Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.530
Filtrar
1.
Int J Mol Sci ; 22(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073503

RESUMO

Drug-induced myopathies are classified as acquired myopathies caused by exogenous factors. These pathological conditions develop in patients without muscle disease and are triggered by a variety of medicaments, including lipid-lowering drugs (LLDs) such as statins, fibrates, and ezetimibe. Here we summarise the current knowledge gained via studies conducted using various models, such as cell lines and mammalian models, and compare them with the results obtained in zebrafish (Danio rerio) studies. Zebrafish have proven to be an excellent research tool for studying dyslipidaemias as a model of these pathological conditions. This system enables in-vivo characterization of drug and gene candidates to further the understanding of disease aetiology and develop new therapeutic strategies. Our review also considers important environmental issues arising from the indiscriminate use of LLDs worldwide. The widespread use and importance of drugs such as statins and fibrates justify the need for the meticulous study of their mechanism of action and the side effects they cause.


Assuntos
Ácidos Fíbricos/efeitos adversos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Doenças Musculares , Peixe-Zebra/metabolismo , Animais , Modelos Animais de Doenças , Ácidos Fíbricos/farmacologia , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Doenças Musculares/induzido quimicamente , Doenças Musculares/metabolismo , Doenças Musculares/patologia
2.
Nat Commun ; 12(1): 3731, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140477

RESUMO

Decoding spatial transcriptomes from single-cell RNA sequencing (scRNA-seq) data has become a fundamental technique for understanding multicellular systems; however, existing computational methods lack both accuracy and biological interpretability due to their model-free frameworks. Here, we introduce Perler, a model-based method to integrate scRNA-seq data with reference in situ hybridization (ISH) data. To calibrate differences between these datasets, we develop a biologically interpretable model that uses generative linear mapping based on a Gaussian mixture model using the Expectation-Maximization algorithm. Perler accurately predicts the spatial gene expression of Drosophila embryos, zebrafish embryos, mammalian liver, and mouse visual cortex from scRNA-seq data. Furthermore, the reconstructed transcriptomes do not over-fit the ISH data and preserved the timing information of the scRNA-seq data. These results demonstrate the generalizability of Perler for dataset integration, thereby providing a biologically interpretable framework for accurate reconstruction of spatial transcriptomes in any multicellular system.


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento/genética , Transcriptoma/genética , Algoritmos , Animais , Polaridade Celular/genética , Bases de Dados Genéticas , Drosophila melanogaster , Hibridização In Situ , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Camundongos , Modelos Teóricos , RNA-Seq , Análise de Célula Única , Análise Espacial , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
3.
Ecotoxicol Environ Saf ; 220: 112416, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34119928

RESUMO

Numerous byproducts resulting from chlorinated disinfection are constantly being generated during water treatment processes. The potential risks of these new emerging pollutions remain largely unknown. Here, we determined the risks of chlorinated disinfection byproducts of diazepam (DZP) in the cellular and zebrafish exposure experiments. The cytotoxicity of disinfection byproducts (MACB and MBCC) was greater than DZP in macrophage raw 264.7 cells at 10 mg/L. We further found that the effects of MBCC on the metabolism of glycine, serine, threonine and riboflavin were far greater than DZP by the targeted metabolomics methods. Moreover, MBCC significantly decreased the peak amplitude of neuronal action potential in primary embryonic rat (Spragu-Dawley SD) hippocampal neurons. We finally determined behavioral toxicity of DZP and byproducts in zebrafish larvae. MBCC significantly decreased the maximal swim-activity and peak duration of zebrafish after 72 h exposure. Altogether, these findings indicate the MBCC pose serious pressures on public health.


Assuntos
Comportamento Animal/efeitos dos fármacos , Diazepam/toxicidade , Desinfetantes/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/fisiologia , Animais , Diazepam/química , Desinfetantes/química , Halogenação , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Metaboloma/efeitos dos fármacos , Camundongos , Neurônios/efeitos dos fármacos , Células RAW 264.7 , Ratos , Natação/fisiologia , Poluentes Químicos da Água/química , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
4.
Nat Commun ; 12(1): 3362, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099692

RESUMO

Diabetes can be caused by an insufficiency in ß-cell mass. Here, we performed a genetic screen in a zebrafish model of ß-cell loss to identify pathways promoting ß-cell regeneration. We found that both folate receptor 1 (folr1) overexpression and treatment with folinic acid, stimulated ß-cell differentiation in zebrafish. Treatment with folinic acid also stimulated ß-cell differentiation in cultures of neonatal pig islets, showing that the effect could be translated to a mammalian system. In both zebrafish and neonatal pig islets, the increased ß-cell differentiation originated from ductal cells. Mechanistically, comparative metabolomic analysis of zebrafish with/without ß-cell ablation and with/without folinic acid treatment indicated ß-cell regeneration could be attributed to changes in the pyrimidine, carnitine, and serine pathways. Overall, our results suggest evolutionarily conserved and previously unknown roles for folic acid and one-carbon metabolism in the generation of ß-cells.


Assuntos
Carbono/metabolismo , Diferenciação Celular/efeitos dos fármacos , Receptor 1 de Folato/metabolismo , Células Secretoras de Insulina/metabolismo , Leucovorina/farmacologia , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Animais Recém-Nascidos , Carnitina/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Receptor 1 de Folato/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células Secretoras de Insulina/citologia , Larva/genética , Larva/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Camundongos , Pirimidinas/metabolismo , Suínos , Peixe-Zebra/genética
5.
Int J Mol Sci ; 22(9)2021 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-34063300

RESUMO

The BH3-only molecule Bad regulates cell death via its differential protein phosphorylation, but very few studies address its effect on early embryonic development in vertebrate systems. In this work, we examined the novel role of zebrafish Bad in the initial programmed cell death (PCD) for brain morphogenesis through reducing environmental stress and cell death signaling. Bad was considered to be a material factor that because of the knockdown of Bad by morpholino oligonucleotides, PCD was increased and the reactive oxygen species (ROS) level was enhanced, which correlated to trigger a p53/caspase-8 involving cell death signaling. This Bad knockdown-mediated environmental stress and enhanced cell dying can delay normal cell migration in the formation of the three germ layers, especially the ectoderm, for further brain development. Furthermore, Bad defects involved in three-germ-layers development at 8 hpf were identified by in situ hybridization approach on cyp26, rtla, and Sox17 pattern expression markers. Finally, the Bad knockdown-induced severely defected brain was examined by tissue section from 24 to 48 h postfertilization (hpf), which correlated to induce dramatic malformation in the hindbrain. Our data suggest that the BH3-only molecule Bad regulates brain development via controlling programmed cell death on overcoming environmental stress for reducing secondary cell death signaling, which suggests that correlates to brain developmental and neurological disorders in this model system.


Assuntos
Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Desenvolvimento Embrionário , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteína de Morte Celular Associada a bcl/metabolismo , Animais , Apoptose , Encéfalo/patologia , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes p53 , Morfolinos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteína de Morte Celular Associada a bcl/genética
6.
Molecules ; 26(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067571

RESUMO

This study evaluated the neuroprotective effects and mechanisms of procyanidins (PCs). In vitro, rat pheochromocytoma cells (PC12 cells) were exposed to PCs (1, 2 or 4 µg/mL) or N-Acetyl-L-cysteine (NAC) (20 µM) for 24 h, and then incubated with 200 µM of H2O2 for 24 h. Compared with H2O2 alone, PCs significantly increased antioxidant activities (e.g., glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT)), decreased levels of reactive oxygen species (ROS) and malondialdehyde (MDA), and increased nuclear factor-erythroid 2-related factor 2 (Nrf2) accumulation and increased the expression of quinone oxidoreductase 1 (NQO1), heme oxygenase 1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and glutamate-cysteine ligase catalytic subunit (GCLC). In vivo, zebrafish larvae (AB strain) 3 days post-fertilization (dpf) were exposed to NAC (30 µM) or PCs (4, 8 or 16 µg/mL) in the absence or presence of 300 µM of H2O2 for 4 days. Compared with H2O2 alone, PCs enhanced antioxidant activities (e.g., GSH-Px, CAT, and SOD), decreased levels of ROS and MDA, and enhanced Nrf2/ antioxidant response element (ARE) activation and raised expression levels of NQO1, HO-1, GCLM, and GCLC. In conclusion, these results indicated that PCs exerted neuroprotective effects via activating the Nrf2/ARE pathway and alleviating oxidative damage.


Assuntos
Proantocianidinas/metabolismo , Proantocianidinas/farmacologia , Acetilcisteína/farmacologia , Animais , Elementos de Resposta Antioxidante , Antioxidantes/metabolismo , Glutationa Peroxidase/metabolismo , Heme Oxigenase-1/metabolismo , Peróxido de Hidrogênio/farmacologia , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fator de Transcrição NF-E2/metabolismo , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Ratos , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra/metabolismo
7.
Molecules ; 26(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070878

RESUMO

Extracts from Hericium erinaceus can cause neural cells to produce nerve growth factor (NGF) and protect against neuron death. The objective of this study was to evaluate the effects of ethanol and hot water extracts from H. erinaceus solid-state fermented wheat product on the brain cells of zebrafish embryos in both pre-dosing protection mode and post-dosing repair mode. The results showed that 1% ethanol could effectively promote zebrafish embryo brain cell death. Both 200 ppm of ethanol and water extracts from H. erinaceus solid-state fermented wheat product protected brain cells and significantly reduced the death of brain cells caused by 1% ethanol treatment in zebrafish. Moreover, the zebrafish embryos were immersed in 1% ethanol for 4 h to cause brain cell damage and were then transferred and soaked in the 200 ppm of ethanol and water extracts from H. erinaceus solid-state fermented wheat product to restore the brain cells damaged by the 1% ethanol. However, the 200 ppm extracts from the unfermented wheat medium had no protective and repairing effects. Moreover, 200 ppm of ethanol and water extracts from H. erinaceus fruiting body had less significant protective and restorative effects on the brain cells of zebrafish embryos. Both the ethanol and hot water extracts from H. erinaceus solid-state fermented wheat product could protect and repair the brain cells of zebrafish embryos damaged by 1% ethanol. Therefore, it has great potential as a raw material for neuroprotective health product.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Hericium/metabolismo , Animais , Encéfalo , Morte Celular , Etanol/efeitos adversos , Fermentação , Carpóforos/metabolismo , Hericium/patogenicidade , Fator de Crescimento Neural/efeitos dos fármacos , Fator de Crescimento Neural/metabolismo , Neurônios/efeitos dos fármacos , Triticum/metabolismo , Triticum/microbiologia , Água/química , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
8.
Int J Mol Sci ; 22(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34074030

RESUMO

The ability of organisms to quickly sense and transduce signals of environmental stresses is critical for their survival. Ca2+ is a versatile intracellular messenger involved in sensing a wide variety of stresses and regulating the subsequent cellular responses. So far, our understanding for calcium signaling was mostly obtained from ex vivo tissues and cultured cell lines, and the in vivo spatiotemporal dynamics of stress-triggered calcium signaling in a vertebrate remains to be characterized. Here, we describe the generation and characterization of a transgenic zebrafish line with ubiquitous expression of GCaMP6s, a genetically encoded calcium indicator (GECI). We developed a method to investigate the spatiotemporal patterns of Ca2+ events induced by heat stress. Exposure to heat stress elicited immediate and transient calcium signaling in developing zebrafish. Cells extensively distributed in the integument of the head and body trunk were the first batch of responders and different cell populations demonstrated distinct response patterns upon heat stress. Activity of the heat stress-induced calcium signaling peaked at 30 s and swiftly decreased to near the basal level at 120 s after the beginning of exposure. Inhibition of the heat-induced calcium signaling by LaCl3 and capsazepine and treatment with the inhibitors for CaMKII (Ca²2/calmodulin-dependent protein kinase II) and HSF1 (Heat shock factor 1) all significantly depressed the enhanced heat shock response (HSR). Together, we delineated the spatiotemporal dynamics of heat-induced calcium signaling and confirmed functions of the Ca2+-CaMKII-HSF1 pathway in regulating the HSR in zebrafish.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Calmodulina/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Resposta ao Choque Térmico/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/genética , Sinalização do Cálcio/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Calmodulina/genética , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Proteínas de Fluorescência Verde/genética , Fatores de Transcrição de Choque Térmico/antagonistas & inibidores , Fatores de Transcrição de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/fisiologia , Hibridização In Situ , Lantânio/farmacologia , Microscopia de Fluorescência , Análise Espaço-Temporal , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/metabolismo
9.
Food Chem ; 360: 129999, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33989880

RESUMO

In this study, cherry fruits and petioles from six ancient Italian Prunus avium L. varieties (Ferrovia, Capellina, Morellina, Ciambellana, Napoletana, and Bianca), were compared by chemical and bioinformatic analyses and evaluated for their antiangiogenic activity. The highest levels of total phenols and flavonoids were found in Napoletana petioles, and Morellina and Capellina fruits. HPLC-PDA-MS analyses showed similar phenolic profiles for all fruit extracts, with cyanidin-3-O-rutinoside, flavonols glycosides, and quinic acid derivatives as major components. Flavonoid glycosides were found in all petiole extracts, while proanthocyanidins B type were predominant in Capellina, Napoletana and Bianca. Accordingly to their higher polyphenolic content, petiole extracts exhibited stronger radical scavenging activity compared to the fruits. The best antiangiogenic response was exhibited by Morellina, Ferrovia, and Ciambellana petiole extracts, and by Ferrovia, Morellina, and Capellina fruit extracts; by bioinformatic studies rutin and cyanidin 3-O-rutinoside were recognised as the best candidate bioactive compounds. In conclusion, sweet cherry varietes were confirmed as valuable sources of phenols, showing also potential angiomodulator properties.


Assuntos
Inibidores da Angiogênese/análise , Extratos Vegetais/química , Prunus avium/química , Fosfatase Alcalina/metabolismo , Inibidores da Angiogênese/farmacologia , Animais , Antocianinas/análise , Antioxidantes/química , Cromatografia Líquida de Alta Pressão , Análise por Conglomerados , Embrião não Mamífero/diagnóstico por imagem , Embrião não Mamífero/metabolismo , Flavonoides/análise , Frutas/química , Frutas/metabolismo , Itália , Fenóis/análise , Extratos Vegetais/farmacologia , Prunus avium/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
10.
Nat Commun ; 12(1): 3101, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035300

RESUMO

Mitochondrial dysfunction and lysosomal dysfunction have been implicated in Parkinson's disease (PD), but the links between these dysfunctions in PD pathogenesis are still largely unknown. Here we report that cytosolic dsDNA of mitochondrial origin escaping from lysosomal degradation was shown to induce cytotoxicity in cultured cells and PD phenotypes in vivo. The depletion of PINK1, GBA and/or ATP13A2 causes increases in cytosolic dsDNA of mitochondrial origin and induces type I interferon (IFN) responses and cell death in cultured cell lines. These phenotypes are rescued by the overexpression of DNase II, a lysosomal DNase that degrades discarded mitochondrial DNA, or the depletion of IFI16, which acts as a sensor for cytosolic dsDNA of mitochondrial origin. Reducing the abundance of cytosolic dsDNA by overexpressing human DNase II ameliorates movement disorders and dopaminergic cell loss in gba mutant PD model zebrafish. Furthermore, IFI16 and cytosolic dsDNA puncta of mitochondrial origin accumulate in the brain of patients with PD. These results support a common causative role for the cytosolic leakage of mitochondrial DNA in PD pathogenesis.


Assuntos
DNA/genética , Modelos Animais de Doenças , Mitocôndrias/genética , Doença de Parkinson/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/ultraestrutura , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Citosol/metabolismo , DNA/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Células HEK293 , Células HeLa , Humanos , Microscopia Eletrônica , Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Peixe-Zebra/metabolismo
11.
Methods Mol Biol ; 2272: 281-317, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34009621

RESUMO

5-methylcytosine (5mC) is a gene-regulatory mark associated with transcriptional repression. 5mC can be erased through the catalytic action of Ten-eleven translocation (TET) methylcytosine dioxygenases (TET1, TET2, TET3), which oxidize 5mC resulting in its removal from the genome. In vertebrates, TET enzymes facilitate DNA demethylation of regulatory regions linked to genes involved in developmental processes. Consequently, TET ablation leads to severe morphological defects and developmental arrest. Here we describe a system that can facilitate the study of relationships between TET enzymes, 5mC, and embryo development. We provide detailed descriptions for the generation of F0 zebrafish tet1/2/3 knockouts using CRISPR/Cas9 technology and elaborate on the strategies to assess the impact of TET loss by reduced representation bisulfite sequencing (RRBS).


Assuntos
Animais Geneticamente Modificados/metabolismo , Metilação de DNA , Dioxigenases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/crescimento & desenvolvimento , Dioxigenases/genética , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética
12.
Nucleic Acids Res ; 49(10): 5743-5759, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34019640

RESUMO

Yeast Rcl1 is a potential endonuclease that mediates pre-RNA cleavage at the A2-site to separate 18S rRNA from 5.8S and 25S rRNAs. However, the biological function of Rcl1 in opisthokonta is poorly defined. Moreover, there is no information regarding the exact positions of 18S pre-rRNA processing in zebrafish. Here, we report that zebrafish pre-rRNA harbours three major cleavage sites in the 5'ETS, namely -477nt (A'-site), -97nt (A0-site) and the 5'ETS and 18S rRNA link (A1-site), as well as two major cleavage regions within the ITS1, namely 208-218nt (site 2) and 20-33nt (site E). We also demonstrate that depletion of zebrafish Rcl1 mainly impairs cleavage at the A1-site. Phenotypically, rcl1-/- mutants exhibit a small liver and exocrine pancreas and die before 15 days post-fertilization. RNA-seq analysis revealed that the most significant event in rcl1-/- mutants is the up-regulated expression of a cohort of genes related to ribosome biogenesis and tRNA production. Our data demonstrate that Rcl1 is essential for 18S rRNA maturation at the A1-site and for digestive organogenesis in zebrafish. Rcl1 deficiency, similar to deficiencies in other ribosome biogenesis factors, might trigger a common mechanism to upregulate the expression of genes responsible for ribosome biogenesis.


Assuntos
Fígado/metabolismo , Organogênese/genética , Pâncreas/metabolismo , Precursores de RNA/metabolismo , RNA Ribossômico 18S/metabolismo , Ribossomos/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Técnicas de Inativação de Genes , Ontologia Genética , Hibridização In Situ , Fígado/embriologia , Fígado/patologia , Pâncreas/embriologia , Pâncreas/patologia , Precursores de RNA/genética , RNA Ribossômico 18S/genética , RNA de Transferência/metabolismo , RNA-Seq , Reação em Cadeia da Polimerase em Tempo Real , Ribossomos/genética , Peixe-Zebra/genética
13.
Chemosphere ; 280: 130670, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33971419

RESUMO

Hirschsprung disease (HSCR) is a congenital disease characterized by the absence of enteric neurons, which is derived from the failure of the proliferation, differentiation or migration of the enteric neural crest cells (ENCCs). HSCR is associated with multiple risk factors, including polygenic inheritance factors and environmental factors. Genetic studies have been extensively performed, whereas studies related to environmental factors remain insufficient. Benzophenone-3 (BP-3), one important component of the ultraviolet (UV) filters, has been proved to have cytotoxicity and neurotoxicity which might be associated with HSCR. In this study, we used zebrafish as a model to investigate the relationship between BP-3 exposure and the development of the enteric nervous system (ENS) in vivo. Embryos exposed to BP-3 showed an average of 46% reduction of the number of the enteric neurons number. Besides, the ENCCs specific markers (ret and hand2) were downregulated upon BP-3 exposure. Moreover, we identified potential targets of BP-3 through Network Pharmacology Analysis and Autodock and demonstrated that the attenuation of the MAPK/ERK signaling might be the potential mechanism underlying the inhibition of the ENS development by BP-3. Importantly, MAPK/ERK signaling agonist could be used to rescue the ENS defects of zebrafish induced by BP-3. Overall, we characterized the influence of BP-3 on ENS development in vivo and explored possible molecular mechanisms.


Assuntos
Sistema Nervoso Entérico , Doença de Hirschsprung , Animais , Benzofenonas , Sistema Nervoso Entérico/metabolismo , Proteínas Proto-Oncogênicas c-ret , Transdução de Sinais , Peixe-Zebra/metabolismo
14.
Aquat Toxicol ; 236: 105859, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34004410

RESUMO

Mercury (Hg) is a prominent environmental contaminant and can cause various subcellular effects. Elucidating the different subcellular toxicities of inorganic Hg (Hg2+) and methylmercury (MeHg) is critical for understanding their overall cytotoxicity. In this study, we employed aggregation-induced emission (AIE) probes to investigate the toxicity of Hg at the subcellular level using an aquatic embryonic zebrafish fibroblast cell line ZF4 as a model. The dynamic monitoring of lysosomal pH and the mapping of pH distribution during Hg2+ or MeHg exposure were successfully realized for the first time. We found that both Hg2+ and MeHg decreased the mean lysosomal pH, but with contrasting effects and mechanisms. Hg2+ had a greater impact on lysosomal pH than MeHg at a similar intracellular concentration. In addition, Hg2+ in comparison to MeHg exposure led to an increased number of lysosomes, probably because of their different effects on autophagy. We further showed that MeHg (200 nM) exposure had an inverse effect on mitochondrial respiratory function. A high dose (1000 nM) of Hg2+ increased the amount of intracellular lipid droplets by 13%, indicating that lipid droplets may potentially play a role in Hg2+detoxification. Our study suggested that, compared with other parameters, lysosome pH was most sensitive to Hg2+ and MeHg. Therefore, lysosomal pH can be used as a potential biomarker to assess the cellular toxicity of Hg in vitro.


Assuntos
Monitoramento Ambiental , Mercúrio/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Compostos de Metilmercúrio/toxicidade , Peixe-Zebra/metabolismo
15.
Gene ; 792: 145725, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34010705

RESUMO

Ankyrin repeat domain 1 (ANKRD1) is a functionally pleiotropic protein found in the nuclei and sarcomeres of cardiac and skeletal muscles, with a proposed role in linking myofibrilar stress and transcriptional regulation. Rapid upregulation of its expression in response to both physiological and pathological stress supports the involvement of ANKRD1 in muscle tissue adaptation and remodeling. However, the exact role of ANKRD1 remains poorly understood. To begin to investigate its function at higher resolution, we have generated and characterized a TgBAC(ankrd1a:EGFP) zebrafish line. This reporter line displays transgene expression in slow skeletal muscle fibers during development and exercise responsiveness in adult cardiac muscle. To better understand the role of Ankrd1a in pathological conditions in adult zebrafish, we assessed ankrd1a expression after cardiac ventricle cryoinjury and observed localized upregulation in cardiomyocytes in the border zone. We show that this expression in injured hearts is recapitulated by the TgBAC(ankrd1a:EGFP) reporter. Our results identify novel expression domains of ankrd1a and suggest an important role for Ankrd1a in the early stress response and regeneration of cardiac tissue. This new reporter line will help decipher the role of Ankrd1a in striated muscle stress response, including after cardiac injury.


Assuntos
Proteínas Musculares/genética , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/genética , Estresse Fisiológico/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ventrículos do Coração/crescimento & desenvolvimento , Ventrículos do Coração/lesões , Ventrículos do Coração/metabolismo , Desenvolvimento Muscular/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/patologia , Proteínas Nucleares/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
16.
Aquat Toxicol ; 236: 105843, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34010734

RESUMO

Octocrylene (OC) is a broad-spectrum ultraviolet-absorbing chemical used in sunscreen and other personal care products. Its health effects are a concern because it has been detected in water, fish, humans, and food chains. In vivo and in vitro investigations were performed in zebrafish (Danio rerio) larvae and a zebrafish liver cell line (ZFL), respectively, to understand the potential risks and molecular mechanisms of OC toxicity. The 96-h median lethal concentration (LC50) of OC was determined to be 251.8 µM in larvae and 5.5 µM in ZFL cells. Quantitative real-time PCR (qRT-PCR) showed that OC induced the expression of genes for CYPs (CYP1A, CYP3A65), estrogen receptors (ERα, ERß1, GPER), vitellogenin (VTG1), and sex determination (BRCA2, CYP19A, DMRT1, SOX9A), both in vitro and in vivo. A whole-transcriptome sequencing method was used to evaluate the gene expression profile of larvae exposed to OC. OC was found to mediate the biosynthesis of estrogens (such as estriol) and affect the antioxidant pathway (glutathione transferases and peroxisome). These findings clarify the toxic effects and molecular mechanisms of OC and support banning its use in cosmetics.


Assuntos
Acrilatos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Linhagem Celular , Estrogênios/metabolismo , Hepatócitos/efeitos dos fármacos , Humanos , Larva/efeitos dos fármacos , Dose Letal Mediana , Fígado/efeitos dos fármacos , Protetores Solares/toxicidade , Transcriptoma , Vitelogeninas/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
17.
Aquat Toxicol ; 236: 105868, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34051627

RESUMO

2,4-Dichlorophenol (2,4-DCP), an estrogenic endocrine disruptor, is widely spread in aquatic environments and may interfere with normal physiological functions in fish. However, the influence of this chemical on the synthesis of sex hormones is not well understood. In the present study, zebrafish (Danio rerio) were exposed to 2,4-DCP (80 and 160 µg/L) with or without fadrozole (an aromatase inhibitor which inhibits the synthesis of estradiol) from 20 to 40 days post fertilization. Then, the sex ratio, the content of vitellogenin (VTG) and sex hormones (androstenedione (ASD), estrone (E1), 17ß-estradiol (E2), estriol (E3), testosterone (T) and 11-ketotestosterone (11-KT)) were studied. Furthermore, the expression of genes involved in synthesis of sex hormones (cyp19a1a, cyp19a1b, 17ß-hsd, 11ß-hsd and cyp11b) along with the DNA methylation in cyp19a1a and cyp19a1b promoters was analyzed. The results showed that 2,4-DCP exposure led to female-biased ratio, increased the content of ASD, E2 and VTG, as well as the ratio of E2/11-KT, while decreased the levels of androgens (T and 11-KT). The sex hormonal change can be explained by the significant up-regulation of cyp19a1a, cyp19a1b, 17ß-hsd and 11ß-hsd genes. In addition, hypomethylation of cyp19a1a promoter was involved in this process. Notably, fadrozole can partly attenuate 2,4-DCP-induced feminization, and recover the levels of ASD, E2 and 11-KT. Thus, these results demonstrate that 2,4-DCP induces feminization in fish by disrupting the synthesis of sex hormones.


Assuntos
Clorofenóis/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Inibidores da Aromatase , Metilação de DNA/efeitos dos fármacos , Disruptores Endócrinos , Estradiol , Estrogênios/farmacologia , Fadrozol , Feminino , Feminização/genética , Hormônios Esteroides Gonadais , Humanos , Masculino , Fenóis , Razão de Masculinidade , Vitelogeninas/metabolismo , Peixe-Zebra/metabolismo
18.
Aquat Toxicol ; 236: 105872, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34052719

RESUMO

Aluminium is a non-essential metal and potentially toxic to organisms whose environmental concentration increases due to pollution. In our previous studies, the behavioral changes induced by aluminium were already shown on zebrafish, a model organism widely used for ecotoxicology screening. To examine in depth the knowledge about the toxicity mechanism induced by this metal, zebrafish embryos, at 6 hpf, have been exposed to 50, 100 and 200 µM of AlCl3 for 72 h. Phenotypic alterations, apoptosis and oxidative stress responses have been assessed by evaluations of antioxidant defence and changes in metabolism at the end of treatment. The mRNA expression level of c-fos, appa and appb as marker genes of neural development and function were analyzed by qPCR for the highest used concentration. The data showed that aluminium significantly affected the development of zebrafish inducing morphological alterations and cell death. The oxidative state of larvae was altered, although the formation of reactive oxygen species and the levels of metallothioneins, and the activity of some antioxidant enzymes, decreased at the maximum concentration tested. In addition, at this concentration, the expression of the evaluated genes increased. The comprehensive information obtained gives a realistic snapshot of the aluminium toxicity and provides new information on the mechanism of action of this metal.


Assuntos
Alumínio/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes/metabolismo , Apoptose , Dano ao DNA , Embrião não Mamífero/metabolismo , Larva/metabolismo , Oxirredução , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra/metabolismo
19.
Aquat Toxicol ; 236: 105871, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34058436

RESUMO

Plastic is a globally recognized superwaste that can affect human health and wildlife when it accumulates and is amplified in the food chain. Microplastics (plastic particles < 5 mm) and nanoplastics (plastic particles < 100 nm) can interact with organic pollutants already present in the aquatic environment, potentially acting as carriers for pollutants entering organisms and thus influencing the bioavailability and toxicity of those pollutants. In this study, we investigated the transfer kinetics and transgenerational effects of exposure to tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and polystyrene nanoplastics (PS-NPs) in F1 offspring. At 90 days postfertilization, zebrafish (Danio rerio) strain AB was exposed to either TDCIPP (0, 0.47, 2.64, or 12.78 µg/L) or PS-NPs (10 mg/L) or their combination for 120 days. The results showed that TDCIPP and PS-NPs accumulated in the gut, gill, head, and liver of the zebrafish in a sex-dependent manner. The presence of PS-NPs promoted the bioaccumulation of TDCIPP in the adult fish and increased the parental transfer of TDCIPP to their offspring. We demonstrate that parental exposure to TDCIPP alone or in combination with PS-NPs induces thyroid disruption in adults, and then leads to thyroid endocrine disruption in their larval offspring. Reduced thyroxine (T4) and 3,5,3'-triiodothyronine (T3) levels contributed to the observed transgenerational thyroid dysfunction, which inhibited developmental growth and disturbed the transcription of genes and expression of proteins involved in the hypothalamic-pituitary-thyroid (HPT) axis in the F1 larvae. The increased transfer of TDCIPP to the offspring in the presence of PS-NPs also enhanced transgenerational thyroid endocrine disruption, demonstrated by a further reduction in T4 and the upregulation of thyroglobulin (tg), uridine diphosphate-glucuronosyltransferase (ugt1ab), thyroid-stimulating hormone (tshß), and thyroid hormone receptor (trα) expression in the F1 larvae compared with the effects of parental TDCIPP exposure alone. Overall, our results indicate that the presence of PS-NPs modifies the bioavailability of TDCIPP and aggravates transgenerational thyroid disruption in zebrafish.


Assuntos
Compostos Organofosforados/toxicidade , Poliestirenos/toxicidade , Glândula Tireoide/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Disruptores Endócrinos/toxicidade , Humanos , Larva/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fosfatos/metabolismo , Plásticos , Poliestirenos/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Tri-Iodotironina/metabolismo , Peixe-Zebra/metabolismo
20.
Nat Commun ; 12(1): 2861, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001891

RESUMO

Hair cells detect sound, head position or water movements when their mechanosensory hair bundle is deflected. Each hair bundle has an asymmetric architecture that restricts stimulus detection to a single axis. Coordinated hair cell orientations within sensory epithelia further tune stimulus detection at the organ level. Here, we identify GPR156, an orphan GPCR of unknown function, as a critical regulator of hair cell orientation. We demonstrate that the transcription factor EMX2 polarizes GPR156 distribution, enabling it to signal through Gαi and trigger a 180° reversal in hair cell orientation. GPR156-Gαi mediated reversal is essential to establish hair cells with mirror-image orientations in mouse otolith organs in the vestibular system and in zebrafish lateral line. Remarkably, GPR156-Gαi also instructs hair cell reversal in the auditory epithelium, despite a lack of mirror-image organization. Overall, our work demonstrates that conserved GPR156-Gαi signaling is integral to the framework that builds directional responses into mechanosensory epithelia.


Assuntos
Epitélio/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Células Ciliadas Auditivas/metabolismo , Proteínas de Homeodomínio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Transcrição/metabolismo , Animais , Polaridade Celular/genética , Feminino , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Células Ciliadas Auditivas/citologia , Proteínas de Homeodomínio/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal/métodos , Receptores Acoplados a Proteínas G/genética , Fatores de Transcrição/genética , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...