Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.399
Filtrar
1.
Food Chem ; 369: 130965, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34492612

RESUMO

Panax notoginseng leaves (PNL) was considered as a promising functional food ingredient with abundant protopanaxdiol ginsenosides. In this study, the influence of different drying methods on chemical components in PNL was characterized by a newly developed heart-cutting 2D-LC-HRMS. Our data indicates that vigorous ginsenoside transformation occurs in PNL processed by sun-air drying and hot-air drying (HAD) at 50 °C, but not shade-air drying (SAD), HAD at 25 °C and steaming prior to drying (SD). Specifically, the main components of PNL, ginsenosides Rb3, Rc, Rb2, Rb1 and Rd, can be transformed into notoginsenosides Fd and Fe, ginsenoside Rd2, Gypenoside XVII and ginsenoside F2, respectively, by highly selective cleavage of ß-1,2-glucosidic linkage at the C-3 position. Only SD can inactivate the proteins that mediate this transformation. Different drying methods also greatly affect the quality of PNL products extracted by the conventional decoction method. These findings offer the scientific basis to design industrial drying methods for ensuring the quality of PNL.


Assuntos
Ginsenosídeos , Panax notoginseng , Panax , Cromatografia Líquida de Alta Pressão , Composição de Medicamentos , Ginsenosídeos/análise , Espectrometria de Massas , Folhas de Planta/química
2.
BMC Genomics ; 22(1): 834, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34794386

RESUMO

BACKGROUND: Panax ginseng is a well-known medicinal plant worldwide. As an herbal medicine, ginseng is also known for its long lifecycle, which can reach several decades. WRKY proteins play regulatory roles in many aspects of biological processes in plants, such as responses to biotic or abiotic stress, plant development, and adaptation to environmental challenges. Genome-wide analyses of WRKY genes in P. ginseng have not been reported. RESULTS: In this study, 137 PgWRKY genes were identified from the ginseng genome. Phylogenetic analysis showed that the PgWRKYs could be clustered into three primary groups and five subgroups. Most of the PgWRKY gene promoters contained several kinds of hormone- and stress-related cis-regulatory elements. The expression patterns of PgWRKY genes in 14 different tissues were analyzed based on the available public RNA-seq data. The responses of the PgWRKY genes to heat, cold, salt and drought treatment were also investigated. Most of the PgWRKY genes were expressed differently after heat treatment, and expression trends changed significantly under drought and cold treatment but only slightly under salt treatment. The coexpression analysis of PgWRKY genes with the ginsenoside biosynthesis pathway genes identified 11 PgWRKYs that may have a potential regulatory role in the biosynthesis process of ginsenoside. CONCLUSIONS: This work provides insights into the evolution, modulation and distribution of the WRKY gene family in ginseng and extends our knowledge of the molecular basis along with modulatory mechanisms of WRKY transcription factors in ginsenoside biosynthesis.


Assuntos
Panax , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Panax/genética , Panax/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Phytomedicine ; 93: 153772, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34753028

RESUMO

BACKGROUND: Panax ginseng (PG) and red ginseng (RG) are considered to be effective anti-aging treatments. However, evidence of their therapeutic mechanisms and difference in anti-aging effects is lacking. PURPOSE: To explore the potential therapeutic mechanisms of RG and PG in brain damage in D-Gal-induced aging mice, and evaluate the difference in anti-aging effects caused by their compositional differences. METHODS: We first tested the chemical components in PG and RG. In D-Gal aging mouse model, RG and PG (800 mg/kg) were orally administered for 9 weeks. The mice performed the Radial Arm Maze (RAM) behavior test. We collected blood, brain tissue, and fecal samples and performed biochemical analysis, histological examination, western blot, and Illumina MiSeq sequencing analysis. RESULTS: The results of component analysis showed that the total polyphenols and rare ginsenosides were present in RG in 3.2, and 2.2 fold greater concentrations, respectively, compared to PG, while the proportion of non-starch polysaccharides in the crude polysaccharides of RG was 1.94 fold greater than that of PG. In D-Gal-induced aging mice, both PG and RG could prevent the increase in acetylcholinesterase (AChE), and malondialdehyde (MDA) levels, and improved the expression of superoxide dismutase (SOD), and catalase (CAT) in the serum. Meanwhile, both PG and RG could ameliorate brain tissue architecture and behavioral trial. In addition, the D-Gal-induced translocation of nuclear factor-κB (NF-κB), as well as activation of the pro-apoptotic factors Caspase-3 and the PI3K/Akt pathways were inhibited by PG and RG. Overall, both PG and RG exerted anti-aging effects, with RG stronger than PG. Finally, although both PG and RG regulated the diversity of gut microbes, RG appeared to aggravate the increase in probiotics, such as Bifidobacterium and Akkermania, and the decrease in inflammatory bacteria to a greater extent compared to PG. CONCLUSION: Our results suggest that RG is more conducive to delay the D-Gal-induced aging process than PG, with possible mechanisms including beneficial changes in brain structure, cognitive functions, oxidative stress inhibition, and gut microbiome structure and diversity than PG, These mechanisms may rely on the presence of more total polyphenols, rare ginsenosides and non-starch polysaccharides in RG.


Assuntos
Microbioma Gastrointestinal , Panax , Acetilcolinesterase , Envelhecimento , Animais , Camundongos , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo
4.
Zhongguo Zhong Yao Za Zhi ; 46(19): 5052-5063, 2021 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-34738401

RESUMO

Compound Renshen Buqi Granules have been widely used to treat chronic heart failure(CHF) due to Qi deficiency and blood stasis, but the mechanism of action remains unclear. This paper explored the pathogenesis of CHF due to Qi deficiency and blood stasis and the intervention mechanism of Compound Renshen Buqi Granules based on quantitative proteomics for uncovering the biological basis. SD rats were divided into the normal control(N) group, normal+Compound Renshen Buqi Granules(ND) group, model(M) group, model+Compound Renshen Buqi Granules(D) group, and positive control(Y) group. The rat model of CHF due to Qi deficiency and blood stasis was established by ligation of the left anterior descending(LAD) coronary artery and chronic sleep deprivation. The rats in the ND group and D group were provided with Compound Renshen Buqi Granules, while those in the Y group received valsartan. Six weeks later, the serum was sampled and the data-dependent acquisition(DDA) was employed for the non-targeted quantitative proteomics analysis of the differences in protein expression among groups, followed by the targeted analysis of differentially expressed proteins(DEPs) generated by data-independent acquisition(DIA). Compared with the N group, the rats in the M group pre-sented with decreased body weight, grip strength, and pulse amplitude and increased RGB value on the tongue surface. The pathomorphological examination revealed inflammatory cell infiltration, cell degeneration and necrosis, tissue fibrosis, etc. After the intervention with Compound Renshen Buqi Granules, multiple indicators were reversed. As demonstrated by proteomics results, there were 144 and 111 DEPs found in the M group and ND group in comparison with the N group. Compared with the M group, 107 and 194 DEPs were found in the D group and the Y group, respectively. Compared with the ND group, 119 DEPs were detected in the D group. As illustrated by DIA-based verification, the quantitative results of six proteins in each group were consistent with those by DDA. The syndrome indicators and pathomorphological examination results demonstrated that the protein expression profile of rats with CHF due to Qi deficiency and blood stasis changed obviously. However, Compound Renshen Buqi Granules were able to reverse the differential expression of immune proteins to regulate CHF of Qi deficiency and blood stasis syndrome, which has provided clues for figuring out the pathogenesis of CHF due to Qi deficiency and blood stasis and the intervention mechanism of Compound Renshen Buqi Granules.


Assuntos
Insuficiência Cardíaca , Panax , Animais , Insuficiência Cardíaca/tratamento farmacológico , Medicina Tradicional Chinesa , Proteômica , Qi , Ratos , Ratos Sprague-Dawley
5.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34748473

RESUMO

A Gram-stain-negative, non-motile, non-spore-forming, aerobic, rod-shaped and yellow-pigmented bacterium, designated strain Gsoil 183T, was isolated from ginseng-cultivation soil sampled in Pocheon Province, Republic of Korea. This bacterium was characterized to determine its taxonomic position by using a polyphasic approach. Strain Gsoil 183T grew at 10-37 °C and at pH 5.0-9.0 on tryptic soy agar. Strain Gsoil 183T had ß-glucosidase activity, which was responsible for its ability to convert ginsenoside Rb1 (one of the dominant active components of ginseng) to F2. Based on 16S rRNA gene sequencing, strain Gsoil 183T clustered with species of the genus Chryseobacterium and appeared to be closely related to Chryseobacterium sediminis LMG 28695T (99.1 % sequence similarity), Chryseobacterium lactis NCTC 11390T (98.6%), Chryseobacterium rhizoplanae LMG 28481T (98.6%), Chryseobacterium oncorhynchi CCUG 60105T (98.5%), Chryseobacterium viscerum CCUG 60103T (98.4%) and Chryseobacterium joostei DSM 16927T (98.3%). Menaquinone MK-6 was the predominant respiratory quinone and the major fatty acids were iso-C15 : 0, iso-C17 : 0-3OH and summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c). The polar lipids were phosphatidylethanolamine, six unidentified glycolipids, five unidentified aminolipids and three unidentified lipids. The G+C content of the genomic DNA was 36.6 mol%. Digital DNA-DNA hybridization between strain Gsoil 183T and the type strains of C. sediminis, C. lactis, C. rhizoplanae, C. oncorhynchi, C. viscerum and C. joostei resulted in values below 70 %. Strain Gsoil 183T could be differentiated genotypically and phenotypically from the recognized species of the genus Chryseobacterium. The isolate therefore represents a novel species, for which the name Chryseobacterium panacisoli sp. nov. is proposed, with the type strain Gsoil 183T (=KACC 15033T=LMG 23397T).


Assuntos
Chryseobacterium , Ginsenosídeos , Panax , Técnicas de Tipagem Bacteriana , Composição de Bases , Chryseobacterium/genética , DNA Bacteriano/genética , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo , Microbiologia do Solo
6.
Appl Microbiol Biotechnol ; 105(21-22): 8265-8276, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34661708

RESUMO

In the present work, the biotransformation of ginsenosides in white ginseng roots was innovatively investigated using the aerobic fermentation by the co-cultivation of Bacillus subtilis and Trichoderma reesei. It is found that in the co-cultivation mode, the optimal nitrogen source was corn steep liquor, and the loading of ginseng powder and inoculation proportion of B. subtilis and T. reesei were 15 g/L and 1:4, respectively. The total ginsenoside yield and production of minor ginsenosides in the co-cultivation mode obviously enhanced in comparison to the monoculture mode. Meanwhile, the maximal total ginsenoside yield of 21.79% and high hydrolase activities were achieved using the staged inoculation at the inoculation proportion of 1:4 in the co-cultivation mode, the production of minor ginsenosides such as Rg3 and Rh1, Rh2 was significantly strengthened, and the pharmacological activities of the fermented solution obviously improved. The enhancement of ginsenoside transformation can be mainly attributed to hydrolysis of the produced hydrolases and metabolism of two probiotics. This result clearly reveals that using the staged inoculation in co-cultivation fermentation mode was favor of the ginsenoside biotransformation in ginseng due to non-synchronous cell growth and different metabolic pathways of both probiotics. This work can provide a novel method for enhancing ginsenoside transformation of ginseng.Key points• Co-cultivation fermentation significantly promoted ginsenoside biotransformation.• The staged inoculation in co-culture mode was an optimal operation method.• The pharmacological activity of the co-cultured solution was significantly enhanced.


Assuntos
Ginsenosídeos , Panax , Trichoderma , Bacillus subtilis , Biotransformação , Hypocreales
7.
Phytomedicine ; 93: 153746, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34634746

RESUMO

BACKGROUND AND PURPOSE: Liver fibrosis constitutes a pathologic condition resulting in a series of advanced liver diseases. Oleanane-type saponins are distinctive active constituents in the medicinal plant Panax japonicus C. A. Mey (P. japonicus). Herein, we assessed protective effects of a characterized saponin extract of rhizomes of P. japonicus (SEPJ) on hepatocyte EMT and HSC activation in vitro and liver fibrosis in mice. We also investigated molecular mechanisms underlying the hepatoprotective activity of SEPJ. METHODS: EMT of AML-12 hepatocytes was evaluated by observing morphology of cells and quantifying EMT marker proteins. Activation of LX-2 HSCs was assessed via scratch assay, transwell assay, and EdU-incorporation assay, and by quantifying activation marker proteins. Liver fibrosis in mice was evaluated by HE, SR, and Masson staining, and by measuring related serum indicators. Immunoblotting and RT-PCR were performed to study mechanisms underlying the action of SEPJ. RESULTS: SEPJ inhibited TGF-ß-induced EMT in AML-12 hepatocytes and activation of LX-2 HSCs. SEPJ elevated Akt phosphorylation at Ser473 and GSK3ß phosphorylation at Ser9 in these cells, giving rise to a descent of the catalytic activity of GSK3ß. These events increased levels of both total and nuclear Nrf2 protein and upregulated expressions of Nrf2-responsive antioxidative genes. In addition, enhanced phosphorylation of Akt and GSK3ß acted upstream of SEPJ-mediated activation of Nrf2. Knockdown of Nrf2 or inhibition of Akt diminished the protective activity of SEPJ against TGF-ß in both AML-12 and LX-2 cells. Our further in vivo experiments revealed that SEPJ imposed a considerable alleviation on CCl4-provoked mouse liver fibrosis. Moreover, hepatic Akt/GSK3ß/Nrf2 cascade were potentiated by SEPJ. Taken together, our results unveiled that SEPJ exerted protective effects against fibrogenic cytokine TGF-ß in vitro and ameliorated liver fibrosis in mice. Mechanistically, SEPJ regulated the Akt/GSK3ß/Nrf2 signaling which subsequently enhanced intracellular antioxidative capacity. CONCLUSIONS: SEPJ inhibits hepatocyte EMT and HSC activation in vitro and alleviates liver fibrosis in mice. Modulation of the Akt/GSK3ß/Nrf2 cascade attributes to its hepatoprotective effects. Our findings support a possible application of SEPJ in the control of liver fibrosis.


Assuntos
Panax , Saponinas , Animais , Glicogênio Sintase Quinase 3 beta , Células Estreladas do Fígado/patologia , Hepatócitos , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Camundongos , Fator 2 Relacionado a NF-E2 , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt , Saponinas/farmacologia
8.
Nutrients ; 13(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34684351

RESUMO

Ginsenosides are active compounds that are beneficial to bone metabolism and have anti-osteoporosis properties. However, very few clinical investigations have investigated the effect of ginseng extract (GE) on bone metabolism. This study aims to determine the effect of GE on improving bone metabolism and arthritis symptoms in postmenopausal women with osteopenia. A 12-week randomized, double-blind, placebo-controlled clinical trial was conducted. A total of 90 subjects were randomly divided into a placebo group, GE 1 g group, and GE 3 g group for 12 weeks based on the random 1:1:1 assignment to these three groups. The primary outcome is represented by bone metabolism indices consisting of serum osteocalcin (OC), urine deoxypyridinoline (DPD), and DPD/OC measurements. Secondary outcomes were serum CTX, NTX, Ca, P, BsALP, P1NP, OC/CTX ratio, and WOMAC index. The GE 3 g group had a significantly increased serum OC concentration. Similarly, the GE 3 g group showed a significant decrease in the DPD/OC ratio, representing bone resorption and bone formation. Moreover, among all the groups, the GE 3 g group demonstrated appreciable improvements in the WOMAC index scores. In women with osteopenia, intake of 3 g of GE per day over 12 weeks notably improved the knee arthritis symptoms with improvements in the OC concentration and ratios of bone formation indices like DPD/OC.


Assuntos
Artrite/tratamento farmacológico , Doenças Ósseas Metabólicas/tratamento farmacológico , Panax/química , Extratos Vegetais/uso terapêutico , Artrite/sangue , Artrite/complicações , Artrite/fisiopatologia , Biomarcadores/sangue , Doenças Ósseas Metabólicas/sangue , Doenças Ósseas Metabólicas/complicações , Doenças Ósseas Metabólicas/fisiopatologia , Remodelação Óssea , Método Duplo-Cego , Ingestão de Alimentos , Exercício Físico , Feminino , Humanos , Pessoa de Meia-Idade , Osteocalcina/sangue , Fenilenodiaminas/sangue , Placebos , Extratos Vegetais/efeitos adversos , Extratos Vegetais/farmacologia , Resultado do Tratamento
9.
Medicine (Baltimore) ; 100(43): e27586, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34713832

RESUMO

BACKGROUND: Corona virus disease 2019 (COVID-19) is spreading fast and it brings great pressure to the social economy. Many reports revealed that ginseng can develop immunity for respiratory disease, but there is no evidence to prove its effects on COVID-19. This protocol of systematic review and meta-analysis will clarify the safety and effectiveness of ginseng adjuvant therapy on COVID-19 patients. METHODS: Different databases (Web of Science, Cochrane Library, PubMed, Chinese Biomedical Literature Database, Chinese National Knowledge Infrastructure, Chinese Scientific Journal Database, Wan fang Database, ClinicalTrials, World Health Organization Trials, and Chinese Clinical Trial Registry) will be retrieved to search related articles according to pre-defined inclusion and exclusion criteria. Clinical recovery time and effective rates will be assessed as the primary outcomes and any changes of patient's condition will be considered as the secondary outcomes. Subgroup analysis and sensitivity analysis will be conducted to explore sources of heterogeneity. Endnote X9.3 will be used to manage data screening. The statistical analysis will be completed by RevMan5.3 and Stata/SE 15.1 software. RESULTS: This study will assess the effects and safety for ginseng adjuvant therapy on COVID-19 patients. CONCLUSION: The discussion will be considered to determine whether sufficient evidence exists to prove the effects of ginseng adjuvant therapy for COVID-19 patients. SYSTEMATIC REVIEW REGISTRATION: PROSPERO (ID: CRD42021277843).


Assuntos
COVID-19/terapia , Quimioterapia Adjuvante/métodos , Panax , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Projetos de Pesquisa , SARS-CoV-2
10.
Phytomedicine ; 92: 153717, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34583224

RESUMO

BACKGROUND: Radix Ginseng, one of the well-known medicinal herbs, has been used in the management of diabetes and its complications for more than 1000 years. PURPOSE: The aim of this review is devoted to summarize the phytochemistry and pharmacokinetics of Ginseng, and provide evidence for the antidiabetic effects of Ginseng and its ingredients as well as the underlying mechanisms involved. METHODS: For the purpose of this review, the following databases were consulted: the PubMed Database (https://pubmed.ncbi.nlm.nih.gov), Chinese National Knowledge Infrastructure (http://www.cnki.net), National Science and Technology Library (http://www.nstl.gov.cn/), Wanfang Data (http://www.wanfangdata.com.cn/) and the Web of Science Database (http://apps.webofknowledge.com/). RESULTS: Ginseng exhibits glucose-lowering effects in different diabetic animal models. In addition, Ginseng may prevent the development of diabetic complications, including liver, pancreas, adipose tissue, skeletal muscle, nephropathy, cardiomyopathy, retinopathy, atherosclerosis and others. The main ingredients of Ginseng include ginsenosides and polysaccharides. The underlying mechanisms whereby this herb exerts antidiabetic activities may be attributed to the regulation of multiple signaling pathways, including IRS1/PI3K/AKT, LKB1/AMPK/FoxO1, AGEs/RAGE, MAPK/ERK, NF-κB, PPARδ/STAT3, cAMP/PKA/CERB and HIF-1α/VEGF, etc. The pharmacokinetic profiles of ginsenosides provide valuable information on therapeutic efficacy of Ginseng in diabetes. Although Ginseng is well-tolerated, dietary consumption of this herb should follow the doctors' advice. CONCLUSION: Ginseng may offer an alternative strategy in protection against diabetes and its complications through the regulations of the multi-targets via various signaling pathways. Efforts to understand the underlying mechanisms with strictly-controlled animal models, combined with well-designed clinical trials and pharmacokinetic evaluation, will be important subjects of the further investigations and weigh in translational value of this herb in diabetes management.


Assuntos
Diabetes Mellitus , Panax , Plantas Medicinais , Animais , Diabetes Mellitus/tratamento farmacológico , Humanos , Hipoglicemiantes/farmacologia , Fosfatidilinositol 3-Quinases
11.
J Integr Med ; 19(6): 537-544, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34580047

RESUMO

OBJECTIVE: Mitophagy is known to contribute towards progression of Parkinson's disease. Korean red ginseng (KRG) is a widely used medicinal herb in East Asia, and recent studies have reported that KRG prevents 1-methyl-4-phenylpyridinium ion (MPP+)-induced cell death. This study was undertaken to investigate whether KRG suppresses MPP+-induced apoptosis and mitophagy. METHODS: SH-SY5Y cells were incubated with KRG for 24 h, and subsequently exposed to MPP+. The MPP+-induced cell death was confirmed with the 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, and the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay. Changes in the structure and function of mitochondria were confirmed using mitotracker, MitoSOX red mitochondrial superoxide indicator, parkin, and phosphatase and tensin homolog deleted on chromosome ten-induced putative kinase 1 (PINK1) immunofluorescent staining. Western blotting was performed to evaluate the expression of apoptosis-related factors in whole cells, including Bax, Bcl-2 and cleaved caspase-3, and mitophagy-related factors in the mitochondrial fraction, including cytochrome c, parkin, PINK1, translocase of the outer membrane 20 (TOM20), p62 and Beclin 1. RESULTS: MPP+ induced cell death by cytochrome c release and caspase-3 activation; however, this effect was suppressed by KRG's regulation of the expressions of Bcl-2 and Bax. Moreover, MPP+ exposure increased the mitochondrial expressions of parkin, PINK1, Beclin 1 and p62, and decreased TOM20, cytochrome c and Bcl-2 expressions. These MPP+-induced changes in the mitochondrial fraction were attenuated by treatment with KRG. CONCLUSION: KRG effectively prevents MPP+-induced SH-SY5Y cell death by regulating cytochrome c release from mitochondria and PINK1/parkin-mediated mitophagy, through regulation of the Bcl-2 family.


Assuntos
1-Metil-4-fenilpiridínio , Panax , 1-Metil-4-fenilpiridínio/toxicidade , Apoptose , Linhagem Celular Tumoral , Mitocôndrias , Mitofagia , Espécies Reativas de Oxigênio
12.
Zhongguo Zhong Yao Za Zhi ; 46(16): 4103-4110, 2021 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-34467720

RESUMO

In this study, the colonization, diversity and relative abundance of arbuscular mycorrhizal fungi(AMF) in the roots of Panax quinquefolius in different habitats of Shandong province were analyzed by staining-microscopy and high-throughput sequencing. The data were analyzed by bioinformatics tools and statistical software. The results showed that the roots of P. quinquefolius in different habitats were colonized by AMF with different rates and intensities. The AMF in roots of P. quinquefolius belong to three genera, three families, three orders, one class and one phylum. At the level of order, the AMF mainly included Paraglomerales(52.48%), Glomerales(25.60%) and Archaeosporales(3.08%). At the level of family, the AMF were dominated by Paraglomeraceae(52.48%), Glomeraceae(18.94%) and Claroideoglomeraceae(3.05%). At the level of genus, Paraglomus(51.46%), Glomus(20.01%) and Claroideoglomus(3.52%) accounted for a large proportion, of which Paraglomus and Glomus were dominant. Cluster analysis showed that the AMF in roots of P. quinquefolius with close geographical locations could be clustered together. In this study, the diversity and dominant germplasm resources of AMF in roots of P. quinquefolius cultivated in the main producing areas were identified, which provi-ded basic data for revealing the quality formation mechanism of P. quinquefolius medicinal materials from the perspective of environment.


