Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.167
Filtrar
1.
Yakugaku Zasshi ; 140(10): 1199-1206, 2020.
Artigo em Japonês | MEDLINE | ID: mdl-32999198

RESUMO

Potential risks to the fetus or infant should be considered prior to medication during pregnancy and lactation. It is essential to evaluate the exposure levels of drugs and their related factors in addition to toxicological effects. Epilepsy is one of the most common neurological complications in pregnancy; some women continue to use antiepileptic drugs (AEDs) to control seizures. Benzodiazepines (BZDs) are widely prescribed for several women who experience symptoms such as anxiety and insomnia during the postpartum period. In this review, we describe the 1) transport mechanisms of AEDs across the placenta and the effects of these drugs on placental transporters, and 2) the transfer of BZDs into breast milk. Our findings indicated that carrier systems were involved in the uptake of gabapentin (GBP) and lamotrigine (LTG) in placental trophoblast cell lines. SLC7A5 was the main contributor to GBP transport in placental cells. LTG was transported by a carrier that was sensitive to chloroquine, imipramine, quinidine, and verapamil. Short-term exposure to 16 AEDs had no effect on folic acid uptake in placental cells. However, long-term exposure to valproic acid (VPA) affected the expression of folate carriers (FOLR1, SLC46A1). Furthermore, VPA administration changed the expression levels of various transporters in rat placenta, suggesting that sensitivity to VPA differed across gestational stages. Lastly, we developed a method for quantifying eight BZDs in human breast milk and plasma using LC/MS/MS, and successfully applied it to quantify alprazolam in breast milk and plasma donated by a lactating woman.


Assuntos
Anticonvulsivantes/metabolismo , Benzodiazepinas/metabolismo , Transporte Biológico/genética , Aleitamento Materno , Gabapentina/metabolismo , Lactação/metabolismo , Lamotrigina/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/fisiologia , Troca Materno-Fetal , Leite Humano/metabolismo , Placenta/metabolismo , Ácido Valproico/metabolismo , Anticonvulsivantes/efeitos adversos , Benzodiazepinas/efeitos adversos , Benzodiazepinas/uso terapêutico , Linhagem Celular , Epilepsia/tratamento farmacológico , Feminino , Receptor 1 de Folato/genética , Receptor 1 de Folato/metabolismo , Gabapentina/efeitos adversos , Expressão Gênica/efeitos dos fármacos , Humanos , Lamotrigina/efeitos adversos , Gravidez , Complicações na Gravidez/tratamento farmacológico , Transportador de Folato Acoplado a Próton/genética , Transportador de Folato Acoplado a Próton/metabolismo , Ácido Valproico/efeitos adversos
2.
Life Sci ; 259: 118390, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32896556

RESUMO

AIMS: This study aimed to evaluate the function and pathway of ATP-binding cassette transporter member A1 (ABCA1)-induced anti-inflammatory response in cells at the feto-maternal interface. MAIN METHODS: The primary amniotic mesenchymal cells (AMCs), chorion cells and decidual cells were isolated from placental membranes of women with uncomplicated pregnancies at full-term (not in labor) using enzymatic digestion. Flow cytometry was used to measure the purity of isolated cells. Immunofluorescence assay was performed to detect the location of ABCA1 and toll-like receptor 4 (TLR4). Reverse transcription PCR and western blotting analyses were used to examine ABCA1, TLR4 and inflammatory factor expression in primary cells. ELISA was used to detect cytokine secretions from the primary cells. KEY FINDINGS: ABCA1 and TLR4 were mainly located in the cell nucleus and cytoplasm of feto-maternal interface cells. ABCA1 expression remained the highest in chorion cells, medium in decidual cells, and weakest in AMCs. Upregulated expression of ABCA1 decreased expression of TLR4 and the levels of pro-inflammatory factors, but increased cytoprotective factors in all cell types. In contrast, downregulated expression of ABCA1 increased the expression of TLR4 and pro-inflammatory factors, but decreased the levels of cytoprotective factors. Downregulated ABCA1 expression followed by decreased TLR4 expression using a small interference RNA (siRNA) induced reduction of interleukin (IL)-1ß and tumor necrosis factor-α (TNF-α) in all cell types. SIGNIFICANCE: ABCA1 at feto-maternal interface acts as an anti-inflammatory role by reducing the expression of TLR4 in uncomplicated pregnancies. ABCA1 might be a potential therapeutic target for preventing gestational diseases.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Troca Materno-Fetal , Receptor 4 Toll-Like/metabolismo , Western Blotting , Células Cultivadas , Córion/metabolismo , Decídua/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Imunofluorescência , Humanos , Microscopia Confocal , Placenta/metabolismo , Gravidez , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Medicine (Baltimore) ; 99(39): e22389, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32991460

RESUMO

To investigate the molecular mechanisms of later metabolic health changes in large for gestational age (LGA) newborns by analyzing deoxyribonucleic acid (DNA) methylation patterns in the placenta of LGA and appropriate for gestational age (AGA) newborns.A total of 6 placentas of LGA and 6 placentas of AGA newborns were enrolled as LGA group and AGA group. DNA methylation was analyzed using the Illumina Infinium Human MethylationEPIC BeadChip microarrays and verified via pyrosequencing and reverse transcription-quantitative real-time polymerase chain reaction. Functional enrichment analysis were constructed by gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis based on the differentially methylated regions between LGA and AGA groups.Clinical investigation showed that LGA newborns had significantly lower hemoglobin and blood glucose compared to AGA newborns. Birth weight was negatively correlated to hemoglobin and blood glucose. Genome-wide DNA methylation analysis identified 17 244 methylation variable positions achieving genome-wide significance (adjusted P < .05). 34% methylation variable positions were located in the gene promoter region. A total of 117 differentially methylated regions were revealed by bump hunting analysis, which mapped to 107 genes. Function analysis showed 13 genes enriched in "adhesion and infection process, endocrine and other factor-regulated calcium reabsorption, calcium signaling pathway and transmembrane transport". Four genes linked to type II diabetes mellitus. Among the 13 genes, we selected GNAS and calcium voltage-gated channel subunit alpha1 G for independent verification of pyrosequencing, and the messenger ribonucleic acid levels of guanine nucleotide binding protein, calcium voltage-gated channel subunit alpha1 G, DECR1, and FK506 binding protein 11 were verified by reverse transcription-quantitative real-time polymerase chain reaction.DNA methylation variation and gene expression differences in placental samples were associated with LGA newborns, which linking the effect of intrauterine environment to regulation of the offspring's gene expression. Furthermore, pathway analysis suggested that intrauterine environment affecting fetal growth might had a functional impact on multiple signaling pathways involved in fetal growth, metabolism, and inflammation. Further studies were required to understand the differences of methylation patterns.


Assuntos
Metilação de DNA , Epigênese Genética , Desenvolvimento Fetal , Síndrome Metabólica/etiologia , Placenta/metabolismo , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Recém-Nascido , Masculino , Gravidez , Adulto Jovem
4.
Zhonghua Fu Chan Ke Za Zhi ; 55(8): 535-543, 2020 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-32854478

RESUMO

Objective: To observe the changes of the expression level of long non-coding RNA (lncRNA) KCNQ1OT1 and microRNA (miR)-146a-3p in placenta tissues of preeclampsia (PE) patients, as well as their effect and mechanism on the biological functions of trophoblast cells. Methods: A total of 45 cases of hospitalized PE patients in Hainan General Hospital from July 2017 to July 2018 were selected as the PE group, 55 normal pregnant women during the same period were chosed as the control group. The expression level of KCNQ1OT1 mRNA and miR-146a-3p in the placenta tissues between two groups were detected by using quantitative real time (qRT)-PCR. Pearson's test was furtherly analyzed the correlation between them. Human trophoblast cell line (HTR8/SVneo) were randomly divided into control and lipopolysaccharide (LPS) groups, and then LPS group were divide into four sub-groups,included LPS group, short hairpin RNA (sh)-KCNQ1OT1 (after silencing the expression of KCNQ1OT1), miR-146a-3p inhibitor and sh-KCNQ1OT1+miR-146a-3p inhibitor. The targeting relationship between KCNQ1OT1 and miR-146a-3p were predicted by bioinformatics software and confirmed by luciferase assay. The cell proliferation and invasion capacities were respectively detected by cell counting kit-8 (CCK-8) and transwell assay. The expression level of KCNQ1OT1 mRNA and miR-146a-3p were detected by qRT-PCR and the protein expression level of CXC chemokine ligand 12 (CXCL12) and CXC chemokine receptor type 4 (CXCR4) were tested by western blot. Results: (1) The mRNA expression level of KCNQ1OT1 in the placenta of PE group was lower than that of control group (0.23±0.03 vs 0.51±0.04, P<0.05), and the miR-146a-3p expression level was higher than that of the control group (0.49±0.03 vs 0.31±0.03, P<0.05), there were statistical significant differences between the two groups. (2) Luciferase assay showed that there was a targeting relationship between KCNQ1OT1 and mir-146a-3p. Compared with the control group, the mRNA expression level of KCNQ1OT1 in the LPS group were significantly decreased (0.91±0.03 vs 0.35±0.03, P<0.05), and the expression level of miR-146a-3p were significantly increased (0.22±0.03 vs 0.63±0.04, P<0.05). The cell proliferation, invasion and migration capacities and the protein expression of CXCL12 and CXCR4 significantly reduced in the LPS group compared with control group (all P<0.05). The mRNA expression level of KCNQ1OT1 (0.23±0.03) in the sh-KCNQ1OT1 group were further decreased, the expression of miR-146a-3p (0.85±0.03) were further increased, and the cell proliferation, invasion and migration capacities and the protein expression of CXCL12 and CXCR4 were all further reduced compared with control group,there were significant difference between two groups (all P<0.05). Comparing the miR-146a-3p inhibitor group, and sh-KCNQ1OT1+miR-146a-3p inhibitor group with the sh-KCNQ1OT1 group, respectively, the expression level of KCNQ1OT1 mRNA (0.78±0.04 vs 0.50±0.03) increased, and the expression level of miR-146a-3p (0.42±0.03 vs 0.46±0.03) decreased, the cell proliferation, invasion and migration capacities and the protein expression of CXCL12 and CXCR4 were all increased ,there were statistically significant differences (all P<0.05). Conclusion: KCNQ1OT1 could target the regulation of miR-146a-3p through CXCL12/CXCR4 pathway in the proliferation, invasion an migration of HTR8/SVneo cells, which may be involved in the pathogenesis of PE.


Assuntos
MicroRNAs/genética , Pré-Eclâmpsia/genética , RNA Longo não Codificante/genética , Trofoblastos/patologia , Feminino , Humanos , Placenta/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Pré-Eclâmpsia/patologia , Gravidez , Reação em Cadeia da Polimerase em Tempo Real , Trofoblastos/metabolismo
5.
Ecotoxicol Environ Saf ; 202: 110911, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800246

RESUMO

Applications of TiO2 nanoparticles (NPs) in food, personal care products and industries pose risks on human health, particularly on vulnerable populations including pregnant women and infants. Fetus, deficient in mature defense system, is more susceptible to NPs. Publications on the developmental toxicity of TiO2 NPs on the maternal-exposed progeny have emerged. This review presents the main exposure routes of TiO2 NPs during pregnancy, including skin penetration, ingestion and inhalation, followed by transport of TiO2 NPs to the placenta. Accumulation of TiO2 NPs in placenta may cause dysfunction in nutrient transfer. TiO2 NPs can be even transported to the fetus and generate toxicities, such as impairments of nervous and reproductive system, and failure in lung and cardiovascular development. The toxicities rely on the crystalline phase and concentrations, and the main mechanisms include the accumulation of excessive reactive oxygen species, DNA damage, and over-activation of signaling pathways such as MAPK which impairs neurotransmission. Finally, this review remarks on the significance for identifying TiO2 NPs dosage safe for both mother and fetus, and particular attention should be paid at TiO2 NPs concentrations safe for mother but toxic to fetus. Importantly, research on the epigenetic trans-generational inheritance of TiO2 NPs is urgently needed to provide insights for deciding the prospects of TiO2 NPs applications.


Assuntos
Nanopartículas Metálicas/toxicidade , Titânio/toxicidade , Animais , Feminino , Feto , Humanos , Nanopartículas/toxicidade , Organogênese , Placenta/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Testes de Toxicidade
6.
PLoS One ; 15(8): e0236968, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32745140

RESUMO

Many circumstantial evidences from human and animal studies suggest that complement cascade dysregulation may play an important role in pregnancy associated complications including preeclampsia. Deletion of rodent specific complement inhibitor gene, Complement Receptor 1-related Gene/Protein y (Crry) produces embryonic lethal phenotype due to complement activation. It is not clear if decreased expression of Crry during pregnancy produces hypertensive phenotype. We downregulated Crry in placenta by injecting inducible lentivialshRNA vectors into uterine horn of pregnant C57BL/6 mice at the time of blastocyst hatching. Placenta specific downregulation of Crry without significant loss of embryos was achieved upon induction of shRNA using an optimal doxycycline dose at mid gestation. Crry downregulation resulted in placental complement deposition. Late-gestation measurements showed that fetal weights were reduced and blood pressure increased in pregnant mice upon downregulation of Crry suggesting a critical role for Crry in fetal growth and blood pressure regulation.


Assuntos
Desenvolvimento Fetal/fisiologia , Placenta/metabolismo , Receptores de Complemento 3b/genética , Animais , Pressão Sanguínea/genética , Ativação do Complemento/genética , Complemento C3/metabolismo , Inativadores do Complemento/farmacologia , Feminino , Desenvolvimento Fetal/genética , Regulação da Expressão Gênica/genética , Camundongos , Camundongos Endogâmicos C57BL , Placenta/fisiologia , Pré-Eclâmpsia/genética , Gravidez , RNA Interferente Pequeno/genética , Receptores de Complemento/genética , Receptores de Complemento 3b/metabolismo
7.
PLoS One ; 15(8): e0237847, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32833985

RESUMO

PROM is one of the common complications of perinatal period, which seriously threatens the mother and newborn. The purpose of this study was to identify the role of NLRC4 inflammasomes in this process and their underlying mechanisms. We performed high-throughput RNA sequencing of fetal membrane tissue from 3 normal pregnant women and 3 term-premature rupture of fetal membrane (TPROM) patients who met the inclusion criteria, and found that NLRC4 was significantly up-regulated in TPROM patients. An observational study of TPROM patients (PROM group, n = 30) and normal pregnant women (control group, n = 30) was performed at the Xuzhou Maternal and Child Health Hospital affiliated to Xuzhou Medical University from May 2018 to May 2019. The expression of genes involved in inflammasome complex including NLRC1, NLRC3, AIM2, NLRC4, ASC, caspase-1, IL-6, IL-18 and IL-1ßwas determined via real-time PCR, immunohistochemistry and immunofluorescence. Measurement of NLRC4 level in serum was conducted by ELISA assay. The results showed that the NLRC4, ASC, caspase-1, IL-1ß and IL-18 levels in fetal membrane, placental tissues and maternal serum were markedly higher in the PROM group than that in the control group. In conclusion, NLRC4 is a markedly up-regulated gene in TPROM fetal membrane tissue, suggesting that NLRC4 is involved in the occurrence and development of TPROM; NLRC4 levels in maternal blood serum are closely related to TPROM and have the potential to assist doctors in predicting and diagnosing PROM.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Ruptura Prematura de Membranas Fetais/metabolismo , Inflamassomos/metabolismo , Adulto , Proteínas Adaptadoras de Sinalização CARD/sangue , Proteínas de Ligação ao Cálcio/sangue , Feminino , Ruptura Prematura de Membranas Fetais/sangue , Humanos , Placenta/metabolismo , Gravidez
9.
Elife ; 92020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32662421

RESUMO

The pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected more than 10 million people, including pregnant women. To date, no consistent evidence for the vertical transmission of SARS-CoV-2 exists. The novel coronavirus canonically utilizes the angiotensin-converting enzyme 2 (ACE2) receptor and the serine protease TMPRSS2 for cell entry. Herein, building upon our previous single-cell study (Pique-Regi et al., 2019), another study, and new single-cell/nuclei RNA-sequencing data, we investigated the expression of ACE2 and TMPRSS2 throughout pregnancy in the placenta as well as in third-trimester chorioamniotic membranes. We report that co-transcription of ACE2 and TMPRSS2 is negligible in the placenta, thus not a likely path of vertical transmission for SARS-CoV-2. By contrast, receptors for Zika virus and cytomegalovirus, which cause congenital infections, are highly expressed by placental cell types. These data show that the placenta minimally expresses the canonical cell-entry mediators for SARS-CoV-2.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/virologia , Placenta/metabolismo , Placenta/virologia , Pneumonia Viral/transmissão , Receptores Virais/metabolismo , Serina Endopeptidases/metabolismo , Internalização do Vírus , Betacoronavirus/metabolismo , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/transmissão , Feminino , Humanos , Pandemias , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , Gravidez , Receptores Virais/genética , Serina Endopeptidases/genética , Zika virus , Infecção por Zika virus
10.
Mol Syst Biol ; 16(7): e9610, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32715618

RESUMO

The novel SARS-coronavirus 2 (SARS-CoV-2) poses a global challenge on healthcare and society. For understanding the susceptibility for SARS-CoV-2 infection, the cell type-specific expression of the host cell surface receptor is necessary. The key protein suggested to be involved in host cell entry is angiotensin I converting enzyme 2 (ACE2). Here, we report the expression pattern of ACE2 across > 150 different cell types corresponding to all major human tissues and organs based on stringent immunohistochemical analysis. The results were compared with several datasets both on the mRNA and protein level. ACE2 expression was mainly observed in enterocytes, renal tubules, gallbladder, cardiomyocytes, male reproductive cells, placental trophoblasts, ductal cells, eye, and vasculature. In the respiratory system, the expression was limited, with no or only low expression in a subset of cells in a few individuals, observed by one antibody only. Our data constitute an important resource for further studies on SARS-CoV-2 host cell entry, in order to understand the biology of the disease and to aid in the development of effective treatments to the viral infection.


Assuntos
Peptidil Dipeptidase A/metabolismo , Sistema Respiratório/metabolismo , Betacoronavirus , Vasos Sanguíneos/metabolismo , Túnica Conjuntiva/metabolismo , Enterócitos/metabolismo , Feminino , Vesícula Biliar/metabolismo , Interações entre Hospedeiro e Microrganismos , Humanos , Imuno-Histoquímica , Túbulos Renais Proximais/metabolismo , Masculino , Espectrometria de Massas , Miócitos Cardíacos/metabolismo , Especificidade de Órgãos , Peptidil Dipeptidase A/genética , Placenta/metabolismo , Gravidez , RNA-Seq , Análise de Célula Única , Testículo/metabolismo
11.
Cells ; 9(8)2020 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722449

RESUMO

The outbreak of the coronavirus disease 2019 (COVID-19) pandemic has caused a global public health crisis. Viral infections may predispose pregnant women to a higher rate of pregnancy complications, including preterm births, miscarriage, and stillbirth. Despite reports of neonatal COVID-19, definitive proof of vertical transmission is still lacking. In this review, we summarize studies regarding the potential evidence for transplacental transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), characterize the expression of its receptors and proteases, describe the placental pathology and analyze virus-host interactions at the maternal-fetal interface. We focus on the syncytium, the barrier between mother and fetus, and describe in detail its physical and structural defense against viral infections. We further discuss the potential molecular mechanisms, whereby the placenta serves as a defense front against pathogens by regulating the interferon type III signaling, microRNA-triggered autophagy and the nuclear factor-κB pathway. Based on these data, we conclude that vertical transmission may occur but rare, ascribed to the potent physical barrier, the fine-regulated placental immune defense and modulation strategies. Particularly, immunomodulatory mechanisms employed by the placenta may mitigate violent immune response, maybe soften cytokine storm tightly associated with severely ill COVID-19 patients, possibly minimizing cell and tissue damages, and potentially reducing SARS-CoV-2 transmission.


Assuntos
Infecções por Coronavirus/transmissão , Transmissão Vertical de Doença Infecciosa , Placenta/imunologia , Placenta/virologia , Pneumonia Viral/transmissão , Complicações Infecciosas na Gravidez/imunologia , Autofagia/imunologia , Betacoronavirus , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Feminino , Humanos , Recém-Nascido , MicroRNAs/genética , MicroRNAs/metabolismo , Pandemias , Placenta/metabolismo , Placenta/patologia , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Gravidez , Complicações Infecciosas na Gravidez/virologia
12.
Am J Clin Nutr ; 112(3): 576-585, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32614379

RESUMO

BACKGROUND: Maternal iron absorption during pregnancy can be evaluated using RBC incorporation of orally administered stable iron isotope. This approach underestimates true maternal absorption of iron as it does not account for absorbed iron that is transferred to the fetus or retained within the placenta. OBJECTIVE: Our objective was to re-evaluate maternal iron absorption after factoring in these losses and identify factors associated with iron partitioning between the maternal, neonatal, and placental compartments. METHODS: This study utilized data from stable iron isotope studies carried out in 68 women during the third trimester of pregnancy. Iron status indicators and stable iron isotopic enrichment were measured in maternal blood, umbilical cord blood, and placental tissue when available. Factors associated with iron isotope partitioning between the maternal, neonatal, and placental compartments were identified. RESULTS: On average, true maternal absorption of iron increased by 10% (from 19% to 21%) after accounting for absorbed iron present in the newborn (P < 0.001), and further increased by 7%, (from 39% to 42%, P < 0.001) after accounting for iron retained within the placenta. On average, 2% of recovered tracer was present in the placenta and 6% was found in the newborn. Net transfer of iron to the neonate was higher in women with lower total body iron (standardized ß = -0.48, P < 0.01) and lower maternal hepcidin (standardized ß = -0.66, P < 0.01). In women carrying multiple fetuses, neonatal hepcidin explained a significant amount of observed variance in net placental transfer of absorbed iron (R = 0.95, P = 0.03). CONCLUSIONS: Maternal RBC iron incorporation of an orally ingested tracer underestimated true maternal iron absorption. The degree of underestimation was greatest in women with low body iron. Maternal hepcidin was inversely associated with maternal RBC iron utilization, whereas neonatal hepcidin explained variance in net transfer of iron to the neonatal compartment.These trials were registered at clinicaltrials.gov as NCT01019096 and NCT01582802.


Assuntos
Feto/metabolismo , Ferro/farmacocinética , Placenta/metabolismo , Adolescente , Adulto , Transporte Biológico , Feminino , Humanos , Recém-Nascido , Ferro/metabolismo , Isótopos de Ferro , Marcação por Isótopo , Gravidez , Adulto Jovem
13.
Proc Natl Acad Sci U S A ; 117(30): 17864-17875, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32669432

RESUMO

Early pregnancy loss affects ∼15% of all implantation-confirmed human conceptions. However, evolutionarily conserved molecular mechanisms that regulate self-renewal of trophoblast progenitors and their association with early pregnancy loss are poorly understood. Here, we provide evidence that transcription factor TEAD4 ensures survival of postimplantation mouse and human embryos by controlling self-renewal and stemness of trophoblast progenitors within the placenta primordium. In an early postimplantation mouse embryo, TEAD4 is selectively expressed in trophoblast stem cell-like progenitor cells (TSPCs), and loss of Tead4 in postimplantation mouse TSPCs impairs their self-renewal, leading to embryonic lethality before embryonic day 9.0, a developmental stage equivalent to the first trimester of human gestation. Both TEAD4 and its cofactor, yes-associated protein 1 (YAP1), are specifically expressed in cytotrophoblast (CTB) progenitors of a first-trimester human placenta. We also show that a subset of unexplained recurrent pregnancy losses (idiopathic RPLs) is associated with impaired TEAD4 expression in CTB progenitors. Furthermore, by establishing idiopathic RPL patient-specific human trophoblast stem cells (RPL-TSCs), we show that loss of TEAD4 is associated with defective self-renewal in RPL-TSCs and rescue of TEAD4 expression restores their self-renewal ability. Unbiased genomics studies revealed that TEAD4 directly regulates expression of key cell cycle genes in both mouse and human TSCs and establishes a conserved transcriptional program. Our findings show that TEAD4, an effector of the Hippo signaling pathway, is essential for the establishment of pregnancy in a postimplantation mammalian embryo and indicate that impairment of the Hippo signaling pathway could be a molecular cause for early human pregnancy loss.


Assuntos
Autorrenovação Celular/genética , Proteínas de Ligação a DNA/genética , Desenvolvimento Embrionário/genética , Proteínas Musculares/genética , Fatores de Transcrição/genética , Trofoblastos/citologia , Trofoblastos/metabolismo , Aborto Habitual/etiologia , Aborto Habitual/metabolismo , Aborto Espontâneo/etiologia , Aborto Espontâneo/metabolismo , Animais , Biomarcadores , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Implantação do Embrião , Feminino , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Imuno-Histoquímica , Camundongos , Proteínas Musculares/metabolismo , Placenta/metabolismo , Gravidez , Fatores de Transcrição/metabolismo
14.
PLoS One ; 15(6): e0235217, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32574225

RESUMO

In sheep, polyunsaturated fatty acid (PUFA) supplementations in late gestation increases the growth of offspring; however, there is a lack of evidence on the effect of PUFA supplementation during early gestation. Thus, the objective of this study was to evaluate the effect of dietary supplementation of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in early gestation pregnant ewes on fatty acid concentration of fetal liver (FL) and fetal central nervous system (FCNS), and relative abundance of the mRNA for genes associated with transport and metabolism of fatty acids in FL and placenta. A total of 12 ewes, block for stage of gestation were fed a diet containing 1.6% (dry matter basis) monounsaturated fatty acids (MUFA) or EPA+DHA during the first 45 days of gestation. A cesarean section was conducted on day 45 of gestation to collect placenta (caruncle and cotyledon), FL, and FCNS. Relative abundance of mRNA in FL and FCNS and fatty acid concentration were analyzed using a 2x2 factorial arrangement of treatments considering fatty acid supplementation and tissue as the main factors. Concentrations of C18:1 isomers increase (P < 0.05) in FL and FCNS with MUFA supplementation; the FL and FCNS had a greater concentration of C20:3(n-6), C20:3(n-3), C22:1, C22:5 and C22:6 (P < 0.05) with EPA+DHA supplementation. In FL, the relative abundance of LPL mRNA was greater (P = 0.02) as a result of MUFA supplementation. In placenta, there was a FA x tissue interaction for relative abundance of DNMT3b and FFAR-4 mRNA (P < 0.05). Fetus from MUFA-supplemented dams had a greater relative abundance of FABP-4 mRNA (P < 0.05). Results indicate supplementation with EPA+DHA during early gestation increases the total EPA and DHA in FL. For the placenta, EPA+DHA supplementation led to an increase in the relative abundance of lipid mRNA for transport genes.


Assuntos
Sistema Nervoso Central/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/análogos & derivados , Ácidos Graxos/análise , Feto/efeitos dos fármacos , Placenta/efeitos dos fármacos , RNA Mensageiro/metabolismo , Animais , DNA (Citosina-5-)-Metiltransferases/genética , Suplementos Nutricionais , Ácido Eicosapentaenoico/farmacologia , Proteínas de Ligação a Ácido Graxo/genética , Ácidos Graxos/química , Feminino , Feto/metabolismo , Idade Gestacional , Lipase Lipoproteica/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Placenta/metabolismo , Gravidez , Ovinos
15.
Proc Natl Acad Sci U S A ; 117(27): 15772-15777, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32581122

RESUMO

During pregnancy, invading HLA-G+ extravillous trophoblasts (EVT) play a key role in placental development, uterine spiral artery remodeling, and prevention of detrimental maternal immune responses to placental and fetal antigens. Failures of these processes are suggested to play a role in the development of pregnancy complications, but very little is known about the underlying mechanisms. Here we present validated methods to purify and culture primary HLA-G+ EVT from the placental disk and chorionic membrane from healthy term pregnancy. Characterization of HLA-G+ EVT from term pregnancy compared to first trimester revealed their unique phenotypes, gene expression profiles, and differing capacities to increase regulatory T cells (Treg) during coculture assays, features that cannot be captured by using surrogate cell lines or animal models. Furthermore, clinical variables including gestational age and fetal sex significantly influenced EVT biology and function. These methods and approaches form a solid basis for further investigation of the role of HLA-G+ EVT in the development of detrimental placental inflammatory responses associated with pregnancy complications, including spontaneous preterm delivery and preeclampsia.


Assuntos
Antígenos HLA-G/imunologia , Imunidade Inata/genética , Placentação/imunologia , Pré-Eclâmpsia/imunologia , Linhagem Celular , Movimento Celular/imunologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/imunologia , Humanos , Relações Materno-Fetais , Placenta/imunologia , Placenta/metabolismo , Pré-Eclâmpsia/patologia , Gravidez , Primeiro Trimestre da Gravidez , Trofoblastos/imunologia
16.
Ecotoxicol Environ Saf ; 202: 110884, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32563952

RESUMO

Nanotoxicity to fetal brains after maternal oral exposures during pregnancy is often in question because nanoparticles have to cross multiple biological barriers such as intestinal barrier, maternal blood placental barrier (BPB) and fetal blood brain barrier (BBB). Here, we investigated this seemingly impossible passage for ZrO2 nanoparticles (ZrO2 NPs) from maternal body to fetal brains using a pregnant mouse model. After three oral exposures to pregnant mice at late pregnancy (GD16, 17, 18), ZrO2 NPs were able to accumulate in fetal brains at GD19 via crossing the well-developed maternal BPB and fetal BBB. Moreover, ZrO2 NPs crossed the mature biological barriers with increasing the expression levels of caveolae, clathrin and arf6 proteins as well as decreasing the expression levels of the tight junction proteins claudin-5, occludin and ZO-1 in placenta and fetal brain. From this investigation, we speculated that the main mechanisms for such translocation were receptor-mediated endocytosis transcellular pathway and breakthrough of tight junctions paracellular pathway in mature maternal BPB and fetal BBB. These findings have important implications for other nanoparticles exposures during pregnancy and provide crucial information to safeguard fetal development from contamination of widely used nanoproducts.


Assuntos
Barreira Hematoencefálica/metabolismo , Nanopartículas/metabolismo , Óxido de Zinco/metabolismo , Animais , Transporte Biológico , Endocitose , Feminino , Desenvolvimento Fetal , Feto , Humanos , Exposição Materna , Camundongos , Ocludina/metabolismo , Placenta/metabolismo , Gravidez , Junções Íntimas/metabolismo
17.
PLoS One ; 15(6): e0234403, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32520951

RESUMO

MicroRNAs (miRNAs) are important regulators of gene expression, and their expression is associated with many physiological conditions. Here, we investigated potential associations between expression levels of miRNAs in human placenta and the onset of spontaneous term birth. Using RNA sequencing, we identified 54 miRNAs differentially expressed during spontaneous term labor compared to elective term births. Expression levels of 23 miRNAs were upregulated, whereas 31 were downregulated at least 1.5-fold. The upregulated miRNA miR-371a-5p putatively targets CPPED1, expression of which decreases during spontaneous birth. We used a luciferase reporter-based assay to test whether a miR-371a-5p mimic affected translation when it bound to the 3' untranslated region of CPPED1. In this setting, the miR-371a-5p mimic resulted in lower luciferase activity, which suggests that miR-371a-5p regulates levels of CPPED1. In conclusion, inversely correlated levels of miR-371a-5p and CPPED1 suggest a role for both in spontaneous delivery.


Assuntos
MicroRNAs/genética , Placentação/genética , Nascimento a Termo/genética , Regiões 3' não Traduzidas/genética , Adulto , Calcineurina/genética , Calcineurina/metabolismo , Parto Obstétrico , Feminino , Finlândia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Humanos , MicroRNAs/metabolismo , Placenta/metabolismo , Gravidez , Transcriptoma/genética
18.
Proc Natl Acad Sci U S A ; 117(24): 13562-13570, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32482863

RESUMO

Various pregnancy complications, such as severe forms of preeclampsia or intrauterine growth restriction, are thought to arise from failures in the differentiation of human placental trophoblasts. Progenitors of the latter either develop into invasive extravillous trophoblasts, remodeling the uterine vasculature, or fuse into multinuclear syncytiotrophoblasts transporting oxygen and nutrients to the growing fetus. However, key regulatory factors controlling trophoblast self-renewal and differentiation have been poorly elucidated. Using primary cells, three-dimensional organoids, and CRISPR-Cas9 genome-edited JEG-3 clones, we herein show that YAP, the transcriptional coactivator of the Hippo signaling pathway, promotes maintenance of cytotrophoblast progenitors by different genomic mechanisms. Genetic or chemical manipulation of YAP in these cellular models revealed that it stimulates proliferation and expression of cell cycle regulators and stemness-associated genes, but inhibits cell fusion and production of syncytiotrophoblast (STB)-specific proteins, such as hCG and GDF15. Genome-wide comparisons of primary villous cytotrophoblasts overexpressing constitutively active YAP-5SA with YAP KO cells and syncytializing trophoblasts revealed common target genes involved in trophoblast stemness and differentiation. ChIP-qPCR unraveled that YAP-5SA overexpression increased binding of YAP-TEAD4 complexes to promoters of proliferation-associated genes such as CCNA and CDK6 Moreover, repressive YAP-TEAD4 complexes containing the histone methyltransferase EZH2 were detected in the genomic regions of the STB-specific CGB5 and CGB7 genes. In summary, YAP plays a pivotal role in the maintenance of the human placental trophoblast epithelium. Besides activating stemness factors, it also directly represses genes promoting trophoblast cell fusion.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Placentação , Fatores de Transcrição/metabolismo , Trofoblastos/citologia , Trofoblastos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Diferenciação Celular , Proliferação de Células , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Placenta/metabolismo , Gravidez , Ligação Proteica , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição/genética
19.
Proc Natl Acad Sci U S A ; 117(25): 14280-14291, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513715

RESUMO

In utero mammalian development relies on the establishment of the maternal-fetal exchange interface, which ensures transportation of nutrients and gases between the mother and the fetus. This exchange interface is established via development of multinucleated syncytiotrophoblast cells (SynTs) during placentation. In mice, SynTs develop via differentiation of the trophoblast stem cell-like progenitor cells (TSPCs) of the placenta primordium, and in humans, SynTs are developed via differentiation of villous cytotrophoblast (CTB) progenitors. Despite the critical need in pregnancy progression, conserved signaling mechanisms that ensure SynT development are poorly understood. Herein, we show that atypical protein kinase C iota (PKCλ/ι) plays an essential role in establishing the SynT differentiation program in trophoblast progenitors. Loss of PKCλ/ι in the mouse TSPCs abrogates SynT development, leading to embryonic death at approximately embryonic day 9.0 (E9.0). We also show that PKCλ/ι-mediated priming of trophoblast progenitors for SynT differentiation is a conserved event during human placentation. PKCλ/ι is selectively expressed in the first-trimester CTBs of a developing human placenta. Furthermore, loss of PKCλ/ι in CTB-derived human trophoblast stem cells (human TSCs) impairs their SynT differentiation potential both in vitro and after transplantation in immunocompromised mice. Our mechanistic analyses indicate that PKCλ/ι signaling maintains expression of GCM1, GATA2, and PPARγ, which are key transcription factors to instigate SynT differentiation programs in both mouse and human trophoblast progenitors. Our study uncovers a conserved molecular mechanism, in which PKCλ/ι signaling regulates establishment of the maternal-fetal exchange surface by promoting trophoblast progenitor-to-SynT transition during placentation.


Assuntos
Diferenciação Celular/fisiologia , Isoenzimas/metabolismo , Troca Materno-Fetal/fisiologia , Placenta/metabolismo , Proteína Quinase C/metabolismo , Trofoblastos/fisiologia , Animais , Proteínas de Ligação a DNA/metabolismo , Feminino , Fator de Transcrição GATA2/metabolismo , Humanos , Isoenzimas/genética , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , PPAR gama/metabolismo , Placenta/citologia , Placentação/fisiologia , Gravidez , Proteína Quinase C/genética , Transdução de Sinais , Células-Tronco/citologia , Fatores de Transcrição/metabolismo , Trofoblastos/citologia
20.
PLoS One ; 15(6): e0233979, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32492052

RESUMO

BACKGROUND: Exposure to maternal stress during pregnancy can have adverse effects on the fetus, which has potential long-term effects on offspring´s development and health. We investigated the kinetics and metabolism of the hormones and amino acids: cortisol, cortisone, tryptophan and serotonin in the term placenta in an ex vivo human placental perfusion model. The placentas used in the experiments were donated from families participating in the Maternal Stress and Placental Function project with a known maternal stress background. METHOD: Cortisol, cortisone, tryptophan and serotonin were added simultaneously to the maternal side in the 6 hour ex vivo term human recirculating placental perfusion model, in four experimental set-ups: without inhibitors, with carbenoxolone -that inhibits cortisol metabolism into cortisone, with fluoxetine that inhibits the serotonin transporter, and with PCPA that inhibits metabolism of tryptophan into serotonin. The concentration of cortisol and cortisone, and tryptophan and serotonin were quantified using UPLC and HPLC-MS respectively. RESULTS: Cortisol was rapidly metabolized into cortisone in the placenta, to a somewhat lesser degree when adding the inhibitor carbenoxolone, resulting in higher fetal exposure to cortisol. Serotonin was also rapidly metabolized in the placenta. When adding fluoxetine a peak of fetal serotonin levels was seen in the first hour of the perfusion. No effect was seen of the maternal stress levels on placental transport kinetics in this study. CONCLUSION: Inhibiting the metabolism of cortisol in the placenta increased fetal exposure to cortisol as expected. Unexpectedly we saw an increased fetal exposure to serotonin when inhibiting the serotonin transporter, which may be related to the increased serotonin concentration on the maternal side of the placenta. No effect on placental kinetics were evident on maternal stress levels during the pregnancy as the majority of participating mothers had normal stress levels.


Assuntos
Feto/metabolismo , Troca Materno-Fetal , Placenta/metabolismo , Estresse Psicológico/metabolismo , Adulto , Cortisona/metabolismo , Feminino , Humanos , Hidrocortisona/metabolismo , Perfusão , Gravidez , Serotonina/metabolismo , Triptofano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA