Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.088
Filtrar
1.
J Environ Sci (China) ; 146: 176-185, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969446

RESUMO

Microplastics (MPs) are commonly found with hydrophobic contaminants in the water column and pose a serious threat to aquatic organisms. The effects of polystyrene microplastics of different particle sizes on the accumulation of triclosan in the gut of Xenopus tropicalis, its toxic effects, and the transmission of resistance genes were evaluated. The results showed that co-exposure to polystyrene (PS-MPs) adsorbed with triclosan (TCS) caused the accumulation of triclosan in the intestine with the following accumulation capacity: TCS + 5 µm PS group > TCS group > TCS + 20 µm PS group > TCS + 0.1 µm PS group. All experimental groups showed increased intestinal inflammation and antioxidant enzyme activity after 28 days of exposure to PS-MPs and TCS of different particle sizes. The TCS + 20 µm PS group exhibited the highest upregulated expression of pro-inflammatory factors (IL-10, IL-1ß). The TCS + 20 µm group showed the highest increase in enzyme activity compared to the control group. PS-MPs and TCS, either alone or together, altered the composition of the intestinal microbial community. In addition, the presence of more antibiotic resistance genes than triclosan resistance genes significantly increased the expression of tetracycline resistance and sulfonamide resistance genes, which may be associated with the development of intestinal inflammation and oxidative stress. This study refines the aquatic ecotoxicity assessment of TCS adsorbed by MPs and provides informative information for the management and control of microplastics and non-antibiotic bacterial inhibitors.


Assuntos
Microplásticos , Tamanho da Partícula , Poliestirenos , Triclosan , Poluentes Químicos da Água , Xenopus , Animais , Triclosan/toxicidade , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade , Microplásticos/toxicidade , Intestinos/efeitos dos fármacos , Adsorção , Expressão Gênica/efeitos dos fármacos
2.
Sci Total Environ ; 946: 174386, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38960152

RESUMO

Microplastics (MPs) have accumulated in the oceans, causing adverse effects on marine organisms and the environment. Biodegradable polylactic acid (PLA) is considered as an excellent substitute for traditional petroleum-based plastics, but it is difficult to degrade completely and easily become MPs in the marine environment. To test the ecological risk of bio-based PLA, we exposed thick-shelled mussels (Mytilus coruscus) to bio-based PLA and petroleum-based polystyrene (PS) (at 102, 104, and 106 particles/L) for 14 days. The significant increase in enzyme activities related to oxidative stress and immune response showed that mussels were under physiological stress after MP ingestion. While enzyme activities of nerve conduction and energy metabolism were significantly disturbed after exposure. Meanwhile, normal physiological activities in respiration, ingestion and assimilation were also suppressed in association with enzyme changes. The negative effects of PS and PLA in mussels were not differentiated, and further integration analysis of integrated biomarker response (IBR) and principal component analysis (PCA) also showed that PLA would induce adverse effects in mussels and ecological risks as PS, especially at environmental concentrations. Therefore, it is necessary to pay more attention to the environmental and ecological risk of bio-based MP PLA accumulating in the marine environment.


Assuntos
Microplásticos , Poliésteres , Poliestirenos , Poluentes Químicos da Água , Animais , Poliestirenos/toxicidade , Poliésteres/toxicidade , Poluentes Químicos da Água/toxicidade , Microplásticos/toxicidade , Mytilus/efeitos dos fármacos , Mytilus/fisiologia , Petróleo/toxicidade
3.
Birth Defects Res ; 116(6): e2368, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38873958

RESUMO

BACKGROUND: Nanoplastics can be considered a novel contaminant for the environment because of their extensive applications in modern society, which represents a possible threat to humans. Nevertheless, the negative effect of polystyrene nanoplastics (PS-NPs) on male reproduction, fertility, and progeny outcomes is not well known. Thus, the aim of the present work was to calculate the median lethal dose (LD50) and investigate the consequences of exposure to PS-NPs (25 nm) on male reproductive toxicity. METHODS: This investigation first determined the LD50 of PS-NPs in male Wistar rats, and then in a formal study, 24 rats were distributed into three groups (n = 8): the control group; the low-dose group (3 mg/kg bw); and the high-dose group (10 mg/kg bw) of PS-NPs administered orally for 60 days. On the 50th day of administration, the fertility test was conducted. RESULTS: The LD50 was determined to be 2500 mg/kg. PS-NP administration induced significant alternations, mainly indicating mortality in the high-dose group, a significant elevation in body weight gain, declined sperm quality parameters, altered reproductive hormonal levels, thyroid endocrine disruption, an alternation of the normal histo-architecture and the histo-morphometric analysis of the testes, and impaired male fertility. CONCLUSION: Altogether, the current findings provide novel perspectives on PS-NP general toxicity with specific reference to male reproductive toxicity.


Assuntos
Poliestirenos , Ratos Wistar , Reprodução , Testículo , Animais , Masculino , Testículo/efeitos dos fármacos , Testículo/metabolismo , Poliestirenos/toxicidade , Ratos , Reprodução/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Administração Oral , Fertilidade/efeitos dos fármacos , