Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37.438
Filtrar
1.
Braz J Biol ; 83: e245379, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34495147

RESUMO

Population growth is increasing rapidly around the world, in these consequences we need to produce more foods to full fill the demand of increased population. The world is facing global warming due to urbanizations and industrialization and in this concerns plants exposed continuously to abiotic stresses which is a major cause of crop hammering every year. Abiotic stresses consist of Drought, Salt, Heat, Cold, Oxidative and Metal toxicity which damage the crop yield continuously. Drought and salinity stress severally affected in similar manner to plant and the leading cause of reduction in crop yield. Plants respond to various stimuli under abiotic or biotic stress condition and express certain genes either structural or regulatory genes which maintain the plant integrity. The regulatory genes primarily the transcription factors that exert their activity by binding to certain cis DNA elements and consequently either up regulated or down regulate to target expression. These transcription factors are known as masters regulators because its single transcript regulate more than one gene, in this context the regulon word is fascinating more in compass of transcription factors. Progress has been made to better understand about effect of regulons (AREB/ABF, DREB, MYB, and NAC) under abiotic stresses and a number of regulons reported for stress responsive and used as a better transgenic tool of Arabidopsis and Rice.


Assuntos
Regulação da Expressão Gênica de Plantas , Regulon , Secas , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Regulon/genética , Estresse Fisiológico/genética
2.
Braz J Biol ; 83: e246436, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34495159

RESUMO

Application of different fertilizers to check the efficiency of expression of Bt (Bacillus thuringiensis) gene in one of the leading commercialized crops (cotton) against Lepidopteran species is of great concern. The expression of Cry protein level can be controlled by the improvement of nutrients levels. Therefore, the myth of response of Cry toxin to different combinations of NP fertilizers was explored in three Bt cotton cultivars. Combinations include three levels of nitrogen and three levels of phosphorus fertilizers. Immunostrips and Cry gene(s) specific primer based PCR (Polymerase Chain Reaction) analysis were used for the presence of Bt gene that unveiled the presence of Cry1Ac gene only. Further, the ELISA (enzyme-linked immunosorbent assay) kit was used to quantify the expression of Cry1Ac protein. Under various NP fertilizers rates, the level of toxin protein exhibited highly significant differences. The highest toxin level mean was found to be 2.3740 and 2.1732 µg/g under the treatment of N150P75 kg ha-1 combination while the lowest toxin level mean was found to be 0.9158 and 0.7641 µg/g at the N50P25 kg ha-1 level at 80 and 120 DAS (Days After Sowing), respectively. It was concluded from the research that the usage of NP fertilizers has a positive relation with the expression of Cry1Ac toxin in Bt cotton. We recommend using the N150P50 kg ha-1 level as the most economical and practicable fertilizer instead of the standard dose N100P50 kg ha-1 to get the desired level of Cry1Ac level for long lasting plant resistance (<1.5). The revised dose of fertilizer may help farmers to avoid the cross-resistance development in contradiction of insect pests.


Assuntos
Proteínas Hemolisinas , Mariposas , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Endotoxinas/genética , Fertilizantes , Proteínas Hemolisinas/genética , Resistência a Inseticidas , Larva , Nitrogênio , Fósforo , Plantas Geneticamente Modificadas/genética
3.
Planta ; 254(4): 68, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34498163

RESUMO

MAIN CONCLUSION: In this review, we have focused on the CRISPR/Cas9 technology for improving the agronomic traits in plants through point mutations, knockout, and single base editing, and we highlighted the recent progress in plant metabolic engineering. CRISPR/Cas9 technology has immense power to reproduce plants with desired characters and revolutionizing the field of genome engineering by erasing the barriers in targeted genome editing. Agriculture fields are using this advance genome editing tool to get the desired traits in the crops plants such as increase yield, improve product quality attributes, and enhance resistance against biotic and abiotic stresses by identifying and editing genes of interest. This review focuses on CRISPR/Cas-based gene knockout for trait improvement and single base editing to boost yield, quality, stress tolerance, and disease resistance traits in crops. Use of CRISPR/Cas9 system to facilitate crop domestication and hybrid breeding are also touched. We summarize recent developments and up-gradation of delivery mechanism (nanotechnology and virus particle-based delivery system) and progress in multiplex gene editing. We also shed lights in advances and challenges of engineering the important metabolic pathways that contain a variety of dietary metabolites and phytochemicals. In addition, we endorsed substantial technical hurdles and possible ways to overcome the unpredictability of CRISPR/Cas technology for broader application across various crop species. We speculated that by making a strong interconnection among all genomic fields will give a gigantic bunt of knowledge to develop crop expressing desired traits.