Assuntos
Glomeromycota , Micorrizas , Panax , Fungos , Humanos , Micorrizas/genética , Raízes de Plantas , Microbiologia do Solo
13.
Zhongguo Zhong Yao Za Zhi ; 46(15): 3838-3845, 2021 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-34472257

RESUMO

The longevity mechanism of ginseng(Panax ginseng) is related to its strong meristematic ability. In this paper, this study used bioinformatic methods to identify the members of the ginseng TCP gene family in the whole genome and analyzed their sequence characteristics. Then, quantitative real-time fluorescent PCR was performed to analyze the TCP genes containing elements rela-ted to meristem expression in the taproots, fibrous roots, stems, and leaves. According to the data, this study further explored the expression specificity of TCP genes in ginseng tissues, which facilitated the dissection of the longevity mechanism of ginseng. The ginseng TCP members were identified and analyzed using PlantTFDB, ExPASy, MEME, PLANTCARE, TBtools, MEGA and DNAMAN. The results demonstrated that there were 60 TCP gene family members in ginseng, and they could be divided into two classes: Class Ⅰ and Class Ⅱ, in which the Class Ⅱ possessed two subclasses: CYC-TCP and CIN-TCP. The deduced TCP proteins in ginseng had the length of 128-793 aa, the isoelectric point of 4.49-9.84 and the relative molecular mass of 14.2-89.3 kDa. They all contained the basic helix-loop-helix(bHLH) domain. There are a variety of stress response-related cis-acting elements in the promoter regions of ginseng TCP genes, and PgTCP20-PgTCP24 contained the elements associated with meristematic expression. The transcription levels of PgTCP20-PgTCP24 were high in fibrous roots and leaves, but low in stems, indicating the tissue-specific expression of ginseng TCP genes. The Class Ⅰ TCP members which contained PgTCP20-PgTCP23, may be important regulators for the growth and development of ginseng roots.


Assuntos
Panax , Fatores de Transcrição , Biologia Computacional , Regulação da Expressão Gênica de Plantas , Família Multigênica , Panax/genética , Panax/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Molecules ; 26(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34500805

RESUMO

Panax vietnamensis, or Vietnamese ginseng (VG), an endemic Panax species in Vietnam, possesses a unique saponin profile and interesting biological activities. This plant is presently in danger of extinction due to over-exploitation, resulting in many preservation efforts towards the geographical acclimatization of VG. Yet, no information on the saponin content of the acclimatized VG, an important quality indicator, is available. Here, we analyzed the saponin content in the underground parts of two- to five-year-old VG plants acclimatized to Lam Dong province. Nine characteristic saponins, including notoginsenoside-R1, ginsenoside-Rg1, -Rb1, -Rd, majonoside-R1, -R2 vina-ginsenoside-R2, -R11, and pseudoginsenoside-RT4, were simultaneously determined by HPLC coupled with UV and with a charged aerosol detector (CAD). Analyzing the results illustrated that the detection of characteristic ocotillol-type saponins in VG by CAD presented a superior capacity compared with that of UV, thus implying a preferential choice of CAD for the analysis of VG. The quantitative results indicating the saponin content in the underground parts of VG showed an increasing tendency from two to five years old, with the root and the rhizome exhibiting different saponin accumulation patterns. This is the first study that reveals the preliminary success of VG acclimatization and thereby encourages the continuing efforts to develop this valuable saponin-rich plant.


Assuntos
Panax/química , Saponinas/análise , Cromatografia Líquida de Alta Pressão , Raios Ultravioleta , Vietnã
15.
Molecules ; 26(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34576927

RESUMO

Garden-cultivated Ginseng (GG) and mountain-cultivated Ginseng (MG) both belong to Panax Ginseng C. A. Meyer. However, the effective substances which can be used to distinguish GG from MG remain obscure. Therefore, the purpose of this study was to screen for discriminating markers that can assist in the correct identification of GG and MG. HPLC Q-TOF/MS and various chemometrics methods were used to analyze the chemical profiles of 13 batches of Ginseng and to explore the characteristic constituents of both GG and MG. The hepatocyte-protecting effects of GG and MG were investigated through a paclitaxel-induced liver injury model. Through a combination of correlation analysis and bioinformatic techniques, markers for differentiation between GG and MG were ascertained. A total of 40 and 41 compounds were identified in GG and MG, respectively, and 15 characteristic ingredients contributed significantly to the discrimination of GG from MG. Correlation analysis and network pharmacology were applied and ginsenosides Rg1, Re, Rb1, Rc, Rb2, and Rg3 were found to be discriminating markers of GG and MG. Six markers for the identification of GG and MG were screened out by a step-wise mutually oriented "chemical profiling-pharmaceutical effect" correlation strategy, which is of great significance for future quality assessment of Ginseng products.


Assuntos
Quimioinformática/métodos , Panax/química , Substâncias Protetoras/química , Substâncias Protetoras/farmacologia , Animais , Biomarcadores Farmacológicos , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Cromatografia Líquida de Alta Pressão , Jardins , Ginsenosídeos/análise , Ginsenosídeos/química , Espectrometria de Massas , Paclitaxel/efeitos adversos , Panax/crescimento & desenvolvimento , Substâncias Protetoras/farmacocinética , Ratos Sprague-Dawley
16.
Nutrients ; 13(9)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34578969

RESUMO

Postmenopausal women are vulnerable to aging and oxidative stress due to reduced estrogen. Previous studies have shown that Korean red ginseng (KRG) has beneficial effects on aging and antioxidant capacity. Therefore, we evaluated the effects of KRG on biological aging and antioxidant capacity in postmenopausal women. This study conducted a double-blinded, placebo-controlled clinical trial. The participants were randomly administered KRG or a placebo, and the following metrics were measured: mitochondria DNA (mtDNA) copy number as an indicator of biological aging and, total antioxidant status (TAS) as a marker of antioxidant capacity. Clinical symptoms of fatigue, as measured by the fatigue severity scale, were assessed before and after KRG administration. There were 63 participants, of whom 33 received KRG and 30 received a placebo. The mtDNA copy number (KRG group: 1.58 ± 2.05, placebo group: 0.28 ± 2.36, p = 0.023) and TAS (KRG group: 0.11 ± 0.25 mmol/L, placebo group: -0.04 ± 0.16 mmol/L, p = 0.011) increased and the fatigue severity scale (KRG group: -7 ± 12, placebo group: -1 ± 11, p = 0.033) decreased significantly more in the KRG group than the placebo group. KRG significantly increased the mtDNA copy number, total antioxidant status, and improved symptoms of fatigue in postmenopausal women.


Assuntos
Envelhecimento/efeitos dos fármacos , Antioxidantes/administração & dosagem , Panax/química , Extratos Vegetais/administração & dosagem , Pós-Menopausa , Idoso , Antioxidantes/análise , DNA Mitocondrial/sangue , Método Duplo-Cego , Feminino , Ginsenosídeos/administração & dosagem , Humanos , Pessoa de Meia-Idade , Placebos , República da Coreia
17.
Int J Mol Sci ; 22(18)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34576317

RESUMO

Gintonin, a novel compound of ginseng, is a ligand of the lysophosphatidic acid (LPA) receptor. The in vitro and in vivo skin wound healing effects of gintonin remain unknown. Therefore, the objective of this study was to investigate the effects of gintonin on wound healing-linked responses, especially migration and proliferation, in skin keratinocytes HaCaT. In this study, 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide assay, Boyden chamber migration assay, scratch wound healing assay, and Western blot assay were performed. A tail wound mouse model was used for the in vivo test. Gintonin increased proliferation, migration, and scratch closure in HaCaT cells. It also increased the release of vascular endothelial growth factor (VEGF) in HaCaT cells. However, these increases, induced by gintonin, were markedly blocked by treatment with Ki16425, an LPA inhibitor, PD98059, an ERK inhibitor, 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester), a calcium chelator, and U73122, a PLC inhibitor. The VEGF receptor inhibitor axitinib also attenuated gintonin-enhanced HaCaT cell proliferation. Gintonin increased the phosphorylation of AKT and ERK1/2 in HaCaT cells. In addition, gintonin improved tail wound healing in mice. These results indicate that gintonin may promote wound healing through LPA receptor activation and/or VEGF release-mediated downstream signaling pathways. Thus, gintonin could be a beneficial substance to facilitate skin wound healing.


Assuntos
Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Extratos Vegetais/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Panax/química , Transdução de Sinais/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
18.
Nutrients ; 13(9)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34578998

RESUMO

Central fatigue, which is neuromuscular dysfunction associated with neurochemical alterations, is an important clinical issue related to pathologic fatigue. This study aimed to investigate the anti-central fatigue effect of Korean red ginseng (KRG) and its underlying mechanism. Male BALB/c mice (8 weeks old) were subjected to periodic sleep deprivation (SD) for 6 cycles (forced wakefulness for 2 days + 1 normal day per cycle). Simultaneously, the mice were administered KRG (0, 100, 200, or 400 mg/kg) or ascorbic acid (100 mg/kg). After all cycles, the rotarod and grip strength tests were performed, and then the changes regarding stress- and neurotransmitter-related parameters in serum and brain tissue were evaluated. Six cycles of SD notably deteriorated exercise performance in both the rotarod and grip strength tests, while KRG administration significantly ameliorated these alterations. KRG also significantly attenuated the SD-induced depletion of serum corticosterone. The levels of main neurotransmitters related to the sleep/wake cycle were markedly altered (serotonin was overproduced while dopamine levels were decreased) by SD, and KRG significantly attenuated these alterations through relevant molecules including brain-derived neurotropic factor and serotonin transporter. This study demonstrated the anti-fatigue effects of KRG in an SD mouse model, indicating the clinical relevance of KRG.


Assuntos
Corticosterona/metabolismo , Fadiga/tratamento farmacológico , Panax , Extratos Vegetais/farmacologia , Serotonina/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Fadiga/etiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Desempenho Físico Funcional , Fitoterapia , Privação do Sono/complicações
19.
Molecules ; 26(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34577094

RESUMO

Among rare earth elements, cerium has the unique ability of regulating the growth of plant cells and the biosynthesis of metabolites at different stages of plant development. The signal pathways of Ce3+-mediated ginsenosides biosynthesis in ginseng hairy roots were investigated. At a low concentration, Ce3+ improved the elongation and biomass of hairy roots. The Ce3+-induced accumulation of ginsenosides showed a high correlation with the reactive oxygen species (ROS), as well as the biosynthesis of endogenous methyl jasmonate (MeJA) and ginsenoside key enzyme genes (PgSS, PgSE and PgDDS). At a Ce3+ concentration of 20 mg L-1, the total ginsenoside content was 1.7-fold, and the total ginsenosides yield was 2.7-fold that of the control. Malondialdehyde (MDA) content and the ROS production rate were significantly higher than those of the control. The activity of superoxide dismutase (SOD) was significantly activated within the Ce3+ concentration range of 10 to 30 mg L-1. The activity of catalase (CAT) and peroxidase (POD) strengthened with the increasing concentration of Ce3+ in the range of 20-40 mg L-1. The Ce3+ exposure induced transient production of superoxide anion (O2•-) and hydrogen peroxide (H2O2). Together with the increase in the intracellular MeJA level and enzyme activity for lipoxygenase (LOX), there was an increase in the gene expression level of MeJA biosynthesis including PgLOX, PgAOS and PgJMT. Our results also revealed that Ce3+ did not directly influence PgSS, PgSE and PgDDS activity. We speculated that Ce3+-induced ROS production could enhance the accumulation of ginsenosides in ginseng hairy roots via the direct stimulation of enzyme genes for MeJA biosynthesis. This study demonstrates a potential approach for understanding and improving ginsenoside biosynthesis that is regulated by Ce3+-mediated signal transduction.


Assuntos
Acetatos/metabolismo , Cério/farmacologia , Ciclopentanos/metabolismo , Ginsenosídeos/biossíntese , Oxilipinas/metabolismo , Panax/química , Panax/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Ginsenosídeos/análise , Panax/efeitos dos fármacos , Panax/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445398

RESUMO

Gibberellins (GAs) are an important group of phytohormones associated with diverse growth and developmental processes, including cell elongation, seed germination, and secondary growth. Recent genomic and genetic analyses have advanced our knowledge of GA signaling pathways and related genes in model plant species. However, functional genomics analyses of GA signaling pathways in Panax ginseng, a perennial herb, have rarely been carried out, despite its well-known economical and medicinal importance. Here, we conducted functional characterization of GA receptors and investigated their physiological roles in the secondary growth of P. ginseng storage roots. We found that the physiological and genetic functions of P. ginseng gibberellin-insensitive dwarf1s (PgGID1s) have been evolutionarily conserved. Additionally, the essential domains and residues in the primary protein structure for interaction with active GAs and DELLA proteins are well-conserved. Overexpression of PgGID1s in Arabidopsis completely restored the GA deficient phenotype of the Arabidopsis gid1a gid1c (atgid1a/c) double mutant. Exogenous GA treatment greatly enhanced the secondary growth of tap roots; however, paclobutrazol (PCZ), a GA biosynthetic inhibitor, reduced root growth in P. ginseng. Transcriptome profiling of P. ginseng roots revealed that GA-induced root secondary growth is closely associated with cell wall biogenesis, the cell cycle, the jasmonic acid (JA) response, and nitrate assimilation, suggesting that a transcriptional network regulate root secondary growth in P. ginseng. These results provide novel insights into the mechanism controlling secondary root growth in P. ginseng.


Assuntos
Perfilação da Expressão Gênica/métodos , Giberelinas/farmacologia , Panax/crescimento & desenvolvimento , Receptores de Superfície Celular/genética , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mutação com Perda de Função , Panax/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Domínios Proteicos , Receptores de Superfície Celular/química , Análise de Sequência de RNA , Transdução de Sinais/efeitos dos fármacos , Triazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...