Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.463
Filtrar
1.
Front Immunol ; 15: 1385950, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566996

RESUMO

The complex pathogenesis of preeclampsia (PE), a significant contributor to maternal and neonatal mortality globally, is poorly understood despite substantial research. This review explores the involvement of exosomal microRNAs (exomiRs) in PE, focusing on their impact on the protein kinase B (AKT)/hypoxia-inducible factor 1-α (HIF1α)/vascular endothelial growth factor (VEGF) signaling pathway as well as endothelial cell proliferation and migration. Specifically, this article amalgamates existing evidence to reveal the pivotal role of exomiRs in regulating mesenchymal stem cell and trophoblast function, placental angiogenesis, the renin-angiotensin system, and nitric oxide production, which may contribute to PE etiology. This review emphasizes the limited knowledge regarding the role of exomiRs in PE while underscoring the potential of exomiRs as non-invasive biomarkers for PE diagnosis, prediction, and treatment. Further, it provides valuable insights into the mechanisms of PE, highlighting exomiRs as key players with clinical implications, warranting further exploration to enhance the current understanding and the development of novel therapeutic interventions.


Assuntos
MicroRNAs , Pré-Eclâmpsia , Recém-Nascido , Humanos , Gravidez , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/diagnóstico , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Biomarcadores/metabolismo
2.
Cell Commun Signal ; 22(1): 230, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627796

RESUMO

OBJECTIVE: Recurrent pregnancy loss (RPL) patients have higher absolute numbers of decidual natural killer (dNK) cells with elevated intracellular IFN-γ levels leading to a pro-inflammatory cytokine milieu, which contributes to RPL pathogenesis. The main objective of this study was twofold: first to explore the regulatory effects and mechanisms of villus-derived exosomes (vEXOs) from induced abortion patients or RPL patients at the level of intracellular IFN-γ in dNK cells; second to determine the validity of application of vEXOs in the treatment of unexplained RPL (uRPL) through in vitro experiments and mouse models. METHODS: Exosomes were isolated from villus explants by ultracentrifugation, co-cultured with dNK cells, and purified by enzymatic digestion and magnetically activated cell sorting. Flow cytometry, enzyme-linked immunosorbent assays, and RT-qPCR were used to determine IFN-γ levels. Comparative miRNA analysis of vEXOs from induced abortion (IA) and uRPL patients was used to screen potential candidates involved in dNK regulation, which was further confirmed by luciferase reporter assays. IA-vEXOs were electroporated with therapeutic miRNAs and encapsulated in a China Food and Drug Administration (CFDA)-approved hyaluronate gel (HA-Gel), which has been used as a clinical biomaterial in cell therapy for > 30 years. In vivo tracking was performed using 1,1-dioctadecyl-3,3,3,3-tetramethylindotricarbocyaine iodide (DiR) labelling. Tail-vein and uterine horn injections were used to evaluate therapeutic effects of the engineered exosomes in an abortion-prone mouse model (CBA/J × DBA/2 J). Placental growth was evaluated based on placental weight. IFN-γ mRNA levels in mouse placentas were measured by RT-qPCR. RESULTS: IFN-γ levels were significantly higher in dNK cells of uRPL patients than in IA patients. Both uRPL-vEXOs and IA-vEXOs could be efficiently internalized by dNK cells, whereas uRPL-vEXOs could not reduce the expression of IFN-γ by dNK cells as much as IA-vEXOs. Mechanistically, miR-29a-3p was delivered by vEXOs to inhibit IFN-γ production by binding to the 3' UTR of IFN-γ mRNA in dNK cells. For in vivo treatment, application of the HA-Gel effectively prolonged the residence time of vEXOs in the uterine cavity via sustained release. Engineered vEXOs loaded with miR-29a-3p reduced the embryo resorption rate in RPL mice with no signs of systemic toxicity. CONCLUSION: Our study provides the first evidence that villi can regulate dNK cell production of IFN-γ via exosome-mediated transfer of miR-29a-3p, which deepens our understanding of maternal-fetal immune tolerance for pregnancy maintenance. Based on this, we developed a new strategy to mix engineered vEXOs with HA-Gel, which exhibited good therapeutic effects in mice with uRPL and could be used for potential clinical applications in uRPL treatment.


Assuntos
Aborto Induzido , Aborto Espontâneo , MicroRNAs , Humanos , Gravidez , Feminino , Animais , Camundongos , Interferon gama/metabolismo , Placenta/metabolismo , Decídua/metabolismo , Camundongos Endogâmicos CBA , Camundongos Endogâmicos DBA , Aborto Espontâneo/genética , Aborto Espontâneo/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células Matadoras Naturais , RNA Mensageiro/metabolismo
3.
Am J Reprod Immunol ; 91(4): e13844, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38627916

RESUMO

Preeclampsia is one of the most common disorders that poses threat to both mothers and neonates and a major contributor to perinatal morbidity and mortality worldwide. Viral infection during pregnancy is not typically considered to cause preeclampsia; however, syndromic nature of preeclampsia etiology and the immunomodulatory effects of viral infections suggest that microbes could trigger a subset of preeclampsia. Notably, SARS-CoV-2 infection is associated with an increased risk of preeclampsia. Herein, we review the potential role of viral infections in this great obstetrical syndrome. According to in vitro and in vivo experimental studies, viral infections can cause preeclampsia by introducing poor placentation, syncytiotrophoblast stress, and/or maternal systemic inflammation, which are all known to play a critical role in the development of preeclampsia. Moreover, clinical and experimental investigations have suggested a link between several viruses and the onset of preeclampsia via multiple pathways. However, the results of experimental and clinical research are not always consistent. Therefore, future studies should investigate the causal link between viral infections and preeclampsia to elucidate the mechanism behind this relationship and the etiology of preeclampsia itself.


Assuntos
Pré-Eclâmpsia , Viroses , Vírus , Gravidez , Recém-Nascido , Feminino , Humanos , Pré-Eclâmpsia/metabolismo , Placentação , Trofoblastos/metabolismo , Viroses/complicações , Viroses/metabolismo , Placenta/metabolismo
4.
FASEB J ; 38(7): e23598, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581244

RESUMO

The precise molecular mechanism behind fetal growth restriction (FGR) is still unclear, although there is a strong connection between placental dysfunction, inadequate trophoblast invasion, and its etiology and pathogenesis. As a new type of non-coding RNA, circRNA has been shown to play a crucial role in the development of FGR. This investigation identified the downregulation of hsa_circ_0034533 (circTHBS1) in FGR placentas through high-sequencing analysis and confirmed this finding in 25 clinical placenta samples using qRT-PCR. Subsequent in vitro functional assays demonstrated that silencing circTHBS1 inhibited trophoblast proliferation, migration, invasion, and epithelial mesenchymal transition (EMT) progression and promoted apoptosis. Furthermore, when circTHBS1 was overexpressed, cell function experiments showed the opposite result. Analysis using fluorescence in situ hybridization revealed that circTHBS1 was primarily found in the cytoplasmic region. Through bioinformatics analysis, we anticipated the involvement of miR-136-3p and IGF2R in downstream processes, which was subsequently validated through qRT-PCR and dual-luciferase assays. Moreover, the inhibition of miR-136-3p or the overexpression of IGF2R partially reinstated proliferation, migration, and invasion abilities following the silencing of circTHBS1. In summary, the circTHBS1/miR-136-3p/IGF2R axis plays a crucial role in the progression and development of FGR, offering potential avenues for the exploration of biological indicators and treatment targets.


Assuntos
MicroRNAs , Feminino , Humanos , Gravidez , Apoptose/genética , Movimento Celular/genética , Proliferação de Células/genética , Retardo do Crescimento Fetal/metabolismo , Hibridização in Situ Fluorescente , MicroRNAs/genética , MicroRNAs/metabolismo , Placenta/metabolismo , Trofoblastos/metabolismo
5.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 437-446, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38597434

RESUMO

OBJECTIVE: To investigate the protective effect of metformin against PM2.5-induced functional impairment of placental trophoblasts and explore the underlying mechanism. METHODS: Sixteen pregnant Kunming mice were randomly assigned into two groups (n=8) for intratracheal instillation of PBS or PM2.5 suspension at 1.5, 7.5, and 12.5 days of gestation. The pregnancy outcome of the mice was observed, and placental zonal structure and vascular density of the labyrinth area were examined with HE staining, followed by detection of ferroptosis-related indexes in the placenta. In cultured human trophoblasts (HTR8/SVneo cells), the effects of PM2.5 exposure and treatment with metformin on cell viability, proliferation, migration, invasion, and tube formation ability were evaluated using CCK8 assay, EDU staining, wound healing assay, Transwell experiment, and tube formation experiment; the cellular expressions of ferroptosis-related proteins were analyzed using ELISA and Western blotting. RESULTS: M2.5 exposure of the mice during pregnancy resulted in significantly decreased weight and number of the fetuses and increased fetal mortality with a reduced placental weight (all P<0.001). PM2.5 exposure also caused obvious impairment of the placental structure and trophoblast ferroptosis. In cultured HTR8/SVneo cells, PM2.5 significantly inhibited proliferation, migration, invasion, and angiogenesis of the cells by causing ferroptosis. Metformin treatment obviously attenuated PM2.5-induced inhibition of proliferation, migration, invasion, and angiogenesis of the cells, and effectively reversed PM2.5-induced ferroptosis in the trophoblasts as shown by significantly increased intracellular GSH level and SOD activity, reduced MDA and Fe2+ levels, and upregulated GPX4 and SLC7A11 protein expression (P<0.05 or 0.01). CONCLUSION: PM2.5 exposure during pregnancy causes adverse pregnancy outcomes and ferroptosis and functional impairment of placental trophoblasts in mice, and metformin can effectively alleviate PM2.5-induced trophoblast impairment.


Assuntos
Ferroptose , Metformina , Pré-Eclâmpsia , Camundongos , Gravidez , Feminino , Humanos , Animais , Placenta/metabolismo , Metformina/farmacologia , Trofoblastos , Movimento Celular , Material Particulado/efeitos adversos , Pré-Eclâmpsia/metabolismo
6.
Am J Reprod Immunol ; 91(4): e13843, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38606700

RESUMO

PROBLEM: Preeclampsia (PE), new-onset hypertension during pregnancy accompanied by organ dysfunction, is associated with chronic inflammation including elevated IL-17, CD4+ T cells, B cells and natural killer (NK) cells. IL-17 can serve as a signal for either the adaptive or innate immune activation. We have previously shown that IL-17 contributes to increased blood pressure in association with elevated TH17 cells, NK cells and B cells secreting angiotensin II type 1 receptor agonistic autoantibodies (AT1-AA) during pregnancy. Moreover, we have shown an important role for CD4+T cells and AT1-AA in multiorgan dysfunction as measured by mitochondrial oxidative stress (mt ROS). However, we do not know the role of adaptive immune cells such as T cells or B cells secreting AT1-AA in mediating the PE phenotype in response to elevated IL-17. METHOD OF STUDY: In order to answer this question, we infused IL-17 (150 pg/day i.p.) into either Sprague Dawley (SD) or athymic nude rats via mini-osmotic pump from gestational day (GD) 14-19 of pregnancy. On GD 19, blood pressure was determined and NK cells, mtROS and respiration and AT1-AA production from B cells were measured. RESULTS: Infusion of IL-17 increased blood pressure in the presence or absence of T cells. Mean arterial pressure (MAP) increased with IL-17 from 98 ± 2 mm Hg (n = 12) to 114 ± 2 (n = 12) in SD rats and from 99 ± 4 mm Hg (n = 7) versus 115 ± 2 mm Hg (n = 7) in athymic nude rats. Similar trends were seen in NK cells and placental mt ROS. Knowing that IL-17 stimulates AT1-AA in SD pregnant rats, we included a group of SD and athymic nude pregnant rats infused with IL-17 and the AT1-AA inhibitor peptide ('n7AAc'). The inhibitor attenuated blood pressure (104.9 ± 3.2, p = .0001) and normalized NK cells and mt function in SD pregnant rats. Importantly, the AT1-AA was not produced in pregnant nude IL-17 treated rats, nor did 'n7AAc' effect MAP, in nude athymic rats. CONCLUSION: These findings suggest two conclusions; one is that IL-17 causes hypertension and multiorgan dysfunction in the absence of T cells and AT1-AA, possibly through its activation of innate cells and secondly, in the presence of T cells, blockade of the AT1-AA attenuates the effect of IL-17. This study indicates the critical effects of elevated IL-17 during pregnancy and suggest treatment modalities to consider for PE women.


Assuntos
Hipertensão , Pré-Eclâmpsia , Humanos , Feminino , Ratos , Gravidez , Animais , Angiotensina II/metabolismo , Placenta/metabolismo , Ratos Sprague-Dawley , Autoanticorpos , Espécies Reativas de Oxigênio/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Interleucina-17/metabolismo , Ratos Nus
7.
Cells ; 13(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38607058

RESUMO

During pregnancy, uterine vasculature undergoes significant circumferential growth to increase uterine blood flow, vital for the growing feto-placental unit. However, this process is often compromised in conditions like maternal high blood pressure, particularly in preeclampsia (PE), leading to fetal growth impairment. Currently, there is no cure for PE, partly due to the adverse effects of anti-hypertensive drugs on maternal and fetal health. This study aimed to investigate the vasodilator effect of extra virgin olive oil (EVOO) phenols on the reproductive vasculature, potentially benefiting both mother and fetus. Isolated uterine arteries (UAs) from pregnant rats were tested with EVOO phenols in a pressurized myograph. To elucidate the underlying mechanisms, additional experiments were conducted with specific inhibitors: L-NAME/L-NNA (10-4 M) for nitric oxide synthases, ODQ (10-5 M) for guanylate cyclase, Verapamil (10-5 M) for the L-type calcium channel, Ryanodine (10-5 M) + 2-APB (3 × 10-5 M) for ryanodine and the inositol triphosphate receptors, respectively, and Paxilline (10-5 M) for the large-conductance calcium-activated potassium channel. The results indicated that EVOO-phenols activate Ca2+ signaling pathways, generating nitric oxide, inducing vasodilation via cGMP and BKCa2+ signals in smooth muscle cells. This study suggests the potential use of EVOO phenols to prevent utero-placental blood flow restriction, offering a promising avenue for managing PE.


