PC-3 cells and their most impactful antiproliferative ability towards PC-3 prostate cancer cells, was mediated by PPARγ modulation. Moreover, the anticancer ability of cladosporols implied a sustained apoptosis. Finally, cladosporols negatively regulated the expression of enzymes involved in the biosynthesis of fatty acids and cholesterol, thus enforcing the relationship between prostate cancer development and lipid metabolism dysregulation. CONCLUSION: This is the first work, to our knowledge, in which the role of cladosporols A and B was disclosed in prostate cancer cells. Importantly, the present study highlighted the potential of cladosporols as new therapeutical tools, which, interfering with cell proliferation and lipid pathway dysregulation, may control prostate cancer initiation and progression.


Assuntos
Naftalenos , PPAR gama , Neoplasias da Próstata , Masculino , Humanos , PPAR gama/metabolismo , Células PC-3 , Neoplasias da Próstata/metabolismo , Apoptose , Proliferação de Células , Lipídeos , Linhagem Celular Tumoral
13.
Environ Sci Technol ; 58(11): 4904-4913, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38437168

RESUMO

The Yangtze River fishery resources have declined strongly over the past few decades. One suspected reason for the decline in fishery productivity, including silver carp (Hypophthalmichthys molitrix), has been linked to organophosphate esters (OPEs) contaminant exposure. In this study, the adverse effect of OPEs on lipid metabolism in silver carp captured from the Yangtze River was examined, and our results indicated that muscle concentrations of the OPEs were positively associated with serum cholesterol and total lipid levels. In vivo laboratory results revealed that exposure to environmental concentrations of OPEs significantly increased the concentrations of triglyceride, cholesterol, and total lipid levels. Lipidome analysis further confirmed the lipid metabolism dysfunction induced by OPEs, and glycerophospholipids and sphingolipids were the most affected lipids. Hepatic transcriptomic analysis found that OPEs caused significant alterations in the transcription of genes involved in lipid metabolism. Pathways associated with lipid homeostasis, including the peroxisome proliferator-activated receptor (PPAR) signal pathway, cholesterol metabolism, fatty acid biosynthesis, and steroid biosynthesis, were significantly changed. Furthermore, the affinities of OPEs were different, but the 11 OPEs tested could bind with PPARγ, suggesting that OPEs could disrupt lipid metabolism by interacting with PPARγ. Overall, this study highlighted the harmful effects of OPEs on wild fish and provided mechanistic insights into OPE-induced metabolic disorders.


Assuntos
Carpas , Retardadores de Chama , Doenças Metabólicas , Animais , Rios , PPAR gama , Ésteres/análise , Organofosfatos/toxicidade , Organofosfatos/análise , Colesterol/análise , Lipídeos , Retardadores de Chama/análise , China , Monitoramento Ambiental/métodos
14.
Toxicol Appl Pharmacol ; 484: 116883, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38437959

RESUMO

BACKGROUND: Chemotherapy-induced peripheral neuropathy (CIPN) reduces the overall quality of life and leads to interruption of chemotherapy. Ursolic acid, a triterpenoid naturally which presents in fruit peels and in many herbs and spices, can function as a peroxisome proliferator-activated receptor γ (PPARγ) agonist, and has been widely used as an herbal medicine with a wide spectrum of pharmacological activities, including anti-cancer, anti-inflammatory and neuroprotective effect. METHODS: We used a phenotypic drug screening approach to identify ursolic acid as a potential neuroprotective drug in vitro and in vivo and carried out additional biochemical experiments to identify its mechanism of action. RESULTS: Our study demonstrated that ursolic acid reduced neurotoxicity and cell apoptosis induced by pacilitaxel, resulting in an improvement of CIPN. Moreover, we explored the potential mechanisms of ursolic acid on CIPN. As a result, ursolic acid inhibited CHOP (C/EBP Homologous Protein) expression, indicating the endoplasmic reticulum (ER) stress suppression, and regulating CHOP related apoptosis regulator (the Bcl2 family) to reverse pacilitaxel induced apoptosis. Moreover, we showed that the therapeutic effect of ursolic acid on the pacilitaxel-induced peripheral neuropathy is PPARγ dependent. CONCLUSIONS: Taken together, the present study suggests ursolic acid has potential as a new PPARγ agonist targeting ER stress-related apoptotic pathways to ameliorate pacilitaxel-induced peripheral neuropathic pain and nerve injury, providing new clinical therapeutic method for CIPN.


Assuntos
Neuralgia , Paclitaxel , Humanos , PPAR gama , Qualidade de Vida , Neuralgia/induzido quimicamente
15.
Sci Rep ; 14(1): 6643, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503767

RESUMO

The utilization of kidneys from donors with acute kidney injury (AKI) is often limited by unpredictable post-transplantation outcomes. The aim of our study was to identify protein mediators implicated in either recovery or failure of these organs. Forty kidney biopsies from donors with (20) and without AKI (20) were selected and then subdivided according to the post-transplant outcome defined as a threshold of 45 ml/min for the eGFR at 1 year from transplantation. Tissue homogenates were analysed by western blot to assess how the levels of 17 pre-selected proteins varied across the four groups. Samples from AKI kidneys with a poor outcome showed a fourfold increase in the levels of PPARg and twofold reduction of STAT1 compared to the other groups (p < 0.05). On the contrary, antioxidant enzymes including TRX1 and PRX3 were increased in the AKI kidneys with a good outcome (p < 0.05). An opposite trend was observed for the detoxifying enzyme GSTp which was significantly increased in the AKI group with poor versus good outcome (p < 0.05). The importance of lipid metabolism (PPARg) and inflammatory signals (STAT1) in the function recovery of these kidneys hints to the therapeutical targeting of the involved pathways in the setting of organ reconditioning.


Assuntos
Injúria Renal Aguda , Transplante de Rim , Humanos , Transplante de Rim/efeitos adversos , PPAR gama , Sobrevivência de Enxerto , Doadores de Tecidos , Rim/patologia , Injúria Renal Aguda/patologia , Biópsia , Estudos Retrospectivos
16.
Braz J Med Biol Res ; 57: e13235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38511769

RESUMO

The imbalance between pro-inflammatory M1 and anti-inflammatory M2 macrophages plays a critical role in the pathogenesis of sepsis-induced acute lung injury (ALI). Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) may modulate macrophage polarization toward the M2 phenotype by altering mitochondrial activity. This study aimed to investigate the role of the PGC-1α agonist pioglitazone (PGZ) in modulating sepsis-induced ALI. A mouse model of sepsis-induced ALI was established using cecal ligation and puncture (CLP). An in vitro model was created by stimulating MH-S cells with lipopolysaccharide (LPS). qRT-PCR was used to measure mRNA levels of M1 markers iNOS and MHC-II and M2 markers Arg1 and CD206 to evaluate macrophage polarization. Western blotting detected expression of peroxisome proliferator-activated receptor gamma (PPARγ) PGC-1α, and mitochondrial biogenesis proteins NRF1, NRF2, and mtTFA. To assess mitochondrial content and function, reactive oxygen species levels were detected by dihydroethidium staining, and mitochondrial DNA copy number was measured by qRT-PCR. In the CLP-induced ALI mouse model, lung tissues exhibited reduced PGC-1α expression. PGZ treatment rescued PGC-1α expression and alleviated lung injury, as evidenced by decreased lung wet-to-dry weight ratio, pro-inflammatory cytokine secretion (tumor necrosis factor-α, interleukin-1ß, interleukin-6), and enhanced M2 macrophage polarization. Mechanistic investigations revealed that PGZ activated the PPARγ/PGC-1α/mitochondrial protection pathway to prevent sepsis-induced ALI by inhibiting M1 macrophage polarization. These results may provide new insights and evidence for developing PGZ as a potential ALI therapy.


Assuntos
Lesão Pulmonar Aguda , Sepse , Camundongos , Animais , Pioglitazona , Regulação para Cima , PPAR gama/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/prevenção & controle , Sepse/complicações , Lipopolissacarídeos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
17.
Brain Res Bull ; 209: 110918, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432497

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a leading cause of high mortality and disability worldwide. Overactivation of astrocytes and overexpression of inflammatory responses in the injured brain are characteristic pathological features of TBI. Rosiglitazone (ROS) is a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist known for its anti-inflammatory activity. However, the relationship between the inflammatory response involved in ROS treatment and astrocyte A1 polarization remains unclear. OBJECTIVE: This study aimed to investigate whether ROS treatment improves dysfunction and astrocyte A1 polarization induced after TBI and to elucidate the underlying mechanisms of these functions. METHODS: SD rats were randomly divided into sham operation group, TBI group, TBI+ROS group, and TBI+ PPAR-γ antagonist group (GW9662 + TBI). The rat TBI injury model was prepared by the CCI method; brain water content test and wire grip test scores suggested the prognosis; FJB staining showed the changes of ROS on the morphology and number of neurons in the peripheral area of cortical injury; ELISA, immunofluorescence staining, and western blotting analysis revealed the effects of ROS on inflammatory response and astrocyte activation with the degree of A1 polarization after TBI. RESULTS: Brain water content, inflammatory factor expression, and astrocyte activation in the TBI group were higher than those in the sham-operated group (P < 0.05); compared with the TBI group, the expression of the above indexes in the ROS group was significantly lower (P < 0.05). Compared with the TBI group, PPAR-γ content was significantly higher and C3 content was considerably lower in the ROS group (P < 0.05); compared with the TBI group, PPAR-γ content was significantly lower and C3 content was substantially higher in the inhibitor group (P < 0.05). CONCLUSION: ROS can exert neuroprotective effects by inhibiting astrocyte A1 polarization through the PPAR-γ pathway based on the reduction of inflammatory factors and astrocyte activation in the brain after TBI.


Assuntos
Astrócitos , Lesões Encefálicas Traumáticas , Hipoglicemiantes , Doenças Neuroinflamatórias , Rosiglitazona , Animais , Ratos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/patologia , Doenças Neuroinflamatórias/tratamento farmacológico , PPAR gama/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Rosiglitazona/farmacologia , Rosiglitazona/uso terapêutico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Masculino
18.
Pharmacol Res ; 202: 107136, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460778

RESUMO

CREB-regulated transcription coactivator 1 (CRTC1), a pivotal synaptonuclear messenger, regulates synaptic plasticity and transmission to prevent depression. Despite exhaustive investigations into CRTC1 mRNA reductions in the depressed mice, the regulatory mechanisms governing its transcription remain elusive. Consequently, exploring rapid but non-toxic CRTC1 inducers at the transcriptional level is important for resisting depression. Here, we demonstrate the potential of D-arabinose, a unique monosaccharide prevalent in edible-medicinal plants, to rapidly enter the brain and induce CRTC1 expression, thereby eliciting rapid-acting and persistent antidepressant responses in chronic restrain stress (CRS)-induced depressed mice. Mechanistically, D-arabinose induces the expressions of peroxisome proliferator-activated receptor gamma (PPARγ) and transcription factor EB (TFEB), thereby activating CRTC1 transcription. Notably, we elucidate the pivotal role of the acetyl-CoA synthetase short-chain family member 2 (ACSS2) as an obligatory mediator for PPARγ and TFEB to potentiate CRTC1 transcription. Furthermore, D-arabinose augments ACSS2-dependent CRTC1 transcription by activating AMPK through lysosomal AXIN-LKB1 pathway. Correspondingly, the hippocampal down-regulations of ACSS2, PPARγ or TFEB alone failed to reverse CRTC1 reductions in CRS-exposure mice, ultimately abolishing the anti-depressant efficacy of D-arabinose. In summary, our study unveils a previously unexplored role of D-arabinose in activating the ACSS2-PPARγ/TFEB-CRTC1 axis, presenting it as a promising avenue for the prevention and treatment of depression.


Assuntos
Arabinose , PPAR gama , Camundongos , Animais , PPAR gama/genética , PPAR gama/metabolismo , Arabinose/farmacologia , Arabinose/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Encéfalo/metabolismo
19.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542198

RESUMO

Glioblastoma multiforme therapy remains a significant challenge since there is a lack of effective treatment for this cancer. As most of the examined gliomas express or overexpress cyclooxygenase-2 (COX-2) and peroxisome proliferator-activated receptors γ (PPARγ), we decided to use these proteins as therapeutic targets. Toxicity, antiproliferative, proapoptotic, and antimigratory activity of COX-2 inhibitor (celecoxib-CXB) and/or PPARγ agonist (Fmoc-L-Leucine-FL) was examined in vitro on temozolomide resistant U-118 MG glioma cell line and comparatively on BJ normal fibroblasts and immortalized HaCaT keratinocytes. The in vivo activity of both agents was studied on C. elegans nematode. Both drugs effectively destroyed U-118 MG glioma cells via antiproliferative, pro-apoptotic, and anti-migratory effects in a concentration range 50-100 µM. The mechanism of action of CXB and FL against glioma was COX-2 and PPARγ dependent and resulted in up-regulation of these factors. Unlike reports by other authors, we did not observe the expected synergistic or additive effect of both drugs. Comparative studies on normal BJ fibroblast cells and immortalized HaCaT keratinocytes showed that the tested drugs did not have a selective effect on glioma cells and their mechanism of action differs significantly from that observed in the case of glioma. HaCaTs did not react with concomitant changes in the expression of COX-2 and PPARγ and were resistant to FL. Safety tests of repurposing drugs used in cancer therapy tested on C. elegans nematode indicated that CXB, FL, or their mixture at a concentration of up to 100 µM had no significant effect on the entire nematode organism up to 4th day of incubation. After a 7-day treatment, CXB significantly shortened the lifespan of C. elegans at 25-400 µM concentration and body length at 50-400 µM concentration.


Assuntos
Caenorhabditis elegans , Glioblastoma , Leucina/análogos & derivados , Animais , Humanos , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Caenorhabditis elegans/metabolismo , Ciclo-Oxigenase 2/metabolismo , PPAR gama/metabolismo , Sulfonamidas/farmacologia , Pirazóis/farmacologia , Apoptose , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Linhagem Celular , Glioblastoma/tratamento farmacológico , Linhagem Celular Tumoral
20.
Nutrients ; 16(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542756

RESUMO

Obesity is a global health concern. Recent research has suggested that the development of anti-obesity ingredients and functional foods should focus on natural products without side effects. We examined the effectiveness and underlying mechanisms of Brassica juncea extract (BJE) in combating obesity via experiments conducted in both in vitro and in vivo obesity models. In in vitro experiments conducted in a controlled environment, the application of BJE demonstrated the ability to suppress the accumulation of lipids induced by MDI in 3T3-L1 adipocytes. Additionally, it downregulated adipogenic-related proteins peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer-binding protein-α (C/EBP-α), adipocyte protein 2 (aP2), and lipid synthesis-related protein acetyl-CoA carboxylase (ACC). It also upregulated the heat generation protein peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) and fatty acid oxidation protein carnitine palmitoyltransferase-1 (CPT-1). The oral administration of BJE decreased body weight, alleviated liver damage, and inhibited the accumulation of lipids in mice with diet-induced obesity resulting from a high-fat diet. The inhibition of lipid accumulation by BJE in vivo was associated with a decreased expression of adipogenic and lipid synthesis proteins and an increased expression of heat generation and fatty acid oxidation proteins. BJE administration improved obesity by decreasing adipogenesis and activating heat generation and fatty acid oxidation in 3T3-L1 cells and in HFD-induced obese C57BL/6J mice. These results suggest that BJE shows potential as a natural method for preventing metabolic diseases associated with obesity.


Assuntos
Fármacos Antiobesidade , Mostardeira , Camundongos , Animais , Células 3T3-L1 , Mostardeira/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Fármacos Antiobesidade/uso terapêutico , Obesidade/metabolismo , Adipogenia , Lipídeos/farmacologia , Ácidos Graxos/farmacologia , PPAR gama/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...