Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.804
Filtrar
1.
Mol Brain ; 17(1): 17, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566234

RESUMO

Synaptopodin (SP), an actin-associated protein found in telencephalic neurons, affects activity-dependant synaptic plasticity and dynamic changes of dendritic spines. While being required for long-term depression (LTD) mediated by metabotropic glutamate receptor (mGluR-LTD), little is known about its role in other forms of LTD induced by low frequency stimulation (LFS-LTD) or spike-timing dependent plasticity (STDP). Using electrophysiology in ex vivo hippocampal slices from SP-deficient mice (SPKO), we show that absence of SP is associated with a deficit of LTD at Sc-CA1 synapses induced by LFS-LTD and STDP. As LTD is known to require AMPA- receptors internalization and IP3-receptors calcium signaling, we tested by western blotting and immunochemistry if there were changes in their expression which we found to be reduced. While we were not able to induce LTD, long-term potentiation (LTP), albeit diminished in SPKO, can be recovered by using a stronger stimulation protocol. In SPKO we found no differences in NMDAR, which are the primary site of calcium signalling to induce LTP. Our study shows, for the first time, the key role of the requirement of SP to allow induction of activity-dependant LTD at Sc-CA1 synapses.


Assuntos
Depressão , Colaterais de Schaffer , Animais , Camundongos , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo
2.
PLoS One ; 19(4): e0301430, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578715

RESUMO

BACKGROUND: SCI is a time-sensitive debilitating neurological condition without treatment options. Although the central nervous system is not programmed for effective endogenous repairs or regeneration, neuroplasticity partially compensates for the dysfunction consequences of SCI. OBJECTIVE AND HYPOTHESIS: The purpose of our study is to investigate whether early induction of hypothermia impacts neuronal tissue compensatory mechanisms. Our hypothesis is that although neuroplasticity happens within the neuropathways, both above (forelimbs) and below (hindlimbs) the site of spinal cord injury (SCI), hypothermia further influences the upper limbs' SSEP signals, even when the SCI is mid-thoracic. STUDY DESIGN: A total of 30 male and female adult rats are randomly assigned to four groups (n = 7): sham group, control group undergoing only laminectomy, injury group with normothermia (37°C), and injury group with hypothermia (32°C +/-0.5°C). METHODS: The NYU-Impactor is used to induce mid-thoracic (T8) moderate (12.5 mm) midline contusive injury in rats. Somatosensory evoked potential (SSEP) is an objective and non-invasive procedure to assess the functionality of selective neuropathways. SSEP monitoring of baseline, and on days 4 and 7 post-SCI are performed. RESULTS: Statistical analysis shows that there are significant differences between the SSEP signal amplitudes recorded when stimulating either forelimb in the group of rats with normothermia compared to the rats treated with 2h of hypothermia on day 4 (left forelimb, p = 0.0417 and right forelimb, p = 0.0012) and on day 7 (left forelimb, p = 0.0332 and right forelimb, p = 0.0133) post-SCI. CONCLUSION: Our results show that the forelimbs SSEP signals from the two groups of injuries with and without hypothermia have statistically significant differences on days 4 and 7. This indicates the neuroprotective effect of early hypothermia and its influences on stimulating further the neuroplasticity within the upper limbs neural network post-SCI. Timely detection of neuroplasticity and identifying the endogenous and exogenous factors have clinical applications in planning a more effective rehabilitation and functional electrical stimulation (FES) interventions in SCI patients.


Assuntos
Hipotermia , Traumatismos da Medula Espinal , Humanos , Ratos , Masculino , Feminino , Animais , Traumatismos da Medula Espinal/terapia , Potenciais Somatossensoriais Evocados/fisiologia , Sistema Nervoso Central , Plasticidade Neuronal/fisiologia , Medula Espinal
3.
Artigo em Inglês | MEDLINE | ID: mdl-38514038

RESUMO

Multiple lines of evidence suggest that the trace amine-associated receptor 1 (TAAR1) holds promise as a potential target for stress-related disorders, such as treating major depressive disorder (MDD). The role of TAAR1 in the regulation of adult neurogenesis is recently supported by transcriptomic data. However, it remains unknown whether TAAR1 in dentate gyrus (DG) mediate chronic stress-induced negative effects on hippocampal plasticity and related behavior in mice. The present study consisted of a series of experiments using RNAscope, genetic approaches, behavioral tests, immunohistochemical staining, Golgi-Cox technique to unravel the effects of TAAR1 on alterations of dentate neuronal plasticity and cognitive function in the chronic social defeat stress model. The mice subjected to chronic defeat stress exhibited a noteworthy decrease in the mRNA level of TAAR1 in DG. Additionally, they exhibited compromised social memory and spatial object recognition memory, as well as impaired proliferation and maturation of adult-born dentate granule cells. Moreover, the selective knockout TAAR1 in DG mostly mimicked the cognitive function deficits and neurogenesis impairment induced by chronic stress. Importantly, the administration of the selective TAAR1 partial agonist RO5263397 during stress exposure attenuated the adverse effects of chronic stress on cognitive function, adult neurogenesis, dendritic arborization, and the synapse number of dentate neurons in DG. In summary, our findings suggest that TAAR1 plays a crucial role in mediating the detrimental effects of chronic stress on hippocampal plasticity and cognition. TAAR1 agonists exhibit therapeutic potential for individuals suffering from cognitive impairments associated with MDD.


Assuntos
Giro Denteado , Transtorno Depressivo Maior , Receptores Acoplados a Proteínas G , Animais , Camundongos , Giro Denteado/fisiologia , Hipocampo/fisiologia , Cognição/fisiologia , Plasticidade Neuronal/fisiologia , Neurogênese
4.
Biochem Biophys Res Commun ; 709: 149803, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38552556

RESUMO

Synaptic plasticity is essential for memory encoding and stabilization of neural network activity. Plasticity is impaired in neurodegenerative conditions including Alzheimer disease (AD). A central factor in AD is amyloid precursor protein (APP). Previous studies have suggested APP involvement in synaptic plasticity, but physiological roles of APP are not well understood. Here, we identified combinatorial phosphorylation sites within APP that regulate AMPA receptor trafficking during different forms of synaptic plasticity. Dual phosphorylation sites at threonine-668/serine-675 of APP promoted endocytosis of the GluA2 subunit of AMPA receptors during homeostatic synaptic plasticity. APP was also required for GluA2 internalization during NMDA receptor-dependent long-term depression, albeit via a distinct pair of phosphoresidues at serine-655/threonine-686. These data implicate APP as a central gate for AMPA receptor internalization during distinct forms of plasticity, unlocked by specific combinations of phosphoresidues, and suggest that APP may serve broad functions in learning and memory.


Assuntos
Doença de Alzheimer , Receptores de AMPA , Humanos , Receptores de AMPA/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Fosforilação , Plasticidade Neuronal/fisiologia , Doença de Alzheimer/metabolismo , Serina/metabolismo , Treonina/metabolismo , Sinapses/metabolismo
5.
Neurobiol Dis ; 194: 106466, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38471625

RESUMO

In recent studies, brain stimulation has shown promising potential to alleviate chronic pain. Although studies have shown that stimulation of pain-related brain regions can induce pain-relieving effects, few studies have elucidated the mechanisms of brain stimulation in the insular cortex (IC). The present study was conducted to explore the changes in characteristic molecules involved in pain modulation mechanisms and to identify the changes in synaptic plasticity after IC stimulation (ICS). Following ICS, pain-relieving behaviors and changes in proteomics were explored. Neuronal activity in the IC after ICS was observed by optical imaging. Western blotting was used to validate the proteomics data and identify the changes in the expression of glutamatergic receptors associated with synaptic plasticity. Experimental results showed that ICS effectively relieved mechanical allodynia, and proteomics identified specific changes in collapsin response mediator protein 2 (CRMP2). Neuronal activity in the neuropathic rats was significantly decreased after ICS. Neuropathic rats showed increased expression levels of phosphorylated CRMP2, alpha amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR), and N-methyl-d-aspartate receptor (NMDAR) subunit 2B (NR2B), which were inhibited by ICS. These results indicate that ICS regulates the synaptic plasticity of ICS through pCRMP2, together with AMPAR and NR2B, to induce pain relief.


Assuntos
Neuralgia , Receptores de N-Metil-D-Aspartato , Semaforina-3A , Animais , Ratos , Hiperalgesia , Córtex Insular , Neuralgia/terapia , Neuralgia/metabolismo , Plasticidade Neuronal/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Semaforina-3A/metabolismo
6.
Neurosci Lett ; 826: 137733, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38492880

RESUMO

Etomidate (ET) is a widely used intravenous imidazole general anesthetic, which depresses the cerebellar neuronal activity by modulating various receptors activity and synaptic transmission. In this study, we investigated the effects of ET on the cerebellar climbing fiber-Purkinje cells (CF-PC) plasticity in vitro in mice using whole-cell recording technique and pharmacological methods. Our results demonstrated that CF tetanic stimulation produced a mGluR1-dependent long-term depression (LTD) of CF-PC excitatory postsynaptic currents (EPSCs), which was enhanced by bath application of ET (10 µM). Blockade of mGluR1 receptor with JNJ16259685, ET triggered the tetanic stimulation to induce a CF-PC LTD accompanied with an increase in paired-pulse ratio (PPR). The ET-triggered CF-PC LTD was abolished by extracellular administration of an N-methyl-(D)-aspartate (NMDA) receptor antagonist, D-APV, as well as by intracellular blockade of NMDA receptors activity with MK801. Furthermore, blocking cannabinoids 1 (CB1) receptor with AM251 or chelating intracellular Ca2+ with BAPTA, ET failed to trigger the CF-PC LTD. Moreover, the ET-triggered CF-PC LTD was abolished by inhibition of protein kinase A (PKA), but not by inhibition of protein kinase C inhibiter. The present results suggest that ET acts on postsynaptic NMDA receptor resulting in an enhancement of the cerebellar CF-PC LTD through CB1 receptor/PKA cascade in vitro in mice. These results provide new evidence and possible mechanism for ET anesthesia to affect motor learning and motor coordination by regulating cerebellar CF-PC LTD.


Assuntos
Etomidato , Camundongos , Animais , Etomidato/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Sinapses/fisiologia , Cerebelo/fisiologia , Plasticidade Neuronal/fisiologia , Células de Purkinje/fisiologia , Transmissão Sináptica , Anestésicos Intravenosos/farmacologia
7.
J Integr Neurosci ; 23(3): 61, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38538223

RESUMO

BACKGROUND: Tanshinone IIA (TSIIA) is an element of the effective ingredients of Salvia miltiorrhiza Bunge (Labiatae), exhibits a significant therapeutic effect in brain neuroprotection. The focus of this study was the examination of synaptic plasticity of in Mg2+-free-induced epileptic hippocampus neurons and how TSIIA protects against it. METHODS: The purity of the primary hippocampal neurons extracted from Sprague Dawley rats was assessed within 24 hours by microtubule-associated protein (MAP2) immunofluorescence staining. A hippocampal neuron model for Mg2+-free-induced spontaneous recurrent epileptiform discharge was developed, five experimental groups were then randomized: blank (Blank), model (Model), TSIIA (TSIIA, 20 µM), LY294002 (LY294002, 25 µM), and TSIIA+LY294002 (TSIIA+LY294002, 20 µM+25 µM). FIJI software was used to examine variations of neurite complexity, total length of hippocampal neurons, number of primary dendrites and density of dendritic spines. Developmental regulation brain protein (Drebrin) and brain-derived neurotrophic factor (BDNF) expression was evaluated using immunofluorescence staining and the relative expression of phospho-protein kinase B (p-Akt)/Akt, BDNF, synaptophysin (SYN) and postsynaptic density 95 (PSD-95) determined by Western blot. RESULTS: In contrast to the model group, TSIIA drastically reduced damage to synaptic plasticity of hippocampal neurons caused by epilepsy (p < 0.05). The TSIIA group showed a significant increase in the relative expression of PSD-95, SYN, BDNF, and p-Akt/Akt (p < 0.01). CONCLUSIONS: TSIIA was effective in reducing harm to the synaptic plasticity of hippocampal neurons induced by persistent status epilepticus, with the possible mechanism being regulation of the phosphatidylinositol 3-kinase 56 (PI3K)/Akt signaling pathway.


Assuntos
Abietanos , Epilepsia , Proteínas Proto-Oncogênicas c-akt , Animais , Ratos , Abietanos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais
8.
Physiol Int ; 111(1): 97-123, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38436684

RESUMO

The aim of this study is to show the relationship between the change in the strengthening of synaptic plasticity and tau phosphorylation and tau-kinases and phosphatase. The averages of the field excitatory-postsynaptic potential (fEPSP) and population spike (PS) in the last 5 min were used as a measure of LTP, LTD and MP. Total and phosphorylated levels of tau, kinases and phosphatases were evaluated by western blot and mRNA levels were evaluated by RT-qPCR. The stimulation of synapses by HFS and LFS+HFS increased the phosphorylation of total-tau and phospho-tau at the Thr181, Ser202/Thr205, Ser396 and Ser416 residues, and these were accompanied by increased enzymatic activity of Akt, ERK1/2. The increased phosphorylation of tau may mediate maintenance of LTP. If the increase in phosphorylation of tau cannot be prevented, together with inhibition of the subsequent LTP, this may indicate that the physiological role of hyperphosphorylated tau in synaptic plasticity may extend to pathological processes.


Assuntos
Plasticidade Neuronal , Monoéster Fosfórico Hidrolases , Proteínas tau , Plasticidade Neuronal/fisiologia , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Proteínas tau/metabolismo , Masculino , Animais , Ratos , Ratos Wistar
9.
Sci Rep ; 14(1): 7116, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531892

RESUMO

This study aimed to investigate structural synaptic plasticity in the medial prefrontal cortex of rats under treadmill exercise pretreatment or naive conditions in a vascular dementia model, followed by recognition memory performance in a novel object recognition task. In this study, 24 Sprague-Dawley rats were obtained and randomly assigned into 4 groups as follows: control group (Con group, n = 6), vascular dementia (VD group, n = 6), exercise and vascular dementia group (Exe + VD group, n = 6), and exercise group (Exe group, n = 6). Initially, 4 weeks of treadmill exercise intervention was administered to the rats in the Exe + VD and Exe groups. Then, to establish the vascular dementia model, the rats both in the VD and Exe + VD groups were subjected to bilateral common carotids arteries surgery. One week later, open-field task and novel recognition memory task were adopted to evaluate anxiety-like behavior and recognition memory in each group. Then, immunofluorescence and Golgi staining were used to evaluate neuronal number and spine density in the rat medial prefrontal cortex. Transmission electron microscopy was used to observe the synaptic ultrastructure. Finally, microdialysis coupled with high-performance liquid chromatography was used to assess the levels of 5-HT and dopamine in the medial prefrontal cortex. The behavior results showed that 4 weeks of treadmill exercise pretreatment significantly alleviated recognition memory impairment and anxiety-like behavior in VD rats (P < 0.01), while the rats in VD group exhibited impaired recognition memory and anxiety-like behavior when compared with the Con group (P < 0.001). Additionally, NeuN immunostaining results revealed a significant decrease of NeuN-marked neuron in the VD group compared to Con group (P < 0.01), but a significantly increase in this molecular marker was found in the Exe + VD group compared to the Con group (P < 0.01). Golgi staining results showed that the medial prefrontal cortex neurons in the VD group displayed fewer dendritic spines than those in the Con group (P < 0.01), and there were more spines on the dendrites of medial prefrontal cortex cells in Exe + VD rats than in VD rats (P < 0.01). Transmission electron microscopy further revealed that there was a significant reduction of synapses intensity in the medial prefrontal cortex of rats in the VD group when compared with the Con group(P < 0.01), but physical exercise was found to significantly increased synapses intensity in the VD model (P < 0.01). Lastly, the levels of dopamine and 5-HT in the medial prefrontal cortex of rats in the VD group was significantly lower compared to the Con group (P < 0.01), and treadmill exercise was shown to significantly increased the levels of dopamine and 5-HT in the VD rats (P < 0.05). Treadmill exercise pretreatment ameliorated structural synaptic plasticity impairments of medial prefrontal cortex in VD rat and improved recognition memory.


Assuntos
Demência Vascular , Dopamina , Ratos , Animais , Ratos Sprague-Dawley , Serotonina , Plasticidade Neuronal/fisiologia , Transtornos da Memória , Córtex Pré-Frontal , Hipocampo
10.
Int J Mol Sci ; 25(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38542386

RESUMO

The extracellular matrix (ECM) within the brain possesses a distinctive composition and functionality, influencing a spectrum of physiological and pathological states. Among its constituents, perineuronal nets (PNNs) are unique ECM structures that wrap around the cell body of many neurons and extend along their dendrites within the central nervous system (CNS). PNNs are pivotal regulators of plasticity in CNS, both during development and adulthood stages. Characterized by their condensed glycosaminoglycan-rich structures and heterogeneous molecular composition, PNNs not only offer neuroprotection but also participate in signal transduction, orchestrating neuronal activity and plasticity. Interfering with the PNNs in adult animals induces the reactivation of critical period plasticity, permitting modifications in neuronal connections and promoting the recovery of neuroplasticity following spinal cord damage. Interestingly, in the adult brain, PNN expression is dynamic, potentially modulating plasticity-associated states. Given their multifaceted roles, PNNs have emerged as regulators in the domains of learning, memory, addiction behaviors, and other neuropsychiatric disorders. In this review, we aimed to address how PNNs contribute to the memory processes in physiological and pathological conditions.


Assuntos
Encéfalo , Sistema Nervoso Central , Animais , Sistema Nervoso Central/fisiologia , Encéfalo/metabolismo , Neurônios/metabolismo , Memória/fisiologia , Matriz Extracelular/metabolismo , Plasticidade Neuronal/fisiologia
11.
Sci Adv ; 10(11): eadk0540, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489360

RESUMO

During learning, synaptic connections between excitatory neurons in the brain display considerable dynamism, with new connections being added and old connections eliminated. Synapse elimination offers an opportunity to understand the features of synapses that the brain deems dispensable. However, with limited observations of synaptic activity and plasticity in vivo, the features of synapses subjected to elimination remain poorly understood. Here, we examined the functional basis of synapse elimination in the apical dendrites of L2/3 neurons in the primary motor cortex throughout motor learning. We found no evidence that synapse elimination is facilitated by a lack of activity or other local forms of plasticity. Instead, eliminated synapses display asynchronous activity with nearby synapses, suggesting that functional synaptic clustering is a critical component of synapse survival. In addition, eliminated synapses show delayed activity timing with respect to postsynaptic output. Thus, synaptic inputs that fail to be co-active with their neighboring synapses or are mistimed with neuronal output are targeted for elimination.


Assuntos
Plasticidade Neuronal , Sinapses , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Dendritos , Aprendizagem
12.
Elife ; 132024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436304

RESUMO

The entorhinal cortex is involved in establishing enduring visuo-auditory associative memory in the neocortex. Here we explored the mechanisms underlying this synaptic plasticity related to projections from the visual and entorhinal cortices to the auditory cortex in mice using optogenetics of dual pathways. High-frequency laser stimulation (HFS laser) of the visuo-auditory projection did not induce long-term potentiation. However, after pairing with sound stimulus, the visuo-auditory inputs were potentiated following either infusion of cholecystokinin (CCK) or HFS laser of the entorhino-auditory CCK-expressing projection. Combining retrograde tracing and RNAscope in situ hybridization, we show that Cck expression is higher in entorhinal cortex neurons projecting to the auditory cortex than in those originating from the visual cortex. In the presence of CCK, potentiation in the neocortex occurred when the presynaptic input arrived 200 ms before postsynaptic firing, even after just five trials of pairing. Behaviorally, inactivation of the CCK+ projection from the entorhinal cortex to the auditory cortex blocked the formation of visuo-auditory associative memory. Our results indicate that neocortical visuo-auditory association is formed through heterosynaptic plasticity, which depends on release of CCK in the neocortex mostly from entorhinal afferents.


Assuntos
Colecistocinina , Córtex Entorrinal , Camundongos , Animais , Córtex Entorrinal/fisiologia , Colecistocinina/metabolismo , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo
13.
Nat Rev Neurosci ; 25(4): 253-271, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38443627

RESUMO

Expressions such as 'sleep on it' refer to the resolution of distressing experiences across a night of sound sleep. Sleep is an active state during which the brain reorganizes the synaptic connections that form memories. This Perspective proposes a model of how sleep modifies emotional memory traces. Sleep-dependent reorganization occurs through neurophysiological events in neurochemical contexts that determine the fates of synapses to grow, to survive or to be pruned. We discuss how low levels of acetylcholine during non-rapid eye movement sleep and low levels of noradrenaline during rapid eye movement sleep provide a unique window of opportunity for plasticity in neuronal representations of emotional memories that resolves the associated distress. We integrate sleep-facilitated adaptation over three levels: experience and behaviour, neuronal circuits, and synaptic events. The model generates testable hypotheses for how failed sleep-dependent adaptation to emotional distress is key to mental disorders, notably disorders of anxiety, depression and post-traumatic stress with the common aetiology of insomnia.


Assuntos
Memória , Angústia Psicológica , Humanos , Memória/fisiologia , Emoções/fisiologia , Encéfalo/fisiologia , Sono/fisiologia , Plasticidade Neuronal/fisiologia
14.
Commun Biol ; 7(1): 345, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509283

RESUMO

The scaffolding A-kinase anchoring protein 150 (AKAP150) is critically involved in kinase and phosphatase regulation of synaptic transmission/plasticity, and neuronal excitability. Emerging evidence also suggests that AKAP150 signaling may play a key role in brain's processing of rewarding/aversive experiences, however its role in the lateral habenula (LHb, as an important brain reward circuitry) is completely unknown. Using whole cell patch clamp recordings in LHb of male wildtype and ΔPKA knockin mice (with deficiency in AKAP-anchoring of PKA), here we show that the genetic disruption of PKA anchoring to AKAP150 significantly reduces AMPA receptor-mediated glutamatergic transmission and prevents the induction of presynaptic endocannabinoid-mediated long-term depression in LHb neurons. Moreover, ΔPKA mutation potentiates GABAA receptor-mediated inhibitory transmission while increasing LHb intrinsic excitability through suppression of medium afterhyperpolarizations. ΔPKA mutation-induced suppression of medium afterhyperpolarizations also blunts the synaptic and neuroexcitatory actions of the stress neuromodulator, corticotropin releasing factor (CRF), in mouse LHb. Altogether, our data suggest that AKAP150 complex signaling plays a critical role in regulation of AMPA and GABAA receptor synaptic strength, glutamatergic plasticity and CRF neuromodulation possibly through AMPA receptor and potassium channel trafficking and endocannabinoid signaling within the LHb.


Assuntos
Hormônio Liberador da Corticotropina , Habenula , Animais , Masculino , Camundongos , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Endocanabinoides , Habenula/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de GABA-A/metabolismo , Transmissão Sináptica/fisiologia
15.
Proc Natl Acad Sci U S A ; 121(7): e2311709121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38324573

RESUMO

Synaptic plasticity [long-term potentiation/depression (LTP/D)], is a cellular mechanism underlying learning. Two distinct types of early LTP/D (E-LTP/D), acting on very different time scales, have been observed experimentally-spike timing dependent plasticity (STDP), on time scales of tens of ms; and behavioral time scale synaptic plasticity (BTSP), on time scales of seconds. BTSP is a candidate for a mechanism underlying rapid learning of spatial location by place cells. Here, a computational model of the induction of E-LTP/D at a spine head of a synapse of a hippocampal pyramidal neuron is developed. The single-compartment model represents two interacting biochemical pathways for the activation (phosphorylation) of the kinase (CaMKII) with a phosphatase, with ion inflow through channels (NMDAR, CaV1,Na). The biochemical reactions are represented by a deterministic system of differential equations, with a detailed description of the activation of CaMKII that includes the opening of the compact state of CaMKII. This single model captures realistic responses (temporal profiles with the differing timescales) of STDP and BTSP and their asymmetries. The simulations distinguish several mechanisms underlying STDP vs. BTSP, including i) the flow of [Formula: see text] through NMDAR vs. CaV1 channels, and ii) the origin of several time scales in the activation of CaMKII. The model also realizes a priming mechanism for E-LTP that is induced by [Formula: see text] flow through CaV1.3 channels. Once in the spine head, this small additional [Formula: see text] opens the compact state of CaMKII, placing CaMKII ready for subsequent induction of LTP.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Plasticidade Neuronal , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Plasticidade Neuronal/fisiologia , Potenciação de Longa Duração/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo
16.
J Neurosci ; 44(11)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38316559

RESUMO

Transcranial focused ultrasound stimulation (tFUS) is a noninvasive neuromodulation technique, which can penetrate deeper and modulate neural activity with a greater spatial resolution (on the order of millimeters) than currently available noninvasive brain stimulation methods, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). While there are several studies demonstrating the ability of tFUS to modulate neuronal activity, it is unclear whether it can be used for producing long-term plasticity as needed to modify circuit function, especially in adult brain circuits with limited plasticity such as the thalamocortical synapses. Here we demonstrate that transcranial low-intensity focused ultrasound (LIFU) stimulation of the visual thalamus (dorsal lateral geniculate nucleus, dLGN), a deep brain structure, leads to NMDA receptor (NMDAR)-dependent long-term depression of its synaptic transmission onto layer 4 neurons in the primary visual cortex (V1) of adult mice of both sexes. This change is not accompanied by large increases in neuronal activity, as visualized using the cFos Targeted Recombination in Active Populations (cFosTRAP2) mouse line, or activation of microglia, which was assessed with IBA-1 staining. Using a model (SONIC) based on the neuronal intramembrane cavitation excitation (NICE) theory of ultrasound neuromodulation, we find that the predicted activity pattern of dLGN neurons upon sonication is state-dependent with a range of activity that falls within the parameter space conducive for inducing long-term synaptic depression. Our results suggest that noninvasive transcranial LIFU stimulation has a potential for recovering long-term plasticity of thalamocortical synapses in the postcritical period adult brain.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Córtex Visual , Masculino , Feminino , Camundongos , Animais , Tálamo/fisiologia , Plasticidade Neuronal/fisiologia , Córtex Visual/fisiologia , Sinapses
17.
J Neurosci ; 44(10)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38326038

RESUMO

There has been considerable controversy about pre- versus postsynaptic expression of memory-related long-term potentiation (LTP), with corresponding disputes about underlying mechanisms. We report here an instance in male mice, in which both types of potentiation are expressed but in separate branches of the same hippocampal afferent. Induction of LTP in the dentate gyrus (DG) branch of the lateral perforant path (LPP) reduces paired-pulse facilitation, is blocked by antagonism of cannabinoid receptor type 1, and is not affected by suppression of postsynaptic actin polymerization. These observations are consistent with presynaptic expression. The opposite pattern of results was obtained in the LPP branch that innervates the distal dendrites of CA3: LTP did not reduce paired-pulse facilitation, was unaffected by the cannabinoid receptor blocker, and required postsynaptic actin filament assembly. Differences in the two LPP termination sites were also noted for frequency facilitation of synaptic responses, an effect that was reproduced in a two-step simulation by small adjustments to vesicle release dynamics. These results indicate that different types of glutamatergic neurons impose different forms of filtering and synaptic plasticity on their afferents. They also suggest that inputs are routed to, and encoded by, different sites within the hippocampus depending upon the pattern of activity arriving over the parent axon.


Assuntos
Giro Denteado , Potenciação de Longa Duração , Masculino , Camundongos , Animais , Potenciação de Longa Duração/fisiologia , Giro Denteado/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Estimulação Elétrica/métodos
18.
Neuropsychologia ; 195: 108814, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38316210

RESUMO

Temporal perceptual learning (TPL) constitutes a unique and profound demonstration of neural plasticity within the brain. Our understanding for the neurometabolic changes associated with TPL on the other hand has been limited in part by the use of traditional fMRI approaches. Since plasticity in the visual cortex has been shown to underlie perceptual learning of visual information, we tested the hypothesis that TPL of an auditory interval involves a similar change in plasticity of the auditory pathway and if so, whether these changes take place in a lower-order sensory-specific brain area such as the primary auditory cortex (A1), or a higher-order modality-independent brain area such as the inferior parietal cortex (IPC). This distinction will inform us of the mechanisms underlying perceptual learning as well as the locus of change as it relates to TPL. In the present study, we took advantage of a new technique: proton magnetic resonance spectroscopy (MRS) in combination with psychophysical measures to provide the first evidence of changes in neurometabolic processing following 5 days of temporal discrimination training. We measured the (E)xcitation-to-(I)nhibition ratio as an index of learning in the right IPC and left A1 while participants learned an auditory two-tone discrimination task. During the first day of training, we found a significant task-related increase in functional E/I ratio within the IPC. While the A1 exhibited the opposite pattern of neurochemical activity, this relationship did not reach statistical significance. After timing performance has reached a plateau, there were no further changes to functional E/I. These findings support the hypothesis that improvements in temporal discrimination relies on neuroplastic changes in the IPC, but it is possible that both areas work synergistically to acquire a temporal interval.


Assuntos
Encéfalo , Aprendizagem , Humanos , Aprendizagem/fisiologia , Encéfalo/fisiologia , Lobo Temporal/diagnóstico por imagem , Percepção Auditiva/fisiologia , Mapeamento Encefálico , Aprendizagem por Discriminação/fisiologia , Plasticidade Neuronal/fisiologia
19.
J Physiol ; 602(5): 933-948, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358314

RESUMO

Non-invasive brain stimulation has the potential to boost neuronal plasticity in the primary motor cortex (M1), but it remains unclear whether the stimulation of both superficial and deep layers of the human motor cortex can effectively promote M1 plasticity. Here, we leveraged transcranial ultrasound stimulation (TUS) to precisely target M1 circuits at depths of approximately 5 mm and 16 mm from the cortical surface. Initially, we generated computed tomography images from each participant's individual anatomical magnetic resonance images (MRI), which allowed for the generation of accurate acoustic simulations. This process ensured that personalized TUS was administered exactly to the targeted depths within M1 for each participant. Using long-term depression and long-term potentiation (LTD/LTP) theta-burst stimulation paradigms, we examined whether TUS over distinct depths of M1 could induce LTD/LTP plasticity. Our findings indicated that continuous theta-burst TUS-induced LTD-like plasticity with both superficial and deep M1 stimulation, persisting for at least 30 min. In comparison, sham TUS did not significantly alter M1 excitability. Moreover, intermittent theta-burst TUS did not result in the induction of LTP- or LTD-like plasticity with either superficial or deep M1 stimulation. These findings suggest that the induction of M1 plasticity can be achieved with ultrasound stimulation targeting distinct depths of M1, which is contingent on the characteristics of TUS. KEY POINTS: The study integrated personalized transcranial ultrasound stimulation (TUS) with electrophysiology to determine whether TUS targeting superficial and deep layers of the human motor cortex (M1) could elicit long-term depression (LTD) or long-term potentiation (LTP) plastic changes. Utilizing acoustic simulations derived from individualized pseudo-computed tomography scans, we ensured the precision of TUS delivery to the intended M1 depths for each participant. Continuous theta-burst TUS targeting both the superficial and deep layers of M1 resulted in the emergence of LTD-like plasticity, lasting for at least 30 min. Administering intermittent theta-burst TUS to both the superficial and deep layers of M1 did not lead to the induction of LTP- or LTD-like plastic changes. We suggest that theta-burst TUS targeting distinct depths of M1 can induce plasticity, but this effect is dependent on specific TUS parameters.


Assuntos
Córtex Motor , Humanos , Córtex Motor/fisiologia , Potencial Evocado Motor/fisiologia , Estimulação Magnética Transcraniana/métodos , Plasticidade Neuronal/fisiologia , Potenciação de Longa Duração/fisiologia
20.
J Neurosci ; 44(15)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38413230

RESUMO

Adult-born granule cells (abGCs) exhibit a transient period of elevated synaptic plasticity that plays an important role in hippocampal function. Various mechanisms have been implicated in this critical period for enhanced plasticity, including minimal GABAergic inhibition and high intrinsic excitability conferred by T-type Ca2+ channels. Here we assess the contribution of synaptic inhibition and intrinsic excitability to long-term potentiation (LTP) in abGCs of adult male and female mice using perforated patch recordings. We show that the timing of critical period plasticity is unaffected by intact GABAergic inhibition such that 4-6-week-old abGCs exhibit LTP that is absent by 8 weeks. Blocking GABAA receptors, or partial blockade of GABA release from PV and nNos-expressing interneurons by a µ-opioid receptor agonist, strongly enhances LTP in 4-week-old GCs, suggesting that minimal inhibition does not underlie critical period plasticity. Instead, the closure of the critical period coincides with a reduction in the contribution of T-type Ca2+ channels to intrinsic excitability, and a selective T-type Ca2+ channel antagonist prevents LTP in 4-week-old but not mature GCs. Interestingly, whole-cell recordings that facilitate T-type Ca2+ channel activity in mature GCs unmasks LTP (with inhibition intact) that is also sensitive to a T-type Ca2+ channel antagonist, suggesting T-type channel activity in mature GCs is suppressed by native intracellular signaling. Together these results show that abGCs use T-type Ca2+ channels to overcome inhibition, providing new insight into how high intrinsic excitability provides young abGCs a competitive advantage for experience-dependent synaptic plasticity.


Assuntos
Potenciação de Longa Duração , Neurônios , Camundongos , Animais , Masculino , Feminino , Neurônios/fisiologia , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Hipocampo/fisiologia , Ácido gama-Aminobutírico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...