Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.230
Filtrar
1.
ACS Appl Mater Interfaces ; 16(26): 33038-33052, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961578

RESUMO

Utilizing nanomaterials as an alternative to antibiotics, with a focus on maintaining high biosafety, has emerged as a promising strategy to combat antibiotic resistance. Nevertheless, the challenge lies in the indiscriminate attack of nanomaterials on both bacterial and mammalian cells, which limits their practicality. Herein, Cu3SbS3 nanoparticles (NPs) capable of generating reactive oxygen species (ROS) are discovered to selectively adsorb and eliminate bacteria without causing obvious harm to mammalian cells, thanks to the interaction between O of N-acetylmuramic acid in bacterial cell walls and Cu of the NPs. Coupled with the short diffusion distance of ROS in the surrounding medium, a selective antibacterial effect is achieved. Additionally, the antibacterial mechanism is then identified: Cu3SbS3 NPs catalyze the generation of O2•-, which has subsequently been conversed by superoxide dismutase to H2O2. The latter is secondary catalyzed by the NPs to form •OH and 1O2, initiating an in situ attack on bacteria. This process depletes bacterial glutathione in conjunction with the disruption of the antioxidant defense system of bacteria. Notably, Cu3SbS3 NPs are demonstrated to efficiently impede biofilm formation; thus, a healing of MRSA-infected wounds was promoted. The bacterial cell wall-binding nanoantibacterial agents can be widely expanded through diversified design.


Assuntos
Antibacterianos , Parede Celular , Cobre , Cicatrização , Cicatrização/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Cobre/química , Cobre/farmacologia , Parede Celular/efeitos dos fármacos , Parede Celular/química , Parede Celular/metabolismo , Animais , Espécies Reativas de Oxigênio/metabolismo , Biofilmes/efeitos dos fármacos , Camundongos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Nanopartículas Metálicas/química , Humanos , Nanopartículas/química , Testes de Sensibilidade Microbiana
2.
Physiol Plant ; 176(4): e14415, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962818

RESUMO

The monotonicity of color type in naturally colored cottons (NCCs) has become the main limiting factor to their widespread use, simultaneously coexisting with poor fiber quality. The synchronous improvement of fiber quality and color become more urgent and crucial as the demand for sustainable development increases. The homologous gene of wild cotton Gossypium stocksii LAC15 in G. hirsutum, GhLAC15, was also dominantly expressed in the developing fibers of brown cotton XC20 from 5 DPA (day post anthesis) to 25 DPA, especially at the secondary cell wall thickening stage (20 DPA and 25 DPA). In XC20 plants with downregulated GhLAC15 (GhLAC15i), a remarkable reduction in proanthocyanidins (PAs) and lignin contents was observed. Some of the key genes in the phenylpropane and flavonoid biosynthesis pathway were down-regulated in GhLAC15i plants. Notably, the fiber length of GhLAC15i plants showed an obvious increase and the fiber color was lightened. Moreover, we found that the thickness of cotton fiber cell wall was decreased in GhLAC15i plants and the fiber surface became smoother compared to that of WT. Taken together, this study revealed that GhLAC15 played an important role in PAs and lignin biosynthesis in naturally colored cotton fibers. It might mediate fiber color and fiber quality by catalyzing PAs oxidation and lignin polymerization, ultimately regulating fiber colouration and development.


Assuntos
Fibra de Algodão , Regulação da Expressão Gênica de Plantas , Gossypium , Lacase , Lignina , Proteínas de Plantas , Gossypium/genética , Gossypium/metabolismo , Gossypium/enzimologia , Lacase/metabolismo , Lacase/genética , Lignina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Parede Celular/metabolismo , Proantocianidinas/metabolismo , Cor , Pigmentação/genética
3.
Physiol Plant ; 176(4): e14430, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38981734

RESUMO

Miscanthus is a perennial grass suitable for the production of lignocellulosic biomass on marginal lands. The effects of salt stress on Miscanthus cell wall composition and its consequences on biomass quality have nonetheless received relatively little attention. In this study, we investigated how exposure to moderate (100 mM NaCl) or severe (200 mM NaCl) saline growing conditions altered the composition of both primary and secondary cell wall components in the stems of 15 Miscanthus sinensis genotypes. The exposure to stress drastically impacted biomass yield and cell wall composition in terms of content and structural features. In general, the observed compositional changes were more pronounced under severe stress conditions and were more apparent in genotypes with a higher sensitivity towards stress. Besides a severely reduced cellulose content, salt stress led to increased pectin content, presumably in the form of highly branched rhamnogalacturonan type I. Although salt stress had a limited effect on the total lignin content, the acid-soluble lignin content was strongly increased in the most sensitive genotypes. This effect was also reflected in substantially altered lignin structures and led to a markedly reduced incorporation of syringyl subunits and p-coumaric acid moieties. Interestingly, plants that were allowed a recovery period after stress ultimately had a reduced lignin content compared to those continuously grown under control conditions. In addition, the salt stress-induced cell wall alterations contributed to an improved enzymatic saccharification efficiency.


Assuntos
Parede Celular , Lignina , Caules de Planta , Poaceae , Estresse Salino , Parede Celular/química , Parede Celular/metabolismo , Lignina/metabolismo , Poaceae/efeitos dos fármacos , Poaceae/fisiologia , Poaceae/genética , Caules de Planta/efeitos dos fármacos , Caules de Planta/química , Caules de Planta/metabolismo , Pectinas/metabolismo , Celulose/metabolismo , Genótipo , Biomassa , Cloreto de Sódio/farmacologia
4.
Front Immunol ; 15: 1411979, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989288

RESUMO

Background: Kawasaki disease (KD), an acute febrile illness and systemic vasculitis, is the leading cause of acquired heart disease in children in industrialized countries. KD leads to the development of coronary artery aneurysms (CAA) in affected children, which may persist for months and even years after the acute phase of the disease. There is an unmet need to characterize the immune and pathological mechanisms of the long-term complications of KD. Methods: We examined cardiovascular complications in the Lactobacillus casei cell wall extract (LCWE) mouse model of KD-like vasculitis over 4 months. The long-term immune, pathological, and functional changes occurring in cardiovascular lesions were characterized by histological examination, flow cytometric analysis, immunofluorescent staining of cardiovascular tissues, and transthoracic echocardiogram. Results: CAA and abdominal aorta dilations were detected up to 16 weeks following LCWE injection and initiation of acute vasculitis. We observed alterations in the composition of circulating immune cell profiles, such as increased monocyte frequencies in the acute phase of the disease and higher counts of neutrophils. We determined a positive correlation between circulating neutrophil and inflammatory monocyte counts and the severity of cardiovascular lesions early after LCWE injection. LCWE-induced KD-like vasculitis was associated with myocarditis and myocardial dysfunction, characterized by diminished ejection fraction and left ventricular remodeling, which worsened over time. We observed extensive fibrosis within the inflamed cardiac tissue early in the disease and myocardial fibrosis in later stages. Conclusion: Our findings indicate that increased circulating neutrophil counts in the acute phase are a reliable predictor of cardiovascular inflammation severity in LCWE-injected mice. Furthermore, long-term cardiac complications stemming from inflammatory cell infiltrations in the aortic root and coronary arteries, myocardial dysfunction, and myocardial fibrosis persist over long periods and are still detected up to 16 weeks after LCWE injection.


Assuntos
Parede Celular , Modelos Animais de Doenças , Fibrose , Lacticaseibacillus casei , Síndrome de Linfonodos Mucocutâneos , Vasculite , Animais , Camundongos , Parede Celular/imunologia , Vasculite/imunologia , Vasculite/etiologia , Vasculite/patologia , Síndrome de Linfonodos Mucocutâneos/imunologia , Síndrome de Linfonodos Mucocutâneos/complicações , Masculino , Miocardite/etiologia , Miocardite/patologia , Miocardite/imunologia , Inflamação/imunologia
5.
Plant Mol Biol ; 114(4): 84, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995453

RESUMO

Expansins are proteins without catalytic activity, but able to break hydrogen bonds between cell wall polysaccharides hemicellulose and cellulose. This proteins were reported for the first time in 1992, describing cell wall extension in cucumber hypocotyls caused particularly by alpha-expansins. Although these proteins have GH45 and CBM63 domains, characteristic of enzymes related with the cleavage of cell wall polysaccharides, demonstrating in vitro that they extend plant cell wall. Its participation has been associated to molecular processes such as development and growing, fruit ripening and softening, tolerance and resistance to biotic and abiotic stress and seed germination. Structural insights, facilitated by bioinformatics approaches, are highlighted, shedding light on the intricate interactions between alpha-expansins and cell wall polysaccharides. After more than thirty years of its discovery, we want to celebrate the knowledge of alpha-expansins and emphasize their importance to understand the phenomena of disassembly and loosening of the cell wall, specifically in the fruit ripening phenomena, with this state-of-the-art dedicated to them.


Assuntos
Parede Celular , Frutas , Proteínas de Plantas , Parede Celular/metabolismo , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Polissacarídeos/metabolismo
6.
Methods Mol Biol ; 2830: 93-104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977571

RESUMO

In flowering plants, proper seed development is achieved through the constant interplay of fertilization products, embryo and endosperm, and maternal tissues. Understanding such a complex biological process requires microscopy techniques able to unveil the seed internal morphological structure. Seed thickness and relatively low permeability make conventional tissue staining techniques impractical unless combined with time-consuming dissecting methods. Here, we describe two techniques to imaging the three-dimensional structure of Arabidopsis seeds by confocal laser scanning microscopy. Both procedures, while differing in their time of execution and resolution, are based on cell wall staining of seed tissues with fluorescent dyes.


Assuntos
Arabidopsis , Microscopia Confocal , Sementes , Sementes/crescimento & desenvolvimento , Microscopia Confocal/métodos , Imageamento Tridimensional/métodos , Corantes Fluorescentes/química , Parede Celular/ultraestrutura , Coloração e Rotulagem/métodos
7.
Nat Commun ; 15(1): 5823, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992052

RESUMO

Zinc (Zn) is an essential micronutrient but can be cytotoxic when present in excess. Plants have evolved mechanisms to tolerate Zn toxicity. To identify genetic loci responsible for natural variation of plant tolerance to Zn toxicity, we conduct genome-wide association studies for root growth responses to high Zn and identify 21 significant associated loci. Among these loci, we identify Trichome Birefringence (TBR) allelic variation determining root growth variation in high Zn conditions. Natural alleles of TBR determine TBR transcript and protein levels which affect pectin methylesterification in root cell walls. Together with previously published data showing that pectin methylesterification increase goes along with decreased Zn binding to cell walls in TBR mutants, our findings lead to a model in which TBR allelic variation enables Zn tolerance through modulating root cell wall pectin methylesterification. The role of TBR in Zn tolerance is conserved across dicot and monocot plant species.


Assuntos
Arabidopsis , Parede Celular , Regulação da Expressão Gênica de Plantas , Pectinas , Raízes de Plantas , Zinco , Parede Celular/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Zinco/metabolismo , Zinco/toxicidade , Pectinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Esterificação , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Estudo de Associação Genômica Ampla , Alelos , Variação Genética
8.
PeerJ ; 12: e17682, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993976

RESUMO

To determine the genes associated with the fiber strength trait in cotton, three different cotton cultivars were selected: Sea Island cotton (Xinhai 32, with hyper-long fibers labeled as HL), and upland cotton (17-24, with long fibers labeled as L, and 62-33, with short fibers labeled as S). These cultivars were chosen to assess fiber samples with varying qualities. RNA-seq technology was used to analyze the expression profiles of cotton fibers at the secondary cell wall (SCW) thickening stage (20, 25, and 30 days post-anthesis (DPA)). The results showed that a large number of differentially expressed genes (DEGs) were obtained from the three assessed cotton cultivars at different stages of SCW development. For instance, at 20 DPA, Sea Island cotton (HL) had 6,215 and 5,364 DEGs compared to upland cotton 17-24 (L) and 62-33 (S), respectively. Meanwhile, there were 1,236 DEGs between two upland cotton cultivars, 17-24 (L) and 62-33 (S). Gene Ontology (GO) term enrichment identified 42 functions, including 20 biological processes, 11 cellular components, and 11 molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis identified several pathways involved in SCW synthesis and thickening, such as glycolysis/gluconeogenesis, galactose metabolism, propanoate metabolism, biosynthesis of unsaturated fatty acids pathway, valine, leucine and isoleucine degradation, fatty acid elongation pathways, and plant hormone signal transduction. Through the identification of shared DEGs, 46 DEGs were found to exhibit considerable expressional differences at different fiber stages from the three cotton cultivars. These shared DEGs have functions including REDOX enzymes, binding proteins, hydrolases (such as GDSL thioesterase), transferases, metalloproteins (cytochromatin-like genes), kinases, carbohydrates, and transcription factors (MYB and WRKY). Therefore, RT-qPCR was performed to verify the expression levels of nine of the 46 identified DEGs, an approach which demonstrated the reliability of RNA-seq data. Our results provided valuable molecular resources for clarifying the cell biology of SCW biosynthesis during fiber development in cotton.


Assuntos
Parede Celular , Fibra de Algodão , Regulação da Expressão Gênica de Plantas , Gossypium , Gossypium/genética , Gossypium/metabolismo , Gossypium/crescimento & desenvolvimento , Fibra de Algodão/análise , Parede Celular/metabolismo , Parede Celular/genética , Perfilação da Expressão Gênica , Transcriptoma
9.
Antonie Van Leeuwenhoek ; 117(1): 100, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001997

RESUMO

An isolate of a Gram-positive, strictly aerobic, motile, rod-shaped, endospore forming bacterium was originally isolated from soil when screening and bioprospecting for plant beneficial microorganisms. Phylogenetic analysis of the 16S rRNA gene sequences indicated that this strain was closely related to Lysinibacillus fusiformis NRRL NRS-350T (99.7%) and Lysinibacillus sphaericus NRRL B-23268T (99.2%). In phenotypic characterization, the novel strain was found to grow between 10 and 45 °C and tolerate up to 8% (w/v) NaCl. Furthermore, the strain grew in media with pH 5 to 10 (optimal growth at pH 7.0). The predominant cellular fatty acids were observed to be iso-C15: 0 (52.3%), anteiso-C15: 0 (14.8%), C16:1ω7C alcohol (11.2%), and C16: 0 (9.5%). The cell-wall peptidoglycan contained lysine-aspartic acid, the same as congeners. A draft genome was assembled and the DNA G+C content was determined to be 37.1% (mol content). A phylogenomic analysis on the core genome of the new strain and 5 closest type strains of Lysinibacillus revealed this strain formed a distinct monophyletic clade with the nearest neighbor being Lysinibacillus fusiformis. DNA-DNA relatedness studies using in silico DNA-DNA hybridizations (DDH) showed this species was below the species threshold of 70%. Based upon the consensus of phylogenetic and phenotypic analyses, we conclude that this strain represents a novel species within the genus Lysinibacillus, for which the name Lysinibacillus pinottii sp. nov. is proposed, with type strain PB211T (= NRRL B-65672T, = CCUG 77181T).


Assuntos
Bacillaceae , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Filogenia , RNA Ribossômico 16S , Bacillaceae/genética , Bacillaceae/classificação , Bacillaceae/isolamento & purificação , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Ácidos Graxos/análise , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Peptidoglicano , Animais , Genoma Bacteriano , Análise de Sequência de DNA , Parede Celular/química
10.
Planta ; 260(2): 46, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970646

RESUMO

MAIN CONCLUSION: Mechanical stress induces distinct anatomical, molecular, and morphological changes in Urtica dioica, affecting trichome development, gene expression, and leaf morphology under controlled conditions The experiments were performed on common nettle, a widely known plant characterized by high variability of leaf morphology and responsiveness to mechanical touch. A specially constructed experimental device was used to study the impact of mechanical stress on Urtica dioica plants under strictly controlled parameters of the mechanical stimulus (touching) and environment in the growth chamber. The general anatomical structure of the plants that were touched was similar to that of control plants, but the shape of the internodes' cross section was different. Stress-treated plants showed a distinct four-ribbed structure. However, as the internodes progressed, the shape gradually approached a rectangular form. The epidermis of control plants included stinging, glandular and simple setulose trichomes, but plants that were touched had no stinging trichomes, and setulose trichomes accumulated more callose. Cell wall lignification occurred in the older internodes of the control plants compared to stress-treated ones. Gene analysis revealed upregulation of the expression of the UdTCH1 gene in touched plants compared to control plants. Conversely, the expression of UdERF4 and UdTCH4 was downregulated in stressed plants. These data indicate that the nettle's response to mechanical stress reaches the level of regulatory networks of gene expression. Image analysis revealed reduced leaf area, increased asymmetry and altered contours in touched leaves, especially in advanced growth stages, compared to control plants. Our results indicate that mechanical stress triggers various anatomical, molecular, and morphological changes in nettle; however, further interdisciplinary research is needed to better understand the underlying physiological mechanisms.