Assuntos
Cálcio , Artéria Uterina , Ratos , Gravidez , Feminino , Animais , Artéria Uterina/metabolismo , Cálcio/metabolismo , Azeite de Oliva/farmacologia , Óxido Nítrico/metabolismo , Placenta/metabolismo , Rianodina , Fenóis/farmacologia , Dilatação , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Endotélio/metabolismo
8.
Commun Biol ; 7(1): 429, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594496

RESUMO

The study aims to explore the effect of PPARγ signaling on ferroptosis and preeclampsia (PE) development. Serum and placental tissue are collected from healthy subjects and PE patients. The PPARγ and Nrf2 decreases in the PE. Rosiglitazone intervention reverses hypoxia-induced trophoblast ferroptosis and decreases lipid synthesis by regulating Nfr2 and SREBP1. Compared to the Hypoxia group, the migratory and invasive abilities enhance after rosiglitazone and ferr1 treatment. Rosiglitazone reduces the effect of hypoxia and erastin. The si-Nrf2 treatment attenuats the effects of rosiglitazone on proliferation, migration, and invasion. The si-Nrf2 does not affect SREBP1 expression. PPARγ agonists alleviates ferroptosis in the placenta of the PE rats. The study confirms that PPARγ signaling and ferroptosis-related indicators were dysregulated in PE. PPARγ/Nrf2 signaling affects ferroptosis by regulating lipid oxidation rather than SREBP1-mediated lipid synthesis. In conclusion, our study find that PPARγ can alleviate PE development by regulating lipid oxidation and ferroptosis.


Assuntos
Ferroptose , Pré-Eclâmpsia , Humanos , Feminino , Gravidez , Ratos , Animais , Rosiglitazona/farmacologia , Rosiglitazona/metabolismo , PPAR gama/metabolismo , Metabolismo dos Lipídeos , Placenta/metabolismo , Pré-Eclâmpsia/tratamento farmacológico , Pré-Eclâmpsia/prevenção & controle , Pré-Eclâmpsia/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Hipóxia/metabolismo , Lipídeos
9.
Cell Commun Signal ; 22(1): 221, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594674

RESUMO

VEGFR2 (Vascular endothelial growth factor receptor 2) is a central regulator of placental angiogenesis. The study of the VEGFR2 proteome of chorionic villi at term revealed its partners MDMX (Double minute 4 protein) and PICALM (Phosphatidylinositol-binding clathrin assembly protein). Subsequently, the oxytocin receptor (OT-R) and vasopressin V1aR receptor were detected in MDMX and PICALM immunoprecipitations. Immunogold electron microscopy showed VEGFR2 on endothelial cell (EC) nuclei, mitochondria, and Hofbauer cells (HC), tissue-resident macrophages of the placenta. MDMX, PICALM, and V1aR were located on EC plasma membranes, nuclei, and HC nuclei. Unexpectedly, PICALM and OT-R were detected on EC projections into the fetal lumen and OT-R on 20-150 nm clusters therein, prompting the hypothesis that placental exosomes transport OT-R to the fetus and across the blood-brain barrier. Insights on gestational complications were gained by univariable and multivariable regression analyses associating preeclampsia with lower MDMX protein levels in membrane extracts of chorionic villi, and lower MDMX, PICALM, OT-R, and V1aR with spontaneous vaginal deliveries compared to cesarean deliveries before the onset of labor. We found select associations between higher MDMX, PICALM, OT-R protein levels and either gravidity, diabetes, BMI, maternal age, or neonatal weight, and correlations only between PICALM-OT-R (p < 2.7 × 10-8), PICALM-V1aR (p < 0.006), and OT-R-V1aR (p < 0.001). These results offer for exploration new partnerships in metabolic networks, tissue-resident immunity, and labor, notably for HC that predominantly express MDMX.


Assuntos
Diabetes Mellitus , Pré-Eclâmpsia , Recém-Nascido , Humanos , Gravidez , Feminino , Placenta/metabolismo , Número de Gestações , Ocitocina/metabolismo , Pré-Eclâmpsia/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteômica , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptores de Ocitocina/metabolismo
10.
Cell Mol Life Sci ; 81(1): 177, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600394

RESUMO

Biological sex is a key variable influencing many physiological systems. Disease prevalence as well as treatment success can be modified by sex. Differences emerge already early in life and include pregnancy complications and adverse birth outcomes. The placenta is a critical organ for fetal development and shows sex-based differences in the expression of hormones and cytokines. Epigenetic regulation, such as DNA methylation (DNAm), may underlie the previously reported placental sexual dimorphism. We associated placental DNAm with fetal sex in three cohorts. Individual cohort results were meta-analyzed with random-effects modelling. CpG-sites differentially methylated with sex were further investigated regarding pathway enrichment, overlap with methylation quantitative trait loci (meQTLs), and hits from phenome-wide association studies (PheWAS). We evaluated the consistency of findings across tissues (CVS, i.e. chorionic villus sampling from early placenta, and cord blood) as well as with gene expression. We identified 10,320 epigenome-wide significant sex-differentially methylated probes (DMPs) spread throughout the epigenome of the placenta at birth. Most DMPs presented with lower DNAm levels in females. DMPs mapped to genes upregulated in brain, were enriched for neurodevelopmental pathways and significantly overlapped with meQTLs and PheWAS hits. Effect sizes were moderately correlated between CVS and placenta at birth, but only weakly correlated between birth placenta and cord blood. Sex differential gene expression in birth placenta was less pronounced and implicated genetic regions only marginally overlapped with those associated with differential DNAm. Our study provides an integrative perspective on sex-differential DNAm in perinatal tissues underscoring the possible link between placenta and brain.


Assuntos
Metilação de DNA , Placenta , Recém-Nascido , Humanos , Gravidez , Feminino , Masculino , Metilação de DNA/genética , Placenta/metabolismo , Epigênese Genética , Caracteres Sexuais , Desenvolvimento Fetal
11.
Front Immunol ; 15: 1386528, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590527

RESUMO

Introduction: Inflammation of the placenta is harmful to both the fetus and the mother. Inflammation is strongly associated with diabetes, a common complication of pregnancy. Hofbauer cells (HBCs), unique immune system cells of fetal origin in the placenta, play complex roles, including growth of placental villi and their branching, stromal remodelling, and angiogenesis. Methods: Our study investigated the expression of IL-1ß, IL-10, CYP2C8, CYP2C9, CYP2J2 and sEH in HBCs from patients with type 1 diabetes mellitus (T1DM) and gestational diabetes mellitus (GDM) compared to healthy controls using immunohistochemistry. We also assessed the structure of the villus stroma using Masson´s trichrome. Results: In T1DM, HBCs showed inflammatory activation characterised by increased IL-1ß and decreased CYP epoxygenase expression compared to normal placentas. Conversely, significant inflammation in HBCs appeared less likely in GDM, as levels of IL-1ß and CYP epoxygenases remained stable compared to normal placentas. However, GDM showed a significant increase in sEH expression. Both types of diabetes showed delayed placental villous maturation and hypovascularisation, with GDM showing a more pronounced effect. Conclusion: The expression profiles of IL-1ß, CYP epoxygenases and sEH significantlly differ between controls and diabetic placentas and between T1DM and GDM. These facts suggest an association of the CYP epoxygenase-EETs-sEH axis with IL-1ß expression as well as villous stromal hypovascularisation. Given the stable high expression of IL-10 in both controls and both types of diabetes, it appears that immune tolerance is maintained in HBCs.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Gestacional , Gravidez , Humanos , Feminino , Placenta/metabolismo , Interleucina-10/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Inflamação/metabolismo
12.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473937

RESUMO

Prenatal alcohol exposure (PAE) and prenatal stress (PS) are highly prevalent conditions known to affect fetal programming of the hypothalamic-pituitary-adrenal (HPA) axis. The objectives of this study were to assess the effect of light PAE, PS, and PAE-PS interaction on fetal HPA axis activity assessed via placental and umbilical cord blood biomarkers. Participants of the ENRICH-2 cohort were recruited during the second trimester and classified into the PAE and unexposed control groups. PS was assessed by the Perceived Stress Scale. Placental tissue was collected promptly after delivery; gene and protein analysis for 11ß-HSD1, 11ß-HSD2, and pCRH were conducted by qPCR and ELISA, respectively. Umbilical cord blood was analyzed for cortisone and cortisol. Pearson correlation and multivariable linear regression examined the association of PAE and PS with HPA axis biomarkers. Mean alcohol consumption in the PAE group was ~2 drinks/week. Higher PS was observed in the PAE group (p < 0.01). In multivariable modeling, PS was associated with pCRH gene expression (ß = 0.006, p < 0.01), while PAE was associated with 11ß-HSD2 protein expression (ß = 0.56, p < 0.01). A significant alcohol-by-stress interaction was observed with respect to 11ß-HSD2 protein expression (p < 0.01). Results indicate that PAE and PS may independently and in combination affect fetal programming of the HPA axis.


