Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.779
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 124017, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38354677

RESUMO

Nanoparticles are a boon for humanity because of their improved functionality and unlimited potential applications. Considering this significance, the proposed study introduced a simple, fast and eco-friendly method for synthesis of fluorescent silver nanoparticles (Ag-NPs) using Panax Ginseng root extract as a reducing and capping agent. Synthesis of Ag-NPs was performed in one step within three minutes utilizing microwave irradiation. The resulting Ag-NPs were characterized using various microscopic and spectroscopic techniques such as, Transmission Electron Microscope (TEM), UV/Visible spectroscopy, Fourier Transform Infrared Spectroscopy(FTIR) and Energy Dispersive X-ray analysis (EDX). The prepared Ag-NPs, which act as a fluorescent nano-probe with an emission band at 416 nm after excitation at 331 nm, were used to assay nilvadipine (NLV) spectrofluorimetrically in its pharmaceutical dosage form with good sensitivity and reproducibility. The proposed study is based on the ability of NLV to quantitatively quench the native Ag-NPs fluorescence, forming a ground state complex as a result of static quenching and an inner filter mechanism. The suggested approach displayed a satisfactory linear relationship throughout a concentration range of 5.0 µM - 100.0 µM, with LOD and LOQ values of 1.18 µM and 3.57 µM, respectively. Validation of the suggested approach was examined in accordance with ICH recommendations. In addition, the anti-bacterial and anti-fungal activities of the prepared nanoparticles were investigated, and they demonstrated effective anti-microbial activities and opened a future prospective to combat future antibiotic resistance. Finally, in-vitro cytotoxicity assay of Ag-NPs against normal and cancerous human cell lines was studied using MTT assay. The results proved the potential use of the produced Ag-NPs as an adjunct to anticancer treatment or for drug delivery without significantly harming healthy human cells.


Assuntos
Antineoplásicos , Nanopartículas Metálicas , Nifedipino/análogos & derivados , Panax , Humanos , Prata/farmacologia , Prata/química , Corantes Fluorescentes/farmacologia , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Bactérias , Antibacterianos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Testes de Sensibilidade Microbiana
2.
Plant Sci ; 341: 112022, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311250

RESUMO

Ginseng is a perennial herb of the genus Panax in the family Araliaceae as one of the most important traditional medicine. Genomic studies of ginseng assist in the systematic discovery of genes related to bioactive ginsenosides biosynthesis and resistance to stress, which are of great significance in the conservation of genetic resources and variety improvement. The transcriptome reflects the difference and consistency of gene expression, and transcriptomics studies of ginseng assist in screening ginseng differentially expressed genes to further explore the powerful gene source of ginseng. Protein is the ultimate bearer of ginseng life activities, and proteomic studies of ginseng assist in exploring the biosynthesis and regulation of secondary metabolites like ginsenosides and the molecular mechanism of ginseng adversity adaptation at the overall level. In this review, we summarize the current status of ginseng research in genomics, transcriptomics and proteomics, respectively. We also discuss and look forward to the development of ginseng genome allele mapping, ginseng spatiotemporal, single-cell transcriptome, as well as ginseng post-translational modification proteome. We hope that this review will contribute to the in-depth study of ginseng and provide a reference for future analysis of ginseng from a systems biology perspective.


Assuntos
Ginsenosídeos , Panax , Panax/genética , Proteômica , Perfilação da Expressão Gênica , Genoma de Planta , Raízes de Plantas/metabolismo
3.
Drug Des Devel Ther ; 18: 549-566, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419811

RESUMO

Introduction: Tacrine, an FDA-approved acetylcholinesterase inhibitor, has shown efficacy in treating Alzheimer's disease, but its clinical use is limited by hepatotoxicity. This study investigates the protective effects of red ginseng against tacrine-induced hepatotoxicity, focusing on oxidative stress. Methods: A network depicting the interaction between compounds and targets was constructed for RG. Effect of RG was determined by MTT and FACS analysis with cells stained by rhodamine 123. Proteins were extracted and subjected to immunoblotting for apoptosis-related proteins. Results: The outcomes of the network analysis revealed a significant association, with 20 out of 82 identified primary RG targets aligning with those involved in oxidative liver damage including notable interactions within the AMPK pathway. in vitro experiments showed that RG, particularly at 1000µg/mL, mitigated tacrine-induced apoptosis and mitochondrial damage, while activating the LKB1-mediated AMPK pathway and Hippo-Yap signaling. In mice, RG also protected the liver injury induced by tacrine, as similar protective effects to silymarin, a well-known drug for liver toxicity protection. Discussion: Our study reveals the potential of RG in mitigating tacrine-induced hepatotoxicity, suggesting the administration of natural products like RG to reduce toxicity in Alzheimer's disease treatment.


Assuntos
Doença de Alzheimer , Doença Hepática Induzida por Substâncias e Drogas , Panax , Camundongos , Animais , Tacrina/farmacologia , Tacrina/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Acetilcolinesterase/metabolismo , Farmacologia em Rede , Proteínas Quinases Ativadas por AMP , Inibidores da Colinesterase/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle
4.
Appl Microbiol Biotechnol ; 108(1): 207, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353757

RESUMO

Compound K (CK), a ginsenoside with high bioavailability, is present at low levels in wild-simulated ginseng leaves (WSGL). WSGL contains the CK precursors, Rd and F2, in amounts up to 26.4 ± 0.4 and 24.1 ± 1.9 mg/g extract, respectively. In this study, CK production in WGSL reached 25.9 ± 1.0 mg/g extract following treatment with Viscozyme, Celluclast 1.5 L, Pectinex Ultra SP-L, and their combination. The antioxidant activities indicated by oxygen radical absorbance capacity, ferric reducing antioxidant power, and ABTS- and DPPH radical scavenging activity of enzyme-treated WSGL were enhanced 1.69-, 2.51-, 2.88-, and 1.80-fold, respectively, compared to non-treated WSGL. Furthermore, the CK-enriched WSGL demonstrated a 1.94-fold decrease in SA-ß-galactosidase expression in human dermal fibroblasts and a 3.8-fold enhancement of inhibition of nitric oxide release in lipopolysaccharide-induced RAW 264.7 cells relative to non-treated WSGL. Consequently, WSGL subjected to enzymatic upcycling has potential as a functional material in the food and pharmaceutical industries.


Assuntos
Ginsenosídeos , Panax , Humanos , Antioxidantes/farmacologia , Ginsenosídeos/farmacologia , Extratos Vegetais/farmacologia
5.
J Nanobiotechnology ; 22(1): 48, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302938

RESUMO

Inflammatory bowel disease (IBD) is closely linked to the homeostasis of the intestinal environment, and exosomes can be used to treat IBD due to their high biocompatibility and ability to be effectively absorbed by the intestinal tract. However, Ginseng-derived nanoparticles (GDNPs) have not been studied in this context and their mechanism of action remains unclear. Here, we investigated GDNPs ability to mediate intercellular communication in a complex inflammatory microenvironment in order to treat IBD. We found that GDNPs scavenge reactive oxygen species from immune cells and intestinal epithelial cells, inhibit the expression of pro-inflammatory factors, promote the proliferation and differentiation of intestinal stem cells, as well as enhancing the diversity of the intestinal flora. GDNPs significantly stabilise the intestinal barrier thereby promoting tissue repair. Overall, we proved that GDNPs can ameliorate inflammation and oxidative stress in vivo and in vitro, acting on the TLR4/MAPK and p62/Keap1/Nrf2 pathways, and exerting an anti-inflammatory and antioxidant effect. GDNPs mitigated IBD in mice by reducing inflammatory factors and improving the intestinal environment. This study offers new evidence of the potential therapeutic effects of GDNPs in the context of IBD, providing the conceptual ground for an alternative therapeutic strategy.


Assuntos
Doenças Inflamatórias Intestinais , Nanopartículas , Panax , Animais , Camundongos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Nanopartículas/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Panax/metabolismo , Receptor 4 Toll-Like/metabolismo
6.
Nutrients ; 16(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38337727

RESUMO

Panax ginseng, a traditional Chinese medicine with a history spanning thousands of years, faces overexploitation and challenges related to extended growth periods. Tissue-cultured adventitious roots and stem cells are alternatives to wild and field-cultivated ginseng. In this study, we assessed the in vitro xanthine oxidase and α-glucosidase inhibitory activities of saponin extracts among cultured cambial meristematic cells (CMC), adventitious ginseng roots (AGR), and field-cultivated ginseng roots (CGR). The xanthine oxidase (XO) and α-glucosidase inhibitory activities were determined by uric acid estimation and the p-NPG method, respectively. Spectrophotometry and the Folin-Ciocalteu, aluminum nitrate, and Bradford methods were employed to ascertain the total saponins and phenolic, flavonoid, and protein contents. The calculated IC50 values for total saponin extracts against XO and α-glucosidase were 0.665, 0.844, and >1.6 mg/mL and 0.332, 0.745, and 0.042 mg/mL for AGR, CMC, CGR, respectively. Comparing the total saponin, crude protein, and total phenolic contents revealed that AGR > CMC > CGR. To the best of our knowledge, this study presents the first report on the in vitro comparison of xanthine oxidase and α-glucosidase inhibitory activities among AGR, CMC, and CGR. The findings offer valuable insights into the development of hypoglycemic and antihyperuricemic medicinal, nutraceutical, and functional products utilizing AGR and CMC.


Assuntos
Panax , Saponinas , Panax/metabolismo , Xantina Oxidase/metabolismo , alfa-Glucosidases/metabolismo , Raízes de Plantas/metabolismo
7.
Molecules ; 29(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338301

RESUMO

American ginseng, a highly valuable crop in North America, is susceptible to various diseases caused by fungal pathogens, including Alternaria spp., Fusarium spp., and Pestalotiopsis spp. The development of alternative control strategies that use botanicals to control fungal pathogens in American ginseng is desired as it provides multiple benefits. In this study, we isolated and identified three fungal isolates, Alternaria panax, Fusarium sporotrichioides, and Pestalotiopsis nanjingensis, from diseased American ginseng plants. Ethanolic and aqueous extracts from the roots and leaves of goldenseal were prepared, and the major alkaloid constituents were assessed via liquid chromatography-mass spectrometry (LC-MS). Next, the antifungal effects of goldenseal extracts were tested against these three fungal pathogens. Goldenseal root ethanolic extracts exhibited the most potent inhibition against fungal growth, while goldenseal root aqueous extracts and leaf ethanolic extracts showed only moderate inhibition. At 2% (m/v) concentration, goldenseal root ethanolic extracts showed an inhibition rate of 86.0%, 94.9%, and 39.1% against A. panax, F. sporotrichioides, and P. nanjingensis, respectively. The effect of goldenseal root ethanolic extracts on the mycelial morphology of fungal isolates was studied via scanning electron microscopy (SEM). The mycelia of the pathogens treated with the goldenseal root ethanolic extract displayed considerable morphological alterations. This study suggests that goldenseal extracts have the potential to be used as a botanical fungicide to control plant fungal diseases caused by A. panax, F. sporotrichioides, or P. nanjingensis.


Assuntos
Alcaloides , Hydrastis , Panax , Hydrastis/química , Raízes de Plantas/química , Alcaloides/química , Extratos Vegetais/farmacologia , Extratos Vegetais/análise
8.
Molecules ; 29(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338347

RESUMO

The flower buds of three Panax species (PGF: P. ginseng; PQF: P. quinquefolius; PNF: P. notoginseng) widely consumed as health tea are easily confused in market circulation. We aimed to develop a green, fast, and easy analysis strategy to distinguish PGF, PQF, and PNF. In this work, fast gas chromatography electronic nose (fast GC e-nose), headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS), and headspace solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) were utilized to comprehensively analyze the volatile organic components (VOCs) of three flowers. Meanwhile, a principal component analysis (PCA) and heatmap were applied to distinguish the VOCs identified in PGF, PQF, and PNF. A random forest (RF) analysis was used to screen key factors affecting the discrimination. As a result, 39, 68, and 78 VOCs were identified in three flowers using fast GC e-nose, HS-GC-IMS, and HS-SPME-GC-MS. Nine VOCs were selected as potential chemical markers based on a model of RF for distinguishing these three species. Conclusively, a complete VOC analysis strategy was created to provide a methodological reference for the rapid, simple, and environmentally friendly detection and identification of food products (tea, oil, honey, etc.) and herbs with flavor characteristics and to provide a basis for further specification of their quality and base sources.


Assuntos
Panax , Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Nariz Eletrônico , Microextração em Fase Sólida/métodos , Panax/química , Espectrometria de Mobilidade Iônica , Compostos Orgânicos Voláteis/análise , Flores/química , Chá
9.
Molecules ; 29(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338369

RESUMO

Panax quinquefolius (PQ) has been widely used in traditional Chinese medicine and functional food. Ginsenosides are the important functional components of PQ. The ginsenosides' diversity is deeply affected by the processing conditions. The ginsenosides in the steamed PQ have been not well-characterized yet because of the complexity of their structure. In the study, the comprehensive investigation of ginsenosides was performed on the steamed PQ with different steaming times and temperatures by UPLC-Q-TOF-MS. Based on the molecular weight, retention time and characterized fragment ions, 175 ginsenosides were unambiguously identified or tentatively characterized, including 45 protopanaxatriol type, 49 protopanaxadiol type, 19 octillol type, 6 oleanolic acid type ginsenosides, and 56 other ginsenosides. Ten new ginsenosides and three new aglycones were discovered in the steamed PQ samples through searching the database of CAS SciFindern. Principal component analysis showed the significant influence on the chemical components of PQ through different processing conditions. The steaming temperature was found to promote the transformation of ginsenosides more than the steaming time. The protoginsenosides were found to transform into the rare ginsenosides by elimination reactions. The malonyl ginsenosides were degraded into acetyl ginsenosides, and then degraded into neutral ginsenosides. The sugar chain experienced degradation, with position changes and configuration inversions. Furthermore, 20 (S/R)-ginsenoside Rh1, Rh2, Rg2, and Rh12 were found to transform from the S-configuration to the R-configuration significantly. This study could present a comprehensive ginsenosides profile of PQ with different steaming conditions, and provide technical support for the development and utilization of PQ.


Assuntos
Ginsenosídeos , Panax , Ginsenosídeos/química , Panax/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Vapor , Cromatografia Líquida de Alta Pressão
10.
Food Funct ; 15(4): 1825-1839, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38315542

RESUMO

Ginsenosides are a class of natural products with hormone-like activity of triterpenoid saponins and have a variety of pharmacological activities such as anti-aging, immune regulation and cognitive improvement. With the great research interest in alternative medicine and natural products, they are gradually becoming research hotspots. Ginsenosides have a four-ring rigid steroid backbone similar to steroid hormones, and a series of experimental studies have shown that they can exhibit hormone-like activity by binding to nuclear receptors or affecting hormone levels, thereby affecting a wide range of inflammatory conditions, cancers, and menopause-related diseases. This review summarizes the mechanisms and potential health effects of ginsenosides exhibiting estrogen-like, glucocorticoid-like and androgen-like activities, providing an important reference for the exploration of safe phytohormone replacement therapy.


Assuntos
Produtos Biológicos , Ginsenosídeos , Panax , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Estrogênios , Receptores Citoplasmáticos e Nucleares , Esteroides
11.
Zhongguo Zhong Yao Za Zhi ; 49(2): 304-314, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403306

RESUMO

Minor ginsenosides are a class of processed saponins with minor natural content, high bioavailability, and outstanding bio-logical activity, which are usually obtained by biological or chemical transformation of prototype saponins directly extracted from Panax plants. In recent years, with the clarification of the biosynthetic pathway of saponins and the development of synthetic biology, it has become possible to use synthetic metabolic engineering methods with microorganisms as hosts to produce saponins. Minor ginsenosides have received widespread attention because of their remarkable biological activities in enhancing the immune function of the body and antitumor property. At present, most of the reviews on minor ginsenosides focus on transformation preparation, process optimization, and pharmacological activity, but there are some deficiencies in industrial analysis. This study summarized structural types, pharmacological activities, sources of acquisition, and transformation pathways of minor ginsenosides based on the relevant literature in China and abroad, proposed problems in the preparation of existing minor ginsenosides, and discussed the future research and utilization prospects, to provide a theoretical basis for improving the basic research of minor ginsenosides and promoting their industrialization.


Assuntos
Ginsenosídeos , Panax , Saponinas , Ginsenosídeos/química , Saponinas/química , Panax/química , Vias Biossintéticas , Biologia Sintética
12.
Biol Pharm Bull ; 47(1): 240-244, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38246611

RESUMO

Studies showing that Panax ginseng promotes hair growth have largely been conducted using mice; there are few reports on how P. ginseng affects human hair growth. In particular, little is known about its effect on the telogen to anagen transition. To determine the effect of P. ginseng on human hair growth and the transition from the telogen to the anagen phase. The effects of P. ginseng extract (PGE) and the three major ginsenoside components, Rb1, Rg1, and Re, on the proliferation of human dermal papilla cells (DPCs) and human outer root sheath cells (ORSCs) were investigated. The effects of these compounds on the cell expression of bone morphogenetic protein 4 (BMP4), fibroblast growth factor 18 (FGF18) and Noggin were assessed by real-time PCR. The effect of PGE on hair-shaft elongation was determined in a human hair follicle organ-culture system. PGE and the three ginsenosides stimulated the proliferation of DPCs and ORSCs and suppressed BMP4 expression in DPCs but did not affect FGF18 expression in ORSCs and Noggin expression in DPCs. PGE stimulated hair-shaft growth. PGE and the ginsenosides Rb1, Rg1, and Re stimulate the transition from the telogen phase to anagen phase of the hair cycle by suppressing BMP4 expression in DPCs. These compounds might be useful for promoting the growth of human hair.


Assuntos
Ginsenosídeos , Panax , Humanos , Animais , Camundongos , Ginsenosídeos/farmacologia , Proteína Morfogenética Óssea 4 , Proliferação de Células , Cabelo , Extratos Vegetais/farmacologia
13.
J Microbiol Biotechnol ; 34(2): 262-269, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38213284

RESUMO

Panax ginseng has been widely applied as an important herb in traditional medicine to treat numerous human disorders. However, the inflammatory regulation effect of P. ginseng distillate (GSD) has not yet been fully assessed. To determine whether GSD can ameliorate inflammatory processes, a GSD was prepared using the vacuum distillation process for the first time, and the regulation effect on lipopolysaccharide-induced macrophages was assessed. The results showed that GSD effectively inhibited nitric oxide (NO) formation and activation of inducible nitric oxide synthase (iNOS) mRNA in murine macrophage cell, but not cyclooxygenase-2 production. The mRNA expression pattern of tumor necrosis factor alpha and IL-6 were also reduced by GSD. Furthermore, we confirmed that GSD exerted its anti-inflammatory effects by downregulating c-Jun NH2-terminal kinase (JNK) phosphorylation, the extracellular signal-regulated kinase phosphorylation, and signaling pathway of nuclear factor kappa B (NF-κB). Our findings revealed that the inflammatory regulation activity of GSD could be induced by iNOS and NO formation inhibition mediated by regulation of nuclear factor kappa B and p38/JNK MAPK pathways.


Assuntos
Medicamentos de Ervas Chinesas , NF-kappa B , Panax , Extratos Vegetais , Humanos , Animais , Camundongos , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Vácuo , Anti-Inflamatórios/farmacologia , Células RAW 264.7 , Óxido Nítrico Sintase Tipo II/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Panax/metabolismo , RNA Mensageiro , Óxido Nítrico/metabolismo
14.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38255986

RESUMO

The accumulation of ginsenosides (triterpenic saponins) was determined in Panax quinquefolium hairy root cultures subjected to an elicitation process using carvacrol at 5, 10, 25, 50, 100, 250, and 500 µM concentrations during 24 and 72 h exposure. This study was the first one in which carvacrol was applied as an elicitor. The content of eight ginsenosides, Rb1, Rb2, Rb3, Rc, Rd, Rg1, Rg2, and Re, was determined using HPLC analysis. Moreover, the quantitative RT-PCR method was applied to assess the relative expression level of farnesyl diphosphate synthase, squalene synthase, and dammarenediol synthase genes in the studied cultures. The addition of carvacrol (100 µM) was an effective approach to increase the production of ginsenosides. The highest content and productivity of all detected saponins were, respectively, 20.01 mg∙g-1 d.w. and 5.74 mg∙L-1∙day-1 after 72 h elicitation. The production profile of individual metabolites in P. quinquefolium cultures changed under the influence of carvacrol. The biosynthesis of most examined protopanaxadiol derivatives was reduced under carvacrol treatment. In contrast, the levels of ginsenosides belonging to the Rg group increased. The strongest effect of carvacrol was noticed for Re metabolites, achieving a 7.72-fold increase in comparison to the control. Saponin Rg2, not detected in untreated samples, was accumulated after carvacrol stimulation, reaching its maximum concentration after 72 h exposure to 10 µM elicitor.


Assuntos
Ginsenosídeos , Panax , Saponinas , Panax/genética , Saponinas/farmacologia , Cimenos , Fármacos do Sistema Nervoso Central
15.
BMC Vet Res ; 20(1): 13, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184589

RESUMO

Microbial fermented feed (MF) is considered a valuable strategy to bring advantages to livestock and is widely practiced. Oral supplementation of Ginseng polysaccharide (Gps) eliminated weight loss in chickens following vaccination. This study investigated the effects of the combined use of Gps and MF on growth performance and immune indices in Xuefeng black-bone chickens. A total of 400 Xuefeng black-bone chickens at the age of 1 day were randomly assigned to four groups. Normal feed group (Control group), ginseng polysaccharide (200 mg/kg) group (Gps group), microbially fermented feed (completely replace the normal feed) group (MF group), and microbially fermented feed and add ginseng polysaccharide just before use (MF + Gps group). Each group contained 5 pens per treatment and 20 birds per pen. The body weight and average daily gain in the Gps, MF, and MF + Gps groups increased significantly (P < 0.01), while the feed conversion ratio decreased significantly (P < 0.01). The combined use of MF and Gps showed a synergistic effect. There was no significant difference in villus height (cecal) between the experimental group and the Con group. The crypt depth of the three experimental groups exhibited a significantly lower value compared to the Control group (P < 0.05). The V/C ratio of the Gps group and MF + Gps was significantly increased (P < 0.05), but there was no significant difference in the MF group. Moreover, the diarrhea rate of the Gps and the MF + Gps groups was lower than that of the Con group, while that of the MF + Gps group decreased the mortality rate (P < 0.05). The serum tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) levels in the MF, Gps, and MF + Gps groups decreased significantly (P < 0.01), the serum immunoglobulin G (IgG) levels increased significantly (P < 0.01), while the combination of MF and Gps had a synergistic effect. The combined use of Gps and MF not only further improved growth performance and immune parameters, but also reduced the diarrhea rate and mortality.


Assuntos
Panax , Animais , Galinhas , Peso Corporal , Ceco , Diarreia/veterinária
16.
Int Immunopharmacol ; 128: 111565, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38262161

RESUMO

Activation of NOD-like receptor protein 3 (NLRP3) inflammasome exacerbates liver inflammation and fibrosis in nonalcoholic steatohepatitis (NASH), suggesting that development of inflammasome inhibitor can become leading candidate to ameliorate NASH. Panax ginseng (P. ginseng) contains numerous bioactive natural components to reduce inflammation. This study aims to identify inhibitory components of P. ginseng for NLRP3 inflammasome activation. We separated polar and non-polar fractions of P. ginseng and tested modulation of NLRP3 inflammasome, and then identified pure component for inflammasome inhibitor which ameliorates diet-induced NASH. Non-polar P. ginseng fractions obtained from ethyl acetate solvent attenuated IL-1ß secretion and expression of active caspase-1. We revealed that panaxydol (PND) is pure component to inhibit NLRP3 inflammasome activation. PND blocked inflammasome cytokines release, pyroptotic cell death, caspase-1 activation and specking of inflammasome complex. Inhibitory effect of PND was specific to NLRP3-dependent pathway via potential interaction with ATP binding motif of NLRP3. Moreover, in vivo studies showed that PND plays beneficial roles to reduce tissue inflammations through disruption of NLRP3 inflammasome and to ameliorate the development of NASH. These results provide new insight of natural products, panaxydol, for NLRP3 inflammasome inhibitor and could offer potential therapeutic candidate for reliving NASH.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Di-Inos , Álcoois Graxos , Hepatopatia Gordurosa não Alcoólica , Panax , Humanos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR , Panax/metabolismo , Inflamação , Caspases , Camundongos Endogâmicos C57BL
17.
PLoS One ; 19(1): e0296487, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38285695

RESUMO

Saengmaeksan (SMS), a representative oriental medicine that contains Panax ginseng Meyer, Liriope muscari, and Schisandra chinensis (1:2:1), is used to improve body vitality and enhance physical activity. However, there is limited scientific evidence to validate the benefits of SMS. Here, we investigated the in vitro and in vivo regulatory effects of SMS and its constituents on energy metabolism and the underlying molecular mechanisms. For this, quantitative real-time polymerase chain reaction, 3D holotomographic microscopy, western blotting, and glucose uptake experiments using 18F-fluoro-2-deoxy-D-glucose (18F-FDG) were performed using L6 cells to investigate in vitro energy metabolism changes. In addition, 18F-fluorocholine (18F-FCH) and 18F-FDG positron emission tomography/computed tomography (PET/CT) analyses, immunohistochemistry, and respiratory gas analysis were performed in mice post-endurance exercise on a treadmill. In the energy metabolism of L6 cells, a significant reversal in glucose uptake was observed in the SMS-treated group, as opposed to an increase in uptake over time compared to the untreated control group. Furthermore, P. ginseng alone and SMS significantly decreased the volume of lipid droplets. SMS also regulated the phosphorylation of extracellular signal-regulated kinase (ERK), phosphorylation of p38, mitochondrial morphology, and the expression of apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE/Ref-1) in H2O2-stimulated L6 cells. In addition, SMS treatment was found to regulate whole body and muscle energy metabolism in rats subjected to high-intensity exercise, as well as glucose and lipid metabolism in skeletal muscle. Therefore, SMS containing P. ginseng ameliorated imbalanced energy metabolism through oxidative stress-induced APE/Ref-1 expression. SMS may be a promising supplemental option for metabolic performance.


Assuntos
Hominidae , Panax , Ratos , Camundongos , Animais , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Fluordesoxiglucose F18 , Panax/química , Peróxido de Hidrogênio , Glucose , Metabolismo Energético
18.
J Microbiol Biotechnol ; 34(1): 157-166, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38282410

RESUMO

Sarcopenia is an age-related loss of muscle mass and function for which there is no approved pharmacological treatment. We tested direct efficacy by evaluating grip strength improvement in a sarcopenia mouse model rather than drug screening, which inhibits specific molecular mechanisms. Various physiological functions of ginseng berries are beneficial to the human body. The present study aimed to evaluate the efficacy and safety of steamed ginseng berry powder (SGBP). SGBP administration increased myotube diameter and suppressed the mRNA expression of sarcopenia-inducing molecules. SGBP also reduced the levels of inflammatory transcription factors and cytokines that are known to induce sarcopenia. Oral administration of SGBP improved muscle mass and physical performance in a mouse model of sarcopenia. In summary, our data suggest that SGBP is a novel therapeutic candidate for the amelioration of muscle weakness, including sarcopenia.


Assuntos
Panax , Sarcopenia , Animais , Camundongos , Humanos , Sarcopenia/tratamento farmacológico , Sarcopenia/metabolismo , Frutas , Pós/metabolismo , Pós/farmacologia , Atrofia Muscular/tratamento farmacológico , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo
19.
Protein Expr Purif ; 216: 106430, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38184160

RESUMO

Pq3-O-UGT2, derived from Panax quinquefolius, functions as a ginsenoside glucosyltransferase, utilizing UDP-glucose (UDPG) as the sugar donor to catalyze the glycosylation of Rh2 and F2. An essential step in comprehending its catalytic mechanism involves structural analysis. In preparation for structural analysis, we expressed Pq3-O-UGT2 in the Escherichia coli (E. coli) strain Rosetta (DE3). The recombinant Pq3-O-UGT2 was purified through Ni-NTA affinity purification, a two-step ion exchange chromatography, and subsequently size-exclusion chromatography (SEC). Notably, the purified Pq3-O-UGT2 showed substantial activity toward Rh2 and F2, catalyzing the formation of Rg3 and Rd, respectively. This activity was discernible within a pH range of 4.0-9.0 and temperature range of 30-55 °C, with optimal conditions observed at pH 7.0-8.0 and 37 °C. The catalytic efficiency of Pq3-O-UGT2 toward Rh2 and F2 was 31.43 s-1 mΜ-1 and 169.31 s-1 mΜ-1, respectively. We further crystalized Pq3-O-UGT2 in both its apo form and co-crystalized forms with UDPG, Rh2 and F2, respectively. High-quality crystals were obtained and X-ray diffraction data was collected for all co-crystalized samples. Analysis of the diffraction data revealed that the crystal of Pq3-O-UGT2 co-crystalized with UDP-Glc belonged to space group P1, while the other two crystals belonged to space group P212121. Together, this study has laid a robust foundation for subsequent structural analysis of Pq3-O-UGT2.


Assuntos
Ginsenosídeos , Panax , Ginsenosídeos/metabolismo , Glicosiltransferases , Uridina Difosfato Glucose , Panax/genética , Panax/química , Panax/metabolismo , Cristalização , Escherichia coli/genética , Escherichia coli/metabolismo
20.
Fitoterapia ; 173: 105831, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278423

RESUMO

Osteoporosis is an aging disease characterized by an imbalance between bone formation and resorption. However, drugs that inhibit bone resorption have various adverse effects. Ginseng (Panax ginseng), a prominent herbal medicine in East Asia for >2000 years, is renowned for its manifold beneficial properties, including antioxidant, anti-cancer, anti-diabetic, and anti-adipogenic activities. Despite its long history of use, the pharmacological functions of ginseng leaves are not yet fully comprehended. In this study, we evaluated the potential effects of ginseng leaf extract (GLE) on receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation in RAW264.7 macrophage cells. Tartrate-resistant acid phosphatase (TRAP) staining revealed that GLE had significant anti-osteoclastogenic activity. GLE significantly reduced mRNA levels of osteoclast differentiation markers including TRAP, nuclear factor of activated T cell cytoplasmic 1, and cathepsin K. It also suppressed the production of reactive oxygen species (ROS) and secretion of high mobility group box-1 (HMGB1) in RANKL-treated RAW264.7 cells. In addition, GLE upregulated dose- and time-dependently the expression of heme oxygenase-1 (HO-1), eventually suppressing ROS production and HMGB1 secretion. This effects of GLE were significantly reversed by Tin Protoporphyrin IX dichloride, an inhibitor of HO-1, and HO-1 shRNA, indicating that HO-1 potently inhibits RANKL-induced osteoclast differentiation by inhibiting ROS production and HMGB1 secretion. Taken together, these observations suggest that GLE could have therapeutic potential as a natural product-derived medicine for the treatment of bone disorders.


Assuntos
Reabsorção Óssea , Proteína HMGB1 , Panax , Osteoclastos , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacologia , Diferenciação Celular , Espécies Reativas de Oxigênio/metabolismo , Heme Oxigenase-1/metabolismo , Estrutura Molecular , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Ligante RANK
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...