Assuntos
Regulação da Expressão Gênica de Plantas , Folhas de Planta , Estresse Mecânico , Tricomas , Urtica dioica , Urtica dioica/genética , Tricomas/genética , Tricomas/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Parede Celular/metabolismo , Parede Celular/genética
11.
Food Microbiol ; 123: 104588, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39038893

RESUMO

Aspergillus flavus infects important crops and produces carcinogenic aflatoxins, posing a serious threat to food safety and human health. Biochemical analysis and RNA-seq were performed to investigate the effects and mechanisms of piperitone on A. flavus growth and aflatoxin B1 biosynthesis. Piperitone significantly inhibited the growth of A. flavus, AFB1 production, and its pathogenicity on peanuts and corn flour. Differentially expressed genes (DEGs) associated with the synthesis of chitin, glucan, and ergosterol were markedly down-regulated, and the ergosterol content was reduced, resulting in a disruption in the integrity of the cell wall and cell membrane. Moreover, antioxidant genes were down-regulated, the correspondingly activities of antioxidant enzymes such as catalase, peroxidase, and superoxide dismutase were reduced, and levels of superoxide anion and hydrogen peroxide were increased, leading to a burst of reactive oxygen species (ROS). Accompanied by ROS accumulation, DNA fragmentation and cell autophagy were observed, and 16 aflatoxin cluster genes were down-regulated. Overall, piperitone disrupts the integrity of the cell wall and cell membrane, triggers the accumulation of ROS, causes DNA fragmentation and cell autophagy, ultimately leading to defective growth and impaired AFB1 biosynthesis.


Assuntos
Aflatoxina B1 , Antifúngicos , Aspergillus flavus , Espécies Reativas de Oxigênio , Zea mays , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/genética , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/metabolismo , Zea mays/microbiologia , Antifúngicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Arachis/microbiologia , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo
12.
Mol Plant Pathol ; 25(7): e13493, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39034619

RESUMO

The cell wall is the first barrier against external adversity and plays roles in maintaining normal physiological functions of fungi. Previously, we reported a nucleosome assembly protein, MoNap1, in Magnaporthe oryzae that plays a role in cell wall integrity (CWI), stress response, and pathogenicity. Moreover, MoNap1 negatively regulates the expression of MoSMI1 encoded by MGG_03970. Here, we demonstrated that deletion of MoSMI1 resulted in a significant defect in appressorium function, CWI, cell morphology, and pathogenicity. Further investigation revealed that MoSmi1 interacted with MoOsm1 and MoMps1 and affected the phosphorylation levels of MoOsm1, MoMps1, and MoPmk1, suggesting that MoSmi1 regulates biological functions by mediating mitogen-activated protein kinase (MAPK) signalling pathway in M. oryzae. In addition, transcriptome data revealed that MoSmi1 regulates many infection-related processes in M. oryzae, such as membrane-related pathway and oxidation reduction process. In conclusion, our study demonstrated that MoSmi1 regulates CWI by mediating the MAPK pathway to affect development and pathogenicity of M. oryzae.


Assuntos
Proteínas Fúngicas , Proteínas Quinases Ativadas por Mitógeno , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Virulência/genética , Regulação Fúngica da Expressão Gênica , Doenças das Plantas/microbiologia , Parede Celular/metabolismo , Sistema de Sinalização das MAP Quinases , Oryza/microbiologia , Fosforilação , Magnaporthe/patogenicidade , Magnaporthe/genética , Ascomicetos
13.
Crit Rev Food Sci Nutr ; 64(20): 7149-7171, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38975868

RESUMO

Microalgae are booming as a sustainable protein source for human nutrition and animal feed. Nevertheless, certain strains were reported to have robust cell walls limiting protein digestibility. There are several disruption approaches to break down the cell integrity and increase digestive enzyme accessibility. This review's intent is to discuss the digestibility of microalgae proteins in intact cells and after their disruption. In intact single cells, the extent of protein digestibility is chiefly related to cell wall structural properties (differing among strains) as well as digestion method and when added to food or feed protein digestibility changes depending on the matrix's composition. The degree of effectiveness of the disruption method varies among studies, and it is complicated to compare them due to variabilities in digestibility models, strains, disruption method/conditions and their consequent impact on the microalgae cell structure. More exhaustive studies are still required to fill knowledge gaps on the structure of microalgal cell walls and to find efficient and cost-effective disruption technologies to increase proteins availability without hindering their quality.


Assuntos
Parede Celular , Digestão , Microalgas , Microalgas/química , Microalgas/metabolismo , Digestão/fisiologia , Humanos , Parede Celular/química , Parede Celular/metabolismo , Ração Animal/análise , Animais , Proteínas Alimentares/metabolismo
14.
mBio ; 15(6): e0033924, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38988221

RESUMO

The emergence of oxacillin-susceptible methicillin-resistant Staphylococcus aureus (OS-MRSA) has imposed further challenges to the clinical management of MRSA infections. When exposed to ß-lactam antibiotics, these strains can easily acquire reduced ß-lactam susceptibility through chromosomal mutations, including those in RNA polymerase (RNAP) genes such as rpoBC, which may then lead to treatment failure. Despite the increasing prevalence of such strains and the apparent challenges they pose for diagnosis and treatment, there is limited information available on the actual mechanisms underlying such chromosomal mutation-related transitions to reduced ß-lactam susceptibility, as it does not directly associate with the expression of mecA. This study investigated the cellular physiology and metabolism of six missense mutants with reduced oxacillin susceptibility, each carrying respective mutations on RpoBH929P, RpoBQ645H, RpoCG950R, RpoCG498D, RpiAA64E, and FruBA211E, using capillary electrophoresis-mass spectrometry-based metabolomics analysis. Our results showed that rpoBC mutations caused RNAP transcription dysfunction, leading to an intracellular accumulation of ribonucleotides. These mutations also led to the accumulation of UDP-Glc/Gal and UDP-GlcNAc, which are precursors of UTP-associated peptidoglycan and wall teichoic acid. Excessive amounts of building blocks then contributed to the cell wall thickening of mutant strains, as observed in transmission electron microscopy, and ultimately resulted in decreased susceptibility to ß-lactam in OS-MRSA. IMPORTANCE: The emergence of oxacillin-susceptible methicillin-resistant Staphylococcus aureus (OS-MRSA) strains has created new challenges for treating MRSA infections. These strains can become resistant to ß-lactam antibiotics through chromosomal mutations, including those in the RNA polymerase (RNAP) genes such as rpoBC, leading to treatment failure. This study investigated the mechanisms underlying reduced ß-lactam susceptibility in four rpoBC mutants of OS-MRSA. The results showed that rpoBC mutations caused RNAP transcription dysfunction, leading to an intracellular accumulation of ribonucleotides and precursors of peptidoglycan as well as wall teichoic acid. This, in turn, caused thickening of the cell wall and ultimately resulted in decreased susceptibility to ß-lactam in OS-MRSA. These findings provide insights into the mechanisms of antibiotic resistance in OS-MRSA and highlight the importance of continued research in developing effective treatments to combat antibiotic resistance.


Assuntos
Antibacterianos , RNA Polimerases Dirigidas por DNA , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Oxacilina , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/enzimologia , Oxacilina/farmacologia , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Antibacterianos/farmacologia , beta-Lactamas/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutação de Sentido Incorreto , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Parede Celular/genética , Humanos , Mutação , Metabolômica
15.
Med Microbiol Immunol ; 213(1): 13, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967888

RESUMO

Candida auris is an emerging pathogenic yeast that has been categorized as a global public health threat and a critical priority among fungal pathogens. Despite this, the immune response against C. auris infection is still not well understood. Hosts fight Candida infections through the immune system that recognizes pathogen-associated molecular patterns such as ß-glucan, mannan, and chitin on the fungal cell wall. In this study, levels of ß-glucan and mannan exposures in C. auris grown under different physiologically relevant stimuli were quantified by flow cytometry-based analysis. Lactate, hypoxia, and sublethal concentration of fluconazole trigger a decrease in surface ß-glucan while low pH triggers an increase in ß-glucan. There is no inverse pattern between exposure levels of ß-glucan and mannan in the cell wall architecture among the three clades. To determine the effect of cell wall remodeling on the immune response, a phagocytosis assay was performed, followed by quantification of released cytokines by ELISA. Lactate-induced decrease in ß-glucan leads to reduced uptake of C. auris by PMA-differentiated THP-1 and RAW 264.7 macrophages. Furthermore, reduced production of CCL3/MIP-1⍺ but not TNF-⍺ and IL-10 were observed. An in vivo infection analysis using silkworms reveals that a reduction in ß-glucan triggers an increase in the virulence of C. auris. This study demonstrates that ß-glucan alteration occurs in C. auris and serves as an escape mechanism from immune cells leading to increased virulence.


Assuntos
Candida auris , Parede Celular , Evasão da Resposta Imune , beta-Glucanas , beta-Glucanas/metabolismo , Animais , Virulência , Camundongos , Parede Celular/imunologia , Parede Celular/química , Parede Celular/metabolismo , Humanos , Candida auris/patogenicidade , Células RAW 264.7 , Candidíase/microbiologia , Candidíase/imunologia , Citocinas/metabolismo , Fagocitose , Macrófagos/imunologia , Macrófagos/microbiologia , Mananas/farmacologia , Ácido Láctico/metabolismo , Modelos Animais de Doenças , Células THP-1
16.
J Phys Chem B ; 128(28): 6838-6852, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38960927

RESUMO

One of the routes for adaptation to extreme environments is via remodeling of cell membrane structure, composition, and biophysical properties rendering a functional membrane. Collective studies suggest some form of membrane feedback in mycobacterial species that harbor complex lipids within the outer and inner cell wall layers. Here, we study the homeostatic membrane landscape of mycobacteria in response to high hydrostatic pressure and temperature triggers using high pressure fluorescence, mass and infrared spectroscopies, NMR, SAXS, and molecular dynamics simulations. Our findings reveal that mycobacterial membrane possesses unique and lipid-specific pressure-induced signatures that attenuate progression to highly ordered phases. Both inner and outer membrane layers exhibit phase coexistence of nearly identical lipid phases keeping residual fluidity over a wide range of temperature and pressure, but with different sensitivities. Lipidomic analysis of bacteria grown under pressure revealed lipidome remodeling in terms of chain length, unsaturation, and specific long-chained characteristic mycobacterial lipids, rendering a fluid bacterial membrane. These findings could help understand how bacteria may adapt to a broad spectrum of harsh environments by modulating their lipidome to select lipids that enable the maintenance of a fluid functional cell envelope.


Assuntos
Membrana Celular , Fluidez de Membrana , Simulação de Dinâmica Molecular , Membrana Celular/química , Membrana Celular/metabolismo , Temperatura , Parede Celular/metabolismo , Parede Celular/química , Adaptação Fisiológica , Pressão Hidrostática , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo
17.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39000352

RESUMO

A novel MADS-box transcription factor from Pinus radiata D. Don was characterized. PrMADS11 encodes a protein of 165 amino acids for a MADS-box transcription factor belonging to group II, related to the MIKC protein structure. PrMADS11 was differentially expressed in the stems of pine trees in response to 45° inclination at early times (1 h). Arabidopsis thaliana was stably transformed with a 35S::PrMADS11 construct in an effort to identify the putative targets of PrMADS11. A massive transcriptome analysis revealed 947 differentially expressed genes: 498 genes were up-regulated, and 449 genes were down-regulated due to the over-expression of PrMADS11. The gene ontology analysis highlighted a cell wall remodeling function among the differentially expressed genes, suggesting the active participation of cell wall modification required during the response to vertical stem loss. In addition, the phenylpropanoid pathway was also indicated as a PrMADS11 target, displaying a marked increment in the expression of the genes driven to the biosynthesis of monolignols. The EMSA assays confirmed that PrMADS11 interacts with CArG-box sequences. This TF modulates the gene expression of several molecular pathways, including other TFs, as well as the genes involved in cell wall remodeling. The increment in the lignin content and the genes involved in cell wall dynamics could be an indication of the key role of PrMADS11 in the response to trunk inclination.


Assuntos
Regulação da Expressão Gênica de Plantas , Pinus , Proteínas de Plantas , Pinus/genética , Pinus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Caules de Planta/metabolismo , Caules de Planta/genética , Parede Celular/metabolismo , Parede Celular/genética , Perfilação da Expressão Gênica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Lignina/metabolismo , Lignina/biossíntese , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Plantas Geneticamente Modificadas/genética
18.
Arch Microbiol ; 206(7): 336, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954047

RESUMO

Wild-type Lactococcus lactis strain LAC460 secretes prophage-encoded bacteriocin-like lysin LysL, which kills some Lactococcus strains, but has no lytic effect on the producer. LysL carries two N-terminal enzymatic active domains (EAD), and an unknown C-terminus without homology to known domains. This study aimed to determine whether the C-terminus of LysL carries a cell wall binding domain (CBD) for target specificity of LysL. The C-terminal putative CBD region of LysL was fused with His-tagged green fluorescent protein (HGFPuv). The HGFPuv_CBDlysL gene fusion was ligated into the pASG-IBA4 vector, and introduced into Escherichia coli. The fusion protein was produced and purified with affinity chromatography. To analyse the binding of HGFPuv_CBDLysL to Lactococcus cells, the protein was mixed with LysL-sensitive and LysL-resistant strains, including the LysL-producer LAC460, and the fluorescence of the cells was analysed. As seen in fluorescence microscope, HGFPuv_CBDLysL decorated the cell surface of LysL-sensitive L. cremoris MG1614 with green fluorescence, whereas the resistant L. lactis strains LM0230 and LAC460 remained unfluorescent. The fluorescence plate reader confirmed the microscopy results detecting fluorescence only from four tested LysL-sensitive strains but not from 11 tested LysL-resistant strains. Specific binding of HGFPuv_CBDLysL onto the LysL-sensitive cells but not onto the LysL-resistant strains indicates that the C-terminus of LysL contains specific CBD. In conclusion, this report presents experimental evidence of the presence of a CBD in a lactococcal phage lysin. Moreover, the inability of HGFPuv_CBDLysL to bind to the LysL producer LAC460 may partly explain the host's resistance to its own prophage lysin.


Assuntos
Bacteriocinas , Parede Celular , Lactococcus lactis , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Parede Celular/metabolismo , Bacteriocinas/metabolismo , Bacteriocinas/genética , Bacteriocinas/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Domínios Proteicos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/química , Ligação Proteica
19.
J Cell Sci ; 137(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38949052

RESUMO

When stressed, cells need to adapt their proteome to maintain protein homeostasis. This requires increased proteasome assembly. Increased proteasome assembly is dependent on increased production of proteasome assembly chaperones. In Saccharomyces cerevisiae, inhibition of the growth-promoting kinase complex TORC1 causes increased proteasome assembly chaperone translation, including that of Adc17. This is dependent upon activation of the mitogen-activated protein kinase (MAPK) Mpk1 and relocalisation of assembly chaperone mRNA to patches of dense actin. We show here that TORC1 inhibition alters cell wall properties to induce these changes by activating the cell wall integrity pathway through the Wsc1, Wsc3 and Wsc4 sensor proteins. We demonstrate that, in isolation, these signals are insufficient to drive protein expression. We identify that the TORC1-activated S6 kinase Sch9 must be inhibited as well. This work expands our knowledge on the signalling pathways that regulate proteasome assembly chaperone production.


Assuntos
Chaperonas Moleculares , Complexo de Endopeptidases do Proteassoma , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Transdução de Sinais , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Parede Celular/metabolismo , Regulação Fúngica da Expressão Gênica
20.
PeerJ ; 12: e17625, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948221

RESUMO

Plasmodesmata are transmembrane channels embedded within the cell wall that can facilitate the intercellular communication in plants. Plasmodesmata callose-binding (PDCB) protein that associates with the plasmodesmata contributes to cell wall extension. Given that the elongation of cotton fiber cells correlates with the dynamics of the cell wall, this protein can be related to the cotton fiber elongation. This study sought to identify PDCB family members within the Gossypium. hirsutum genome and to elucidate their expression profiles. A total of 45 distinct family members were observed through the identification and screening processes. The analysis of their physicochemical properties revealed the similarity in the amino acid composition and molecular weight across most members. The phylogenetic analysis facilitated the construction of an evolutionary tree, categorizing these members into five groups mainly distributed on 20 chromosomes. The fine mapping results facilitated a tissue-specific examination of group V, revealing that the expression level of GhPDCB9 peaked five days after flowering. The VIGS experiments resulted in a marked decrease in the gene expression level and a significant reduction in the mature fiber length, averaging a shortening of 1.43-4.77 mm. The results indicated that GhPDCB9 played a pivotal role in the cotton fiber development and served as a candidate for enhancing cotton yield.


Assuntos
Fibra de Algodão , Gossypium , Filogenia , Proteínas de Plantas , Plasmodesmos , Gossypium/genética , Gossypium/metabolismo , Plasmodesmos/metabolismo , Fibra de Algodão/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Família Multigênica , Parede Celular/metabolismo , Parede Celular/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA