Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74.404
Filtrar
1.
Braz J Biol ; 83: e245862, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34495148

RESUMO

Except for a few stick insects that are economically valuable, most species be considered to be forest pests, so it is extremely important to obtain plant host-use information of more stick insects. In this paper, the plant hosts of three species of stick insects were recorded for the first time. We also discovered these stick insects can feed upon the flowers or leaves of plants. Lopaphus unidentatus (Chen & He, 1995) (Phasmida: Lonchodidae) attacked Hypericum choisianum Wall. ex N. Robson, 1973 (Hypericaceae), Leurophasma dolichocercum Bi, 1995 (Phasmida: Aschiphasmatidae) attacked Antenoron filiforme (Thunb.) Roberty & Vautier, 1964 (Polygonaceae) and Megalophasma granulatum Bi, 1995 (Phasmida: Lonchodidae) attacked Debregeasia orientalis C. J. Chen, 1991 (Urticaceae). Finally, we were lucky enough to also obtain photographs of them mating and feeding.


Assuntos
Insetos , Plantas , Animais , Flores , Folhas de Planta , Tibet
2.
J Agric Food Chem ; 69(36): 10469-10479, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34482687

RESUMO

Allelochemicals, chemical cues that, among other things, mediate insect-plant interactions, such as host plant recognition, have attracted notable interest as tools for ecological control of pest insects. Advances have recently been made in methods for sampling and analyzing volatile compounds and technology for tracking insects in their natural habitat. However, progress in odor-mediated behavioral bioassays of insects has been relatively slow. This perspective highlights this odor-mediated insect behavior, particularly in a natural setting and considering the whole behavioral sequence involved in the host location, which is the key to understanding the mechanisms underlying host plant recognition. There is thus a need to focus on elaborate behavioral bioassays in future studies, particularly if the goal is to use allelochemicals in pest control. Future directions for research are discussed.


Assuntos
Odorantes , Feromônios , Animais , Ecossistema , Insetos , Plantas
3.
Zhongguo Zhong Yao Za Zhi ; 46(15): 3789-3796, 2021 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-34472251

RESUMO

The genus Chloranthus has 13 species and 5 varieties in China, which can be found in the southwest and northeast regions. Phytochemical studies on Chloranthus plants have reported a large amount of terpenoids, such as diterpenoids, sesquiterpenoids, and sesquiterpenoid dimers. Their anti-inflammation, anti-tumor, antifungal, antivirus, and neuroprotection activities have been confirmed by previous pharmacological research. Herein, research on the chemical constituents from Chloranthus plants and their biological activities over the five years was summarized to provide scientific basis for the further development and utilization of Chloranthus plants.


Assuntos
Diterpenos , Sesquiterpenos , Compostos Fitoquímicos/farmacologia , Plantas , Sesquiterpenos/farmacologia , Terpenos
4.
Sheng Wu Gong Cheng Xue Bao ; 37(8): 2658-2667, 2021 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-34472286

RESUMO

Lipids are important components of living organisms that participate in and regulate a variety of life activities. Lipids in plants also play important physiological functions in response to a variety of abiotic stresses (e.g. salt stress, drought stress, temperature stress). However, most research on lipids focused on animal cells and medical fields, while the functions of lipids in plants were overlooked. With the rapid development of "omics" technologies and biotechnology, the lipidomics has received much attention in recent years because it can reveal the composition and function of lipids in a deep and comprehensive way. This review summarizes the recent advances in the functions and classification of lipids, the development of lipidomics technology, and the responses of plant lipids against drought stress, salt stress and temperature stress. In addition, challenges and prospects were proposed for future lipidomics research and further exploration of the physiological functions of lipids in plant stress resistance.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Lipídeos , Plantas , Estresse Fisiológico
5.
Environ Monit Assess ; 193(9): 617, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34476646

RESUMO

Despite their proximity to the coast, few studies have focused on identifying and mapping the vegetation of Algerian islands and islets. To fill this lacuna, our work, using satellite images and machine learning methods, is mainly aimed at identifying and mapping the main vegetation groups on a few islands, while evaluating the effectiveness of the random forest classifier, which is effectively used in the study of the vegetation of large areas. However, despite the high heterogeneity of their vegetation cover, the use of very high-resolution images (Pléaides and SPOT 6/7), through the fusion bands and derived bands (NDVI), has allowed the elaboration of a fairly precise vegetation map that can be used for the preparation of management and protection plans for these habitats. Our methodological approach revealed very satisfactory results, having allowed the identification of the plant communities inventoried in the field, while showing high accuracy values, ranging from 0.642 for the halophilic group of Asteriscus to 1 for the endemic Chasmophyte group of the Habibas archipelago (Pléiades images). The groups identified from SPOT 6/7 images show accuracy values between 0.67 for the Mediterranean cliff formations on Garlic Islet and 1 for the two formations (shrubby and herbaceous) of the Skikda islands. Our methodological approach, and notwithstanding the great heterogeneity and the very small surface areas of our islands and islets, has led to very satisfactory results, reflected with good overall accuracy and kappa index values (for Pléiades: overall accuracy > 92% and kappa index > 0.90; for SPOT 6/7: overall accuracy > 83% and kappa index > 0.80).


Assuntos
Ecossistema , Monitoramento Ambiental , Plantas
6.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445546

RESUMO

Temperature stress is one of the major abiotic stresses that adversely affect agricultural productivity worldwide. Temperatures beyond a plant's physiological optimum can trigger significant physiological and biochemical perturbations, reducing plant growth and tolerance to stress. Improving a plant's tolerance to these temperature fluctuations requires a deep understanding of its responses to environmental change. To adapt to temperature fluctuations, plants tailor their acclimatory signal transduction events, and specifically, cellular redox state, that are governed by plant hormones, reactive oxygen species (ROS) regulatory systems, and other molecular components. The role of ROS in plants as important signaling molecules during stress acclimation has recently been established. Here, hormone-triggered ROS produced by NADPH oxidases, feedback regulation, and integrated signaling events during temperature stress activate stress-response pathways and induce acclimation or defense mechanisms. At the other extreme, excess ROS accumulation, following temperature-induced oxidative stress, can have negative consequences on plant growth and stress acclimation. The excessive ROS is regulated by the ROS scavenging system, which subsequently promotes plant tolerance. All these signaling events, including crosstalk between hormones and ROS, modify the plant's transcriptomic, metabolomic, and biochemical states and promote plant acclimation, tolerance, and survival. Here, we provide a comprehensive review of the ROS, hormones, and their joint role in shaping a plant's responses to high and low temperatures, and we conclude by outlining hormone/ROS-regulated plant responsive strategies for developing stress-tolerant crops to combat temperature changes.


Assuntos
Adaptação Fisiológica , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Temperatura
7.
J Theor Biol ; 529: 110858, 2021 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-34384837

RESUMO

The tragedy of the commons (TOC) has been well known since it was proposed and has been widely applied not only to human society but also to many taxa. An increasing number of studies have focused on TOC in belowground competition in plants. In the presence of neighbors, plants overproduce roots to acquire more nutrients than their competitors, resulting in a reduction in reproductive yield. Game-theoretic studies on TOC in plants usually consider the amount of root biomass as a strategy and do not consider the growth of plants. However, root volume is considered an outcome of the decision-making of plants on whether they allocate more resources to the root. In this study, we incorporated resource allocation and growth dynamics into the TOC game in plants and explored the evolutionarily stable resource allocation strategy in the presence of neighbors. We demonstrated that TOC generally occurs when fitness per individual is always reduced because of the competitive response. However, the overproliferation of roots, which is emphasized as an indicator of TOC, did not necessarily occur, or was sometimes difficult to detect when fitness is largely or completely determined by root biomass. This result suggests the importance of careful observation for examining whether plant species engage in a TOC game.


Assuntos
Raízes de Plantas , Plantas , Biomassa , Humanos , Nutrientes , Alocação de Recursos
8.
Proc Biol Sci ; 288(1956): 20210621, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34375558

RESUMO

Leaf fungal endophytes (LFEs) contribute to plant growth and responses to stress. Fungi colonize leaves through maternal transmission, e.g. via the seed, and through environmental transmission, e.g. via aerial dispersal. The relative importance of these two pathways in assembly and function of the LFE community is poorly understood. We used amplicon sequencing to track switchgrass (Panicum virgatum) LFEs in a greenhouse and field experiment as communities assembled from seed endophytes and rain fungi (integration of wet and dry aerial dispersal) in germinating seeds, seedlings, and adult plants. Rain fungi varied temporally and hosted a greater portion of switchgrass LFE richness (greater than 65%) than were found in seed endophytes (greater than 25%). Exposure of germinating seeds to rain inoculum increased dissimilarity between LFE communities and seed endophytes, increasing the abundance of rain-derived taxa, but did not change diversity. In the field, seedling LFE composition changed more over time, with a decline in seed-derived taxa and an increase in richness, in response to environmental transmission than LFEs of adult plants. We show that environmental transmission is an important driver of LFE assembly, and likely plant growth, but its influence depends on both the conditions at the time of colonization and plant life stage.


Assuntos
Endófitos , Panicum , Fungos , Folhas de Planta , Plantas
9.
Nat Commun ; 12(1): 5042, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413297

RESUMO

Food production must increase significantly to sustain a growing global population. Reducing plant water loss may help achieve this goal and is especially relevant in a time of climate change. The plant cuticle defends leaves against drought, and so understanding water movement through the cuticle could help future proof our crops and better understand native ecology. Here, via mathematical modelling, we identify mechanistic properties of water movement in cuticles. We model water sorption in astomatous isolated cuticles, utilising three separate pathways of cellulose, aqueous pores and lipophilic. The model compares well to data both over time and humidity gradients. Sensitivity analysis shows that the grouping of parameters influencing plant species variations has the largest effect on sorption, those influencing cellulose are very influential, and aqueous pores less so but still relevant. Cellulose plays a significant role in diffusion and adsorption in the cuticle and the cuticle surfaces.


Assuntos
Celulose/metabolismo , Plantas/metabolismo , Água/metabolismo , Adsorção , Transporte Biológico , Difusão , Secas , Umidade , Modelos Biológicos , Permeabilidade , Epiderme Vegetal/metabolismo , Folhas de Planta/metabolismo
10.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34445664

RESUMO

The target of rapamycin (TOR) protein kinase is an atypical Ser/Thr protein kinase and evolutionally conserved among yeasts, plants, and mammals. TOR has been established as a central hub for integrating nutrient, energy, hormone, and environmental signals in all the eukaryotes. Despite the conserved functions across eukaryotes, recent research has shed light on the multifaceted roles of TOR signaling in plant-specific functional and mechanistic features. One of the most specific features is the involvement of TOR in plant photosynthesis. The recent development of tools for the functional analysis of plant TOR has helped to uncover the involvement of TOR signaling in several steps preceding photoautotrophy and maintenance of photosynthesis. Here, we present recent novel findings relating to TOR signaling and its roles in regulating plant photosynthesis, including carbon nutrient sense, light absorptions, and leaf and chloroplast development. We also provide some gaps in our understanding of TOR function in photosynthesis that need to be addressed in the future.


Assuntos
Fotossíntese/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/fisiologia
11.
Annu Rev Phytopathol ; 59: 423-445, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34432508

RESUMO

Chloroplasts are key players in plant immune signaling, contributing to not only de novo synthesis of defensive phytohormones but also the generation of reactive oxygen and nitrogen species following activation of pattern recognition receptors or resistance (R) proteins. The local hypersensitive response (HR) elicited by R proteins is underpinned by chloroplast-generated reactive oxygen species. HR-induced lipid peroxidation generates important chloroplast-derived signaling lipids essential to the establishment of systemic immunity. As a consequence of this pivotal role in immunity, pathogens deploy effector complements that directly or indirectly target chloroplasts to attenuate chloroplast immunity (CI). Our review summarizes the current knowledge of CI signaling and highlights common pathogen chloroplast targets and virulence strategies. We address emerging insights into chloroplast retrograde signaling in immune responses and gaps in our knowledge, including the importance of understanding chloroplast heterogeneity and chloroplast involvement in intraorganellular interactions in host immunity.


Assuntos
Cloroplastos , Doenças das Plantas , Reguladores de Crescimento de Plantas , Imunidade Vegetal , Plantas , Transdução de Sinais
12.
Annu Rev Phytopathol ; 59: 333-349, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34432509

RESUMO

Plant diagnostic laboratories (PDLs) are at the heart of land-grant universities (LGUs) and their extension mission to connect citizens with research-based information. Although research and technological advances have led to many modern methods and technologies in plant pathology diagnostics, the pace of adopting those methods into services at PDLs has many complexities we aim to explore in this review. We seek to identify current challenges in plant disease diagnostics, as well as diagnosticians' and administrators'perceptions of PDLs' many roles. Surveys of diagnosticians and administrators were conducted to understand the current climate on these topics. We hope this article reaches researchers developing diagnostic methods with modern and new technologies to foster a better understanding of PDL diagnosticians' perspective on method implementation. Ultimately, increasing researchers' awareness of the factors influencing method adoption by PDLs encourages support, collaboration, and partnerships to advance plant diagnostics.


Assuntos
Laboratórios , Universidades , Doenças das Plantas , Plantas
13.
Molecules ; 26(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34443421

RESUMO

Pests and diseases are responsible for most of the losses related to agricultural crops, either in the field or in storage. Moreover, due to indiscriminate use of synthetic pesticides over the years, several issues have come along, such as pest resistance and contamination of important planet sources, such as water, air and soil. Therefore, in order to improve efficiency of crop production and reduce food crisis in a sustainable manner, while preserving consumer's health, plant-derived pesticides may be a green alternative to synthetic ones. They are cheap, biodegradable, ecofriendly and act by several mechanisms of action in a more specific way, suggesting that they are less of a hazard to humans and the environment. Natural plant products with bioactivity toward insects include several classes of molecules, for example: terpenes, flavonoids, alkaloids, polyphenols, cyanogenic glucosides, quinones, amides, aldehydes, thiophenes, amino acids, saccharides and polyketides (which is not an exhaustive list of insecticidal substances). In general, those compounds have important ecological activities in nature, such as: antifeedant, attractant, nematicide, fungicide, repellent, insecticide, insect growth regulator and allelopathic agents, acting as a promising source for novel pest control agents or biopesticides. However, several factors appear to limit their commercialization. In this critical review, a compilation of plant-derived metabolites, along with their corresponding toxicology and mechanisms of action, will be approached, as well as the different strategies developed in order to meet the required commercial standards through more efficient methods.


Assuntos
Agricultura , Controle Biológico de Vetores , Praguicidas/farmacologia , Plantas/química , Inseticidas/farmacologia , Toxinas Biológicas/toxicidade
14.
Molecules ; 26(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34443447

RESUMO

Okara is a soybean transformation agri-food by-product, the massive production of which currently poses severe disposal issues. However, its composition is rich in seed storage proteins, which, once extracted, can represent an interesting source of bioactive peptides. Antimicrobial and antifungal proteins and peptides have been described in plant seeds; thus, okara is a valuable source of compounds, exploitable for integrated pest management. The aim of this work is to describe a rapid and economic procedure to isolate proteins from okara, and to produce an enzymatic proteolyzed product, active against fungal plant pathogens. The procedure allowed the isolation and recovery of about 30% of okara total proteins. Several proteolytic enzymes were screened to identify the proper procedure to produce antifungal compounds. Antifungal activity of the protein digested for 24 h with pancreatin against Fusarium and R. solani mycelial growth and Pseudomonas spp was assessed. A dose-response inhibitory activity was established against fungi belonging to the Fusarium genus. The exploitation of okara to produce antifungal bioactive peptides has the potential to turn this by-product into a paradigmatic example of circular economy, since a field-derived food waste is transformed into a source of valuable compounds to be used in field crops protection.


Assuntos
Antifúngicos/farmacologia , Enzimas/metabolismo , Proteínas de Plantas/metabolismo , Plantas/microbiologia , Polissacarídeos/metabolismo , Liofilização , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Peso Molecular , Proteólise/efeitos dos fármacos , Alimentos de Soja , Espectrofotometria Ultravioleta , Tripsina/metabolismo , Inibidores da Tripsina/farmacologia
15.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34445138

RESUMO

A modern method of therapeutic use of natural compounds that would protect the body are jasmonates. The main representatives of jasmonate compounds include jasmonic acid and its derivatives, mainly methyl jasmonate. Extracts from plants rich in jasmonic compounds show a broad spectrum of activity, i.e., anti-cancer, anti-inflammatory and cosmetic. Studies of the biological activity of jasmonic acid and its derivatives in mammals are based on their structural similarity to prostaglandins and the compounds can be used as natural therapeutics for inflammation. Jasmonates also constitute a potential group of anti-cancer drugs that can be used alone or in combination with other known chemotherapeutic agents. Moreover, due to their ability to stimulate exfoliation of the epidermis, remove discoloration, regulate the function of the sebaceous glands and reduce the visible signs of aging, they are considered for possible use in cosmetics and dermatology. The paper presents a review of literature data on the biological activity of jasmonates that may be helpful in treatment and prevention.


Assuntos
Ciclopentanos/farmacologia , Ciclopentanos/uso terapêutico , Oxilipinas/farmacologia , Oxilipinas/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Plantas/química
16.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34445272

RESUMO

As sessile organisms, plants must tolerate various environmental stresses. Plant hormones play vital roles in plant responses to biotic and abiotic stresses. Among these hormones, jasmonic acid (JA) and its precursors and derivatives (jasmonates, JAs) play important roles in the mediation of plant responses and defenses to biotic and abiotic stresses and have received extensive research attention. Although some reviews of JAs are available, this review focuses on JAs in the regulation of plant stress responses, as well as JA synthesis, metabolism, and signaling pathways. We summarize recent progress in clarifying the functions and mechanisms of JAs in plant responses to abiotic stresses (drought, cold, salt, heat, and heavy metal toxicity) and biotic stresses (pathogen, insect, and herbivore). Meanwhile, the crosstalk of JA with various other plant hormones regulates the balance between plant growth and defense. Therefore, we review the crosstalk of JAs with other phytohormones, including auxin, gibberellic acid, salicylic acid, brassinosteroid, ethylene, and abscisic acid. Finally, we discuss current issues and future opportunities in research into JAs in plant stress responses.


Assuntos
Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo , Estresse Fisiológico
17.
Int J Mol Sci ; 22(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34445383

RESUMO

As crucial signal transducers, G-proteins and G-protein-coupled receptors (GPCRs) have attracted increasing attention in the field of signal transduction. Research on G-proteins and GPCRs has mainly focused on animals, while research on plants is relatively rare. The mode of action of G-proteins is quite different from that in animals. The G-protein α (Gα) subunit is the most essential member of the G-protein signal cycle in animals and plants. The G-protein is activated when Gα releases GDP and binds to GTP, and the relationships with the GPCR and the downstream signal are also achieved by Gα coupling. It is important to study the role of Gα in the signaling pathway to explore the regulatory mechanism of G-proteins. The existence of a self-activated Gα in plants makes it unnecessary for the canonical GPCR to activate the G-protein by exchanging GDP with GTP. However, putative GPCRs have been found and proven to play important roles in G-protein signal transduction. The unique mode of action of G-proteins and the function of putative GPCRs in plants suggest that the same definition used in animal research cannot be used to study uncanonical GPCRs in plants. This review focuses on the different functions of the Gα and the mode of action between plants and animals as well as the functions of the uncanonical GPCR. This review employs a new perspective to define uncanonical GPCRs in plants and emphasizes the role of uncanonical GPCRs and Gα subunits in plant stress resistance and agricultural production.


Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Plantas/metabolismo , Estresse Fisiológico , Animais , Regulação da Expressão Gênica de Plantas , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Desenvolvimento Vegetal , Proteínas de Plantas/metabolismo , Transdução de Sinais
18.
Int J Mol Sci ; 22(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34445391

RESUMO

The NIGT1/HRS1/HHO transcription factor (TF) family is a new subfamily of the G2-like TF family in the GARP superfamily and contains two conserved domains: the Myb-DNA binding domain and the hydrophobic and globular domain. Some studies showed that NIGT1/HRS1/HHO TFs are involved in coordinating the absorption and utilization of nitrogen and phosphorus. NIGT1/HRS1/HHO TFs also play an important role in plant growth and development and in the responses to abiotic stresses. This review focuses on recent advances in the structural characteristics of the NIGT1/HRS1/HHO TF family and discusses how the roles and functions of the NIGT1/HRS1/HHO TFs operate in terms of in plant growth, development, and stress responses.


Assuntos
Desenvolvimento Vegetal , Plantas/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico
19.
Int J Mol Sci ; 22(16)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34445458

RESUMO

CRISPR/Cas, one of the most rapidly developing technologies in the world, has been applied successfully in plant science. To test new nucleases, gRNA expression systems and other inventions in this field, several plant genes with visible phenotypic effects have been constantly used as targets. Anthocyanin pigmentation is one of the most easily identified traits, that does not require any additional treatment. It is also associated with stress resistance, therefore plants with edited anthocyanin genes might be of interest for agriculture. Phenotypic effect of CRISPR/Cas editing of PAP1 and its homologs, DFR, F3H and F3'H genes have been confirmed in several distinct plant species. DFR appears to be a key structural gene of anthocyanin biosynthesis, controlled by various transcription factors. There are still many promising potential model genes that have not been edited yet. Some of them, such as Delila, MYB60, HAT1, UGT79B2, UGT79B3 and miR156, have been shown to regulate drought tolerance in addition to anthocyanin biosynthesis. Genes, also involved in trichome development, such as TTG1, GLABRA2, MYBL2 and CPC, can provide increased visibility. In this review successful events of CRISPR/Cas editing of anthocyanin genes are summarized, and new model genes are proposed. It can be useful for molecular biologists and genetic engineers, crop scientists, plant genetics and physiologists.


Assuntos
Antocianinas , Edição de Genes , Genes de Plantas , Modelos Genéticos , Plantas , Antocianinas/biossíntese , Antocianinas/genética , Plantas/genética , Plantas/metabolismo
20.
Curr Microbiol ; 78(10): 3762-3769, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34463817

RESUMO

Cowpea (Vigna unguiculata) crops stand out for their efficient adaptation to edaphoclimatic conditions. Insect pests, such as the leaf beetle Cerotoma arcuata, are among the main factors that limit cowpea yield. Chemical control methods are commonly used to control such pests; however, biological methods are an alternative to reduce the indiscriminate use of conventional pesticides. This study aimed to evaluate the effects of Beauveria bassiana inoculation on the growth and physiological parameters of the cowpea plant and assess the influence of the inoculation on the feeding performance and survival of C. arcuata adults. Colonization by B. bassiana was recorded in the stems (63.89%), roots (45.83%), and leaves (25%) of the cowpea plant. It was found that B. bassiana enhanced the plant height, number of leaves, and the dry mass of the inoculated cowpea plants as compared to the control. The treated plants exhibited higher net carbon dioxide (CO2) assimilation rates in the gas exchange evaluation as well as higher stomatal conductance, evapotranspiration rates, and chlorophyll (a + b) content than the control plants. Moreover, the Kaplan-Meier survival analysis showed that the B. bassiana negatively affected the survival of the insect in the leaf disc assays.


Assuntos
Beauveria , Besouros , Vigna , Animais , Insetos , Controle Biológico de Vetores , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...