Assuntos
Doenças Fetais , Efeitos Tardios da Exposição Pré-Natal , Testes Psicológicos , Autorrelato , Humanos , Gravidez , Feminino , Placenta/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2 , Estresse Psicológico/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Desenvolvimento Fetal , Biomarcadores/metabolismo
13.
Cells ; 13(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38474355

RESUMO

While glucose is the primary fuel for fetal growth, the placenta utilizes the majority of glucose taken up from the maternal circulation. Of the facilitative glucose transporters in the placenta, SLC2A8 (GLUT8) is thought to primarily function as an intracellular glucose transporter; however, its function in trophoblast cells has not been determined. To gain insight into the function of SLC2A8 in the placenta, lentiviral-mediated RNA interference (RNAi) was performed in the human first-trimester trophoblast cell line ACH-3P. Non-targeting sequence controls (NTS RNAi; n = 4) and SLC2A8 RNAi (n = 4) infected ACH-3P cells were compared. A 79% reduction in SLC2A8 mRNA concentration was associated with an 11% reduction (p ≤ 0.05) in ACH-3P glucose uptake. NTS RNAi and SLC2A8 RNAi ACH-3P mRNA were subjected to RNAseq, identifying 1525 transcripts that were differentially expressed (|log2FC| > 1 and adjusted p-value < 0.05), with 273 transcripts derived from protein-coding genes, and the change in 10 of these mRNAs was validated by real-time qPCR. Additionally, there were 147 differentially expressed long non-coding RNAs. Functional analyses revealed differentially expressed genes involved in various metabolic pathways associated with cellular respiration, oxidative phosphorylation, and ATP synthesis. Collectively, these data indicate that SLC2A8 deficiency may impact placental uptake of glucose, but that its likely primary function in trophoblast cells is to support cellular respiration. Since the placenta oxidizes the majority of the glucose it takes up to support its own metabolic needs, impairment of SLC2A8 function could set the stage for functional placental insufficiency.


Assuntos
Placenta , Transcriptoma , Humanos , Gravidez , Feminino , Placenta/metabolismo , Interferência de RNA , Trofoblastos/metabolismo , Glucose/metabolismo , RNA Mensageiro/metabolismo
14.
Front Endocrinol (Lausanne) ; 15: 1314214, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495790

RESUMO

Successful pregnancy requires the tolerance of the maternal immune system for the semi-allogeneic embryo, as well as a synchrony between the receptive endometrium and the competent embryo. The annexin family belongs to calcium-regulated phospholipid-binding protein, which functions as a membrane skeleton to stabilize the lipid bilayer and participate in various biological processes in humans. There is an abundance of the annexin family at the maternal-fetal interface, and it exerts a crucial role in embryo implantation and the subsequent development of the placenta. Altered expression of the annexin family and dysfunction of annexin proteins or polymorphisms of the ANXA gene are involved in a range of pregnancy complications. In this review, we summarize the current knowledge of the annexin A protein family at the maternal-fetal interface and its association with female reproductive disorders, suggesting the use of ANXA as the potential therapeutic target in the clinical diagnosis and treatment of pregnancy complications.


Assuntos
Implantação do Embrião , Complicações na Gravidez , Gravidez , Feminino , Humanos , Implantação do Embrião/genética , Placenta/metabolismo , Endométrio/metabolismo , Complicações na Gravidez/genética , Complicações na Gravidez/metabolismo , Anexinas/genética , Anexinas/metabolismo
15.
Methods Mol Biol ; 2781: 105-117, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502447

RESUMO

Modeling human pregnancy is challenging as two subjects, the mother and fetus, must be evaluated in tandem. To understand pregnancy, parturition, and adverse pregnancy outcomes, the two feto-maternal interfaces (FMi) that form during gestation (i.e., the placenta and fetal membrane) need to be investigated to understand their biological roles, and organ dysfunction can lead to adverse outcomes. Adverse pregnancy outcomes such as preterm rupture of the membranes, spontaneous preterm birth, preeclampsia, intra-uterine growth restriction, and gestational diabetes rates are on the rise worldwide, highlighting the need for future studies and a better understanding of molecular and cellular pathways that contribute to disease onset. Current in vivo animal models nor in vitro cell culture systems can answer these questions as they do not model the function or structure of human FMis. Utilizing microfabrication and soft-lithography techniques, microfluidic organ-on-chip (OOC) devices have been adapted by many fields to model the anatomy and biological function of complex organs and organ systems within small in vitro platforms.These techniques have been adapted to recreate the fetal membrane FMi (FMi-OOC) using immortalized cells and collagen derived from patient samples. The FMi-OOC is a four-cell culture chamber, concentric circle system, that contains both fetal (amniochorion) and maternal (decidua) cellular layers and has been validated to model physiological and pathological states of pregnancy (i.e., ascending infection, systemic oxidative stress, and maternal toxicant exposure). This platform is fully compatible with various analytical methods such as microscopy and biochemical analysis. This protocol will outline this device's fabrication, cell loading, and utility to model ascending infection-related adverse pregnancy outcomes.


Assuntos
Nascimento Prematuro , Recém-Nascido , Gravidez , Feminino , Animais , Humanos , Placenta/metabolismo , Membranas Extraembrionárias/metabolismo , Linhagem Celular , Tecnologia
16.
Life Sci ; 343: 122555, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460811

RESUMO

AIMS: Ferroptosis, a novel mode of cell death characterized by lipid peroxidation and oxidative stress, plays an important role in the pathogenesis of preeclampsia (PE). The aim of this study is to determine the role of Nox2 in the ferroptosis of trophoblast cells, along with the underlying mechanisms. METHODS: The mRNA and protein levels of Nox2, STAT3, and GPX4 in placental tissues and trophoblast cells were respectively detected by qRT-PCR and western blot analysis. CCK8, transwell invasion and tube formation assays were used to evaluate the function of trophoblast cells. Ferroptosis was evaluated using flow cytometry and the lipid peroxidation assay. Glycolysis and mitochondrial respiration were investigated by detecting the extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) using Seahorse extracellular flux technology. The t-test or one-way ANOVA was used for statistical analysis. KEY FINDINGS: Nox2 was up-regulated while STAT3 and GPX4 were down-regulated in PE placental tissues. Nox2 knockdown inhibited ferroptosis in trophoblast cells, which was shown by enhanced proliferation and invasion, decreased ROS and lipid peroxide levels, and reduced glycolysis and mitochondrial dysfunction. Nox2 negatively correlated with MVD in PE placentas, and Nox2 knockdown restored ferroptosis-inhibited tube formation. Nox2 could interact with STAT3. Inhibiting Nox2 restored ferroptosis-induced alterations in the mRNA and protein levels of STAT3 and GPX4. SIGNIFICANCE: Nox2 may trigger ferroptosis through the STAT3/GPX4 pathway, subsequently leading to regulation of mitochondrial respiration, transition of glycolysis, and inhibition of placental angiogenesis. Therefore, targeted inhibition of Nox2 is expected to become a new therapeutic target for PE.


Assuntos
Ferroptose , Pré-Eclâmpsia , Feminino , Humanos , Gravidez , Linhagem Celular , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , RNA Mensageiro/metabolismo , Fator de Transcrição STAT3/metabolismo , Trofoblastos/metabolismo
17.
Epigenetics ; 19(1): 2318516, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38484284

RESUMO

Epigenetic modifications, including DNA methylation, are proposed mechanisms explaining the impact of parental exposures to foetal development and lifelong health. Micronutrients including folate, choline, and vitamin B12 provide methyl groups for the one-carbon metabolism and subsequent DNA methylation processes. Placental DNA methylation changes in response to one-carbon moieties hold potential targets to improve obstetrical care. We conducted a systematic review on the associations between one-carbon metabolism and human placental DNA methylation. We included 22 studies. Findings from clinical studies with minimal ErasmusAGE quality score 5/10 (n = 15) and in vitro studies (n = 3) are summarized for different one-carbon moieties. Next, results are discussed per study approach: (1) global DNA methylation (n = 9), (2) genome-wide analyses (n = 4), and (3) gene specific (n = 14). Generally, one-carbon moieties were not associated with global methylation, although conflicting outcomes were reported specifically for choline. Using genome-wide approaches, few differentially methylated sites associated with S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), or dietary patterns. Most studies taking a gene-specific approach indicated site-specific relationships depending on studied moiety and genomic region, specifically in genes involved in growth and development including LEP, NR3C1, CRH, and PlGF; however, overlap between studies was low. Therefore, we recommend to further investigate the impact of an optimized one-carbon metabolism on DNA methylation and lifelong health.


Assuntos
Metilação de DNA , Placenta , Feminino , Humanos , Gravidez , Placenta/metabolismo , Estudo de Associação Genômica Ampla , Ácido Fólico , S-Adenosilmetionina/metabolismo , Colina/metabolismo , Carbono/metabolismo
18.
Sci Total Environ ; 922: 171386, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38431166

RESUMO

Endocrine disrupting chemicals (EDCs) possess the capability to interfere with the endocrine system by binding to hormone receptors, for example on immune cells. Specific effects have already been described for individual substances, but the impact of exposure to chemical mixtures during pregnancy on maternal immune regulation, placentation and fetal development is not known. In this study, we aimed to investigate the combined effects of two widespread EDCs, bisphenol A (BPA) and benzophenone-3 (BP-3), at allowed concentrations on crucial pregnancy processes such as implantation, placentation, uterine immune cell populations and fetal growth. From gestation day (gd) 0 to gd10, female mice were exposed to 4 µg/kg/d BPA, 50 mg/kg/d BP-3 or a BPA/BP-3 mixture. High frequency ultrasound and Doppler measurements were used to determine intrauterine fetal development and hemodynamic parameters. Furthermore, uterine spiral artery remodeling and placental mRNA expression were studied via histology and CHIP-RT-PCR, respectively. Effects of EDC exposure on multiple uterine immune cell populations were investigated using flow cytometry. We found that exposure to BP-3 caused intrauterine growth restriction in offspring at gd14, while BPA and BPA/BP-3 mixture caused varying effects. Moreover, placental morphology at gd12 and placental efficiency at gd14 were altered upon BP-3 exposure. Placental gene transcription was altered particularly in female offspring after in utero exposure to BP-3. Flow cytometry analyses revealed an increase in uterine T cells and NK cells in BPA and BPA/BP-3-treated dams at gd14. Doppler measurements revealed no effect on uterine hemodynamic parameters and spiral artery remodeling was not affected following EDC exposure. Our results provide evidence that exposure to BPA and BP-3 during early gestation affects fetal development in a sex-dependent manner, placental function and immune cell frequencies at the feto-maternal interface. These results call for inclusion of studies addressing pregnancy in the risk assessment of environmental chemicals.


Assuntos
Benzofenonas , Fenóis , Placenta , Placentação , Gravidez , Feminino , Camundongos , Animais , Placenta/metabolismo , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/metabolismo , Desenvolvimento Fetal
19.
PLoS Pathog ; 20(3): e1011879, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38437239

RESUMO

Placental accumulation of Plasmodium falciparum infected erythrocytes results in maternal anemia, low birth weight, and pregnancy loss. The parasite protein VAR2CSA facilitates the accumulation of infected erythrocytes in the placenta through interaction with the host receptor chondroitin sulfate A (CSA). Antibodies that prevent the VAR2CSA-CSA interaction correlate with protection from placental malaria, and VAR2CSA is a high-priority placental malaria vaccine antigen. Here, structure-guided design leveraging the full-length structures of VAR2CSA produced a stable immunogen that retains the critical conserved functional elements of VAR2CSA. The design expressed with a six-fold greater yield than the full-length protein and elicited antibodies that prevent adhesion of infected erythrocytes to CSA. The reduced size and adaptability of the designed immunogen enable efficient production of multiple variants of VAR2CSA for use in a cocktail vaccination strategy to increase the breadth of protection. These designs form strong foundations for the development of potent broadly protective placental malaria vaccines.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Humanos , Gravidez , Feminino , Placenta/metabolismo , Malária Falciparum/parasitologia , Anticorpos Antiprotozoários , Plasmodium falciparum/metabolismo , Antígenos de Protozoários , Sulfatos de Condroitina/metabolismo , Eritrócitos/parasitologia
20.
Epigenetics ; 19(1): 2326869, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38507502

RESUMO

5-hydroxymethylcystosine (5hmC), is an intermediate product in the DNA demethylation pathway, but may act as a functional epigenetic modification. We have conducted the largest study of site-specific 5hmC in placenta to date using parallel bisulphite and oxidative bisulphite modification with array-based assessment. Incorporating parallel RNA-sequencing data allowed us to assess associations between 5hmC and gene expression, using expression quantitative trait hydroxymethylation (eQTHM) analysis. We identified ~ 47,000 loci with consistently elevated (systematic) 5hmC proportions. Systematic 5hmC was significantly depleted (p < 0.0001) at CpG islands (CGI), and enriched (p < 0.0001) in 'open sea' regions (CpG >4 kb from CGI). 5hmC was most and least abundant at CpGs in enhancers and active transcription start sites (TSS), respectively (p < 0.05). We identified 499 significant (empirical-p <0.05) eQTHMs within 1 MB of the assayed gene. At most (75.4%) eQTHMs, the proportion of 5hmC was positively correlated with transcript abundance. eQTHMs were significantly enriched among enhancer CpGs and depleted among CpGs in active TSS (p < 0.05 for both). Finally, we identified 107 differentially hydroxymethylated regions (DHMRs, p < 0.05) across 100 genes. Our study provides insight into placental distribution of 5hmC, and sheds light on the functional capacity of this epigenetic modification in placenta.


Assuntos
5-Metilcitosina/análogos & derivados , Metilação de DNA , Placenta , Sulfitos , Feminino , Gravidez , Humanos , Placenta/metabolismo , 5-Metilcitosina/metabolismo , Epigênese Genética , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...