Assuntos
Sistemas CRISPR-Cas , Melhoramento Vegetal , Agricultura , Sistemas CRISPR-Cas/genética , Genoma de Planta , Plantas Geneticamente Modificadas/genética , Tecnologia
4.
BMC Genomics ; 22(1): 639, 2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34479486

RESUMO

BACKGROUND: Resistance of pest insect species to insecticides, including B. thuringiensis (Bt) pesticidal proteins expressed by transgenic plants, is a threat to global food security. Despite the western corn rootworm, Diabrotica virgifera virgifera, being a major pest of maize and having populations showing increasing levels of resistance to hybrids expressing Bt pesticidal proteins, the cell mechanisms leading to mortality are not fully understood. RESULTS: Twenty unique RNA-seq libraries from the Bt susceptible D. v. virgifera inbred line Ped12, representing all growth stages and a range of different adult and larval exposures, were assembled into a reference transcriptome. Ten-day exposures of Ped12 larvae to transgenic Bt Cry3Bb1 and Gpp34/Tpp35Ab1 maize roots showed significant differential expression of 1055 and 1374 transcripts, respectively, compared to cohorts on non-Bt maize. Among these, 696 were differentially expressed in both Cry3Bb1 and Gpp34/Tpp35Ab1 maize exposures. Differentially-expressed transcripts encoded protein domains putatively involved in detoxification, metabolism, binding, and transport, were, in part, shared among transcripts that changed significantly following exposures to the entomopathogens Heterorhabditis bacteriophora and Metarhizium anisopliae. Differentially expressed transcripts in common between Bt and entomopathogen treatments encode proteins in general stress response pathways, including putative Bt binding receptors from the ATP binding cassette transporter superfamily. Putative caspases, pro- and anti-apoptotic factors, as well as endoplasmic reticulum (ER) stress-response factors were identified among transcripts uniquely up-regulated following exposure to either Bt protein. CONCLUSIONS: Our study suggests that the up-regulation of genes involved in ER stress management and apoptotic progression may be important in determining cell fate following exposure of susceptible D. v. virgifera larvae to Bt maize roots. This study provides novel insights into insect response to Bt intoxication, and a possible framework for future investigations of resistance mechanisms.


Assuntos
Bacillus thuringiensis , Besouros , Praguicidas , Animais , Bacillus thuringiensis/genética , Sobrevivência Celular , Besouros/genética , Endotoxinas/toxicidade , Resistência a Inseticidas , Larva/genética , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/genética , Regulação para Cima , Zea mays/genética
5.
BMC Plant Biol ; 21(1): 407, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493220

RESUMO

BACKGROUND: TERMINAL FLOWER 1 (TFL1) belongs to the phosphatidylethanolamine-binding protein (PEBP) family, which is involved in inflorescence meristem development and represses flowering in several plant species. In the present study, four TFL1 genes were cloned from the mango (Mangifera indica L.) variety 'SiJiMi' and named MiTFL1-1, MiTFL1-2, MiTFL1-3 and MiTFL1-4. RESULTS: Sequence analysis showed that the encoded MiTFL1 proteins contained a conserved PEBP domain and belonged to the TFL1 group. Expression analysis showed that the MiTFL1 genes were expressed in not only vegetative organs but also reproductive organs and that the expression levels were related to floral development. Overexpression of the four MiTFL1 genes delayed flowering in transgenic Arabidopsis. Additionally, MiTFL1-1 and MiTFL1-3 changed the flower morphology in some transgenic plants. Yeast two-hybrid (Y2H) analysis showed that several stress-related proteins interacted with MiTFL1 proteins. CONCLUSIONS: The four MiTFL1 genes exhibited a similar expression pattern, and overexpression in Arabidopsis resulted in delayed flowering. Additionally, MiTFL1-1 and MiTFL1-3 overexpression affected floral organ development. Furthermore, the MiTFL1 proteins could interact with bHLH and 14-3-3 proteins. These results indicate that the MiTFL1 genes may play an important role in the flowering process in mango.


Assuntos
Arabidopsis/fisiologia , Flores/fisiologia , Mangifera/genética , Proteínas de Plantas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Inflorescência/genética , Proteína de Ligação a Fosfatidiletanolamina/genética , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Técnicas do Sistema de Duplo-Híbrido
6.
BMC Plant Biol ; 21(1): 409, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493224

RESUMO

BACKGROUND: The periderm is a protective barrier crucial for land plant survival, but little is known about genetic factors involved in its development and regulation. Using a transcriptomic approach in the cork oak (Q. suber) periderm, we previously identified an RS2-INTERACTING KH PROTEIN (RIK) homologue of unknown function containing a K homology (KH)-domain RNA-binding protein, as a regulatory candidate gene in the periderm. RESULTS: To gain insight into the function of RIK in the periderm, potato (S. tuberosum) tuber periderm was used as a model: the full-length coding sequence of RIK, hereafter referred to as StRIK, was isolated, the transcript profile analyzed and gene silencing in potato performed to analyze the silencing effects on periderm anatomy and transcriptome. The StRIK transcript accumulated in all vegetative tissues studied, including periderm and other suberized tissues such as root and also in wounded tissues. Downregulation of StRIK in potato by RNA interference (StRIK-RNAi) did not show any obvious effects on tuber periderm anatomy but, unlike Wild type, transgenic plants flowered. Global transcript profiling of the StRIK-RNAi periderm did show altered expression of genes associated with RNA metabolism, stress and signaling, mirroring the biological processes found enriched within the in silico co-expression network of the Arabidopsis orthologue. CONCLUSIONS: The ubiquitous expression of StRIK transcript, the flower associated phenotype and the differential expression of StRIK-RNAi periderm point out to a general regulatory role of StRIK in diverse plant developmental processes. The transcriptome analysis suggests that StRIK might play roles in RNA maturation and stress response in the periderm.


Assuntos
Proteínas de Plantas/genética , Tubérculos/genética , RNA de Plantas/metabolismo , Solanum tuberosum/genética , Estresse Fisiológico/genética , Arabidopsis/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Elementos de DNA Transponíveis , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Inativação Gênica , Proteínas de Plantas/metabolismo , Tubérculos/anatomia & histologia , Tubérculos/citologia , Plantas Geneticamente Modificadas , Solanum tuberosum/citologia
7.
Sheng Wu Gong Cheng Xue Bao ; 37(8): 2845-2855, 2021 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-34472302

RESUMO

Production of biofuels such as ethanol from non-grain crops may contribute to alleviating the global energy crisis and reducing the potential threat to food security. Tobacco (Nicotiana tabacum) is a commercial crop with high biomass yield. Breeding of starch-rich tobacco plants may provide alternative raw materials for the production of fuel ethanol. We cloned the small subunit gene NtSSU of ADP-glucose pyrophosphorylase (NtAGPase), which controls starch biosynthesis in tobacco, and constructed a plant expression vector pCAMBIA1303-NtSSU. The NtSSU gene was overexpressed in tobacco upon Agrobacterium-mediated leaf disc transformation. Phenotypic analysis showed that overexpression of NtSSU gene promoted the accumulation of starch in tobacco leaves, and the content of starch in tobacco leaves increased from 17.5% to 41.7%. The growth rate and biomass yield of the transgenic tobacco with NtSSU gene were also significantly increased. The results revealed that overexpression of NtSSU gene could effectively redirect more photosynthesis carbon flux into starch biosynthesis pathway, which led to an increased biomass yield but did not generate negative effects on other agronomic traits. Therefore, NtSSU gene can be used as an excellent target gene in plant breeding to enrich starch accumulation in vegetative organs to develop new germplasm dedicated to fuel ethanol production.


Assuntos
Amido , Tabaco , Biomassa , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Folhas de Planta/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Tabaco/genética , Tabaco/metabolismo
8.
BMC Plant Biol ; 21(1): 402, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34470613

RESUMO

BACKGROUND: Plant-parasitic nematodes and herbivorous insects have a significant negative impact on global crop production. A successful approach to protect crops from these pests is the in planta expression of nematotoxic or entomotoxic proteins such as crystal proteins from Bacillus thuringiensis (Bt) or plant lectins. However, the efficacy of this approach is threatened by emergence of resistance in nematode and insect populations to these proteins. To solve this problem, novel nematotoxic and entomotoxic proteins are needed. During the last two decades, several cytoplasmic lectins from mushrooms with nematicidal and insecticidal activity have been characterized. In this study, we tested the potential of Marasmius oreades agglutinin (MOA) to furnish Arabidopsis plants with resistance towards three economically important crop pests: the two plant-parasitic nematodes Heterodera schachtii and Meloidogyne incognita and the herbivorous diamondback moth Plutella xylostella. RESULTS: The expression of MOA does not affect plant growth under axenic conditions which is an essential parameter in the engineering of genetically modified crops. The transgenic Arabidopsis lines showed nearly complete resistance to H. schachtii, in that the number of female and male nematodes per cm root was reduced by 86-91 % and 43-93 % compared to WT, respectively. M. incognita proved to be less susceptible to the MOA protein in that 18-25 % and 26-35 % less galls and nematode egg masses, respectively, were observed in the transgenic lines. Larvae of the herbivorous P. xylostella foraging on MOA-expression lines showed a lower relative mass gain (22-38 %) and survival rate (15-24 %) than those feeding on WT plants. CONCLUSIONS: The results of our in planta experiments reveal a robust nematicidal and insecticidal activity of the fungal lectin MOA against important agricultural pests which may be exploited for crop protection.


Assuntos
Aglutininas/farmacologia , Arabidopsis/parasitologia , Herbivoria , Marasmius/química , Nematoides/fisiologia , Aglutininas/química , Animais , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mariposas/fisiologia , Doenças das Plantas/prevenção & controle , Plantas Geneticamente Modificadas
9.
Planta ; 254(4): 77, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34535825

RESUMO

MAIN CONCLUSION: Overexpression of SaAQP can improve the salt tolerance of transgenic soybean hairy roots and A. thaliana. Salt stress severely affects crop yield and food security. There is a need to improve the salt tolerance of crops, but the discovery and utilization of salt-tolerance genes remains limited. Owing to its strong stress tolerance, Sophora alopecuroides is ideal for the identification of salt-tolerance genes. Therefore, we aimed to screen and identify the salt-tolerance genes in S. alopecuroides. With a yeast expression library of seedlings, salt-tolerant genes were screened using a salt-containing medium to simulate salt stress. By combining salt-treatment screening and transcriptome sequencing, 11 candidate genes related to salt tolerance were identified, including genes for peroxidase, inositol methyltransferase, aquaporin, cysteine synthase, pectinesterase, and WRKY. The expression dynamics of candidate genes were analyzed after salt treatment of S. alopecuroides, and salt tolerance was verified in yeast BY4743. The candidate genes participated in the salt-stress response in S. alopecuroides, and their overexpression significantly improved the salt tolerance of yeast. Salt tolerance mediated by SaAQP was further verified in soybean hairy roots and Arabidopsis thaliana, and it was found that SaAQP might enhance the salt tolerance of A. thaliana by participating in a reactive oxygen species scavenging mechanism. This result provides new genetic resources in plant breeding for salt resistance.


Assuntos
Tolerância ao Sal , Sophora , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Tolerância ao Sal/genética , Sophora/genética , Sophora/metabolismo , Estresse Fisiológico
10.
Nat Commun ; 12(1): 4713, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354054

RESUMO

Maize (Zea mays L.) is a cold-sensitive species that often faces chilling stress, which adversely affects growth and reproduction. However, the genetic basis of low-temperature adaptation in maize remains unclear. Here, we demonstrate that natural variation in the type-A Response Regulator 1 (ZmRR1) gene leads to differences in chilling tolerance among maize inbred lines. Association analysis reveals that InDel-35 of ZmRR1, encoding a protein harboring a mitogen-activated protein kinase (MPK) phosphorylation residue, is strongly associated with chilling tolerance. ZmMPK8, a negative regulator of chilling tolerance, interacts with and phosphorylates ZmRR1 at Ser15. The deletion of a 45-bp region of ZmRR1 harboring Ser15 inhibits its degradation via the 26 S proteasome pathway by preventing its phosphorylation by ZmMPK8. Transcriptome analysis indicates that ZmRR1 positively regulates the expression of ZmDREB1 and Cellulose synthase (CesA) genes to enhance chilling tolerance. Our findings thus provide a potential genetic resource for improving chilling tolerance in maize.


Assuntos
Zea mays/genética , Zea mays/fisiologia , Alelos , Temperatura Baixa , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Técnicas In Vitro , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Fosforilação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estresse Fisiológico/genética
12.
Planta ; 254(3): 50, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34386845

RESUMO

MAIN CONCLUSION: Overexpression of the leaf color (Lc) gene in Ma bamboo substantially increased the accumulation level of anthocyanin, and improved plant tolerance to cold and drought stresses, probably due to the increased antioxidant capacity. Most bamboos, including Ma bamboo (Dendrocalamus latiflorus Munro), are naturally evergreen and sensitive to cold and drought stresses, while it's nearly impossible to make improvements through conventual breeding due to their long and irregular flowering habit. Moreover, few studies have reported bamboo germplasm innovation through genetic engineering as bamboo genetic transformation remains difficult. In this study, we have upregulated anthocyanin biosynthesis in Ma bamboo, to generate non-green Ma bamboo with increased abiotic stress tolerance. By overexpressing the maize Lc gene, a bHLH transcription activator involved in the anthocyanin biosynthesis in Ma bamboo, we generated purple bamboos with increased anthocyanin levels including cyanidin-3-O-rutinoside, peonidin 3-O-rutinoside, and an unknown cyanidin pentaglycoside derivative. The expression levels of 9 anthocyanin biosynthesis genes were up-regulated. Overexpression of the Lc gene improved the plant tolerance to cold and drought stress, probably due to increased antioxidant capacity. The levels of the cold- and drought-related phytohormone jasmonic acid in the transgenic plants were also enhanced, which may also contribute to the plant stress-tolerant phenotypes. High anthocyanin accumulation level did not affect plant growth. Transcriptomic analysis showed higher expressions of genes involved in the flavonoid pathway in Lc transgenic bamboos compared with those in wild-type ones. The anthocyanin-rich bamboos generated here provide an example of ornamental and multiple agronomic trait improvements by genetic engineering in this important grass species.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Antocianinas , Resposta ao Choque Frio , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo
13.
Planta ; 254(3): 54, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34410495

RESUMO

MAIN CONCLUSION: The expression of full-length cDNAs encoding lavender AGAMOUS-like (LaAG-like) and SEPALLATA3-like (LaSEP3-like) transcription factors induces early flowering and impacts the leaf morphology at a strong expression level in Arabidopsis. Lavandula angustifolia is widely cultivated as an ornamental plant due to its attractive flower structure, and as a source of valuable essential oils for use in cosmetics, alternative medicines, and culinary products. We recently employed RNA-Seq and transcript profiling to describe a number of transcription factors (TFs) that potentially control flower development in this plant. In this study, we investigated the roles of two TFs, LaAGAMOUS-like (LaAG-like) and LaSEPALLATA3-like (LaSEP3-like), that exhibited substantial homology to Arabidopsis thaliana floral development genes, AGAMOUS and SEPALLATA3, respectively, in flowering initiation in Arabidopsis. We stably and constitutively expressed LaAG-like and LaSEP3-like cDNAs in separate Arabidopsis plants. All transgenic plants flowered earlier than the wild-type controls. However, plants that modestly overexpressed the gene were phenotypically normal, while those that strongly expressed the transgene developed curly leaves. We also assessed the expression of five endogenous flowering time regulating genes, from which high expression of Flowering Locus T (AtFT) mRNA in both LaAG-like (type-I and -II) and LaSEP3-like (type-I), and Leafy (AtLFY) mRNAs in LaSEP3-like (type-I) transgenic plants were detected, compared to wild-type controls. Our results suggest that with controlled expression, lavender AG-like and SEP3-like genes are potentially useful for the regulation of flowering time in commercial lavender species, and could be used for plant improvement studies through molecular genetics and targeted breeding programs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Lavandula , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Lavandula/metabolismo , Proteínas de Domínio MADS/genética , Melhoramento Vegetal , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteínas Repressoras
14.
Int J Mol Sci ; 22(16)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34445456

RESUMO

Flavonoids are representative secondary metabolites with different metabolic functions in plants. Previous study found that ectopic expression of EsMYB90 from Eutremasalsugineum could strongly increase anthocyanin content in transgenic tobacco via regulating the expression of anthocyanin biosynthesis genes. In the present research, metabolome analysis showed that there existed 130 significantly differential metabolites, of which 23 metabolites enhanced more than 1000 times in EsMYB90 transgenic tobacco leaves relative to the control, and the top 10 of the increased metabolites included caffeic acid, cyanidin O-syringic acid, myricetin and naringin. A total of 50 markedly differential flavonoids including flavones (14), flavonols (13), flavone C-glycosides (9), flavanones (7), catechin derivatives (5), anthocyanins (1) and isoflavone (1) were identified, of which 46 metabolites were at a significantly enhanced level. Integrated analysis of metabolome and transcriptome revealed that ectopic expression of EsMYB90 in transgenic tobacco leaves is highly associated with the prominent up-regulation of 16 flavonoid metabolites and the corresponding 42 flavonoid biosynthesis structure genes in phenylpropanoid/flavonoid pathways. Dual luciferase assay documented that EsMYB90 strongly activated the transcription of NtANS and NtDFR genes via improving their promoter activity in transiently expressed tobacco leaves, suggesting that EsMYB90 functions as a key regulator on anthocyanin and flavonoid biosynthesis. Taken together, the crucial regulatory role of EsMYB90 on enhancing many flavonoid metabolite levels is clearly demonstrated via modulating flavonoid biosynthesis gene expression in the leaves of transgenic tobacco, which extends our understanding of the regulating mechanism of MYB transcription factor in the phenylpropanoid/flavonoid pathways and provides a new clue and tool for further investigation and genetic engineering of flavonoid metabolism in plants.


Assuntos
Antocianinas , Brassicaceae/metabolismo , Perfilação da Expressão Gênica , Metabolômica , Proteínas de Plantas , Plantas Geneticamente Modificadas , Tabaco , Antocianinas/biossíntese , Antocianinas/genética , Brassicaceae/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Tabaco/genética , Tabaco/metabolismo
15.
Int J Mol Sci ; 22(16)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34445457

RESUMO

Strigolactones (SLs) regulate plant shoot development by inhibiting axillary bud growth and branching. However, the role of SLs in wintersweet (Chimonanthus praecox) shoot branching remains unknown. Here, we identified and isolated two wintersweet genes, CCD7 and CCD8, involved in the SL biosynthetic pathway. Quantitative real-time PCR revealed that CpCCD7 and CpCCD8 were down-regulated in wintersweet during branching. When new shoots were formed, expression levels of CpCCD7 and CpCCD8 were almost the same as the control (un-decapitation). CpCCD7 was expressed in all tissues, with the highest expression in shoot tips and roots, while CpCCD8 showed the highest expression in roots. Both CpCCD7 and CpCCD8 localized to chloroplasts in Arabidopsis. CpCCD7 and CpCCD8 overexpression restored the phenotypes of branching mutant max3-9 and max4-1, respectively. CpCCD7 overexpression reduced the rosette branch number, whereas CpCCD8 overexpression lines showed no phenotypic differences compared with wild-type plants. Additionally, the expression of AtBRC1 was significantly up-regulated in transgenic lines, indicating that two CpCCD genes functioned similarly to the homologous genes of the Arabidopsis. Overall, our study demonstrates that CpCCD7 and CpCCD8 exhibit conserved functions in the CCD pathway, which controls shoot development in wintersweet. This research provides a molecular and theoretical basis for further understanding branch development in wintersweet.


Assuntos
Arabidopsis , Calycanthaceae/genética , Dioxigenases , Genes de Plantas , Proteínas de Plantas , Raízes de Plantas , Plantas Geneticamente Modificadas , Arabidopsis/enzimologia , Arabidopsis/genética , Calycanthaceae/enzimologia , Dioxigenases/biossíntese , Dioxigenases/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética
16.
J Agric Food Chem ; 69(35): 10358-10370, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34428040

RESUMO

The advancement of mass spectrometry provides advantages for transgenic protein characterization in support of safety assessments of genetically modified crops. Here, we describe how matrix-assisted laser desorption ionization in-source decay (ISD) mass spectrometry (MS) in combination with intact mass and bottom-up analyses can be applied to achieve high confidence in the sequences of transgenic proteins expressed in plants and establish the biochemical equivalence of microbially produced protein surrogates. ISD confirmed 40-60 near terminal residues regardless of the protein size, including the improvement of the coverage of cysteine-rich proteins by the reduction/alkylation of disulfide bonds. Negative ISD significantly improved spectral quality and sequence coverage of acidic proteins. Various post-translational modifications, such as terminal truncations and N-terminal methionine excision and acetylation, were identified in plant-produced proteins by top-down MS. Finally, we demonstrated that a combination of top-down and bottom-up analyses provides high confidence in sequence equivalence of plant and microbially produced proteins.


Assuntos
Produtos Agrícolas , Proteínas , Produtos Agrícolas/genética , Plantas Geneticamente Modificadas/genética , Processamento de Proteína Pós-Traducional , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
Ecotoxicol Environ Saf ; 223: 112557, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34343899

RESUMO

The impact of transgenic crops on non-target organisms is a key aspect of environmental safety assessment to transgenic crops. In the present study, we fed two snail species, Bradybaena (Acusta) ravida (B. ravida) and Bradybaena similaris (Ferussac)(B. similaris), with the leaves of transgenic Bt cotton Zhong 30 (Z30) and control cotton, its parent line zhong 16 (Z16), to assess the environmental safety of Bt cotton to common non-target organisms in the field. Survival, body weight, shell diameter, helix number, reproduction rate, superoxide dismutase (SOD) activity and Bt protein concentration in snails were monitored in 15 days and 180 days experiments. We also monitored the population dynamics of B. ravida and B. similaris in Z30 and Z16 cotton fields for two successive years. Compared to the snails fed on the control cotton Z16, there was no significant difference in survival, growth, reproduction, and SOD activity on Bt cotton Z30. Bt protein concentrations were significantly between different treatments, and Bt protein residues were only detected in the feces of the Z30 treatment. According to the field data, the number of B. ravida and B. similaris fluctuated considerably across seasons over the entire cotton-growing season; however, there were no significant differences between the Bt and control cotton fields at similar time. As the results showed, in our experiments, Bt cotton Z30 had no adverse effects on the two snail species, both in the laboratory and in the fields.


Assuntos
Produtos Agrícolas , Caramujos , Animais , Animais Geneticamente Modificados , Proteínas de Bactérias/genética , Endotoxinas/genética , Endotoxinas/toxicidade , Gossypium/genética , Proteínas Hemolisinas/genética , Plantas Geneticamente Modificadas , Reprodução , Caramujos/genética
18.
Ecotoxicol Environ Saf ; 223: 112569, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34352582

RESUMO

Transgenic-Bacillus thuringiensis (Bt) crops express insecticidal proteins, which can accumulate in plants and soil where they may influence microbial populations. The impact of Bt crops on bacterial communities has only been assessed under short-term, and results have been contradictory. Here, we analyzed the bacterial communities in three niches, rhizosphere soil (RS), root endosphere (RE) and leaf endosphere (LE), of three Bt rice and their non-Bt parental lines for three consecutive years by high-throughput sequencing. In principal coordinate analysis (PCoA) and PERMANOVA (Adonis) analysis, operational taxonomic units (OTUs) were clustered primarily by niche type and differed significantly in the RE and LE but not in the RS between each of three Bt lines compared with the non-Bt rice line, and not in each respective niche among the three Bt rice lines. The bacterial communities in the RS of different rice lines over the 3 years were clustered mainly by year rather than by lines. The differential bacterial taxa among the lines did not overlap between years, presumably because Cry proteins are rapidly degraded in the soil. A network analysis of RS bacterial communities showed that the network complexity and density for the three Bt rice lines did not decrease compared with those for the non-Bt line. In conclusion, our results demonstrated that bacterial communities differed significantly in RE and LE between Bt and non-Bt rice lines, but the differences were mild and transient, and had no adverse impact on RS over the 3 years. This study provides favorable evidence in support of the commercialization of Bt rice.


Assuntos
Bacillus thuringiensis , Oryza , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Oryza/genética , Plantas Geneticamente Modificadas , Rizosfera
19.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360726

RESUMO

Fungal diseases pose a major threat to ornamental plants, with an increasing percentage of pathogen-driven host losses. In ornamental plants, management of the majority of fungal diseases primarily depends upon chemical control methods that are often non-specific. Host basal resistance, which is deficient in many ornamental plants, plays a key role in combating diseases. Despite their economic importance, conventional and molecular breeding approaches in ornamental plants to facilitate disease resistance are lagging, and this is predominantly due to their complex genomes, limited availability of gene pools, and degree of heterozygosity. Although genetic engineering in ornamental plants offers feasible methods to overcome the intrinsic barriers of classical breeding, achievements have mainly been reported only in regard to the modification of floral attributes in ornamentals. The unavailability of transformation protocols and candidate gene resources for several ornamental crops presents an obstacle for tackling the functional studies on disease resistance. Recently, multiomics technologies, in combination with genome editing tools, have provided shortcuts to examine the molecular and genetic regulatory mechanisms underlying fungal disease resistance, ultimately leading to the subsequent advances in the development of novel cultivars with desired fungal disease-resistant traits, in ornamental crops. Although fungal diseases constitute the majority of ornamental plant diseases, a comprehensive overview of this highly important fungal disease resistance seems to be insufficient in the field of ornamental horticulture. Hence, in this review, we highlight the representative mechanisms of the fungal infection-related resistance to pathogens in plants, with a focus on ornamental crops. Recent progress in molecular breeding, genetic engineering strategies, and RNAi technologies, such as HIGS and SIGS for the enhancement of fungal disease resistance in various important ornamental crops, is also described.


Assuntos
Resistência à Doença/genética , Fungos Mitospóricos/crescimento & desenvolvimento , Melhoramento Vegetal , Doenças das Plantas , Plantas Geneticamente Modificadas , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/microbiologia
20.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34360850

RESUMO

Autophagy is a conserved degradation pathway for recycling damaged organelles and aberrant proteins, and its important roles in plant adaptation to nutrient starvation have been generally reported. Previous studies found that overexpression of autophagy-related (ATG) gene MdATG10 enhanced the autophagic activity in apple roots and promoted their salt tolerance. The MdATG10 expression was induced by nitrogen depletion condition in both leaves and roots of apple plants. This study aimed to investigate the differences in the growth and physiological status between wild type and MdATG10-overexpressing apple plants in response to nitrogen starvation. A hydroponic system containing different nitrogen levels was used. The study found that the reduction in growth and nitrogen concentrations in different tissues caused by nitrogen starvation was relieved by MdATG10 overexpression. Further studies demonstrated the increased root growth and the higher nitrogen absorption and assimilation ability of transgenic plants. These characteristics contributed to the increased uptake of limited nitrogen nutrients by transgenic plants, which also reduced the starvation damage to the chloroplasts. Therefore, the MdATG10-overexpressing apple plants could maintain higher photosynthetic ability and possess better growth under nitrogen starvation stress.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Malus/metabolismo , Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Autofagia , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/crescimento & desenvolvimento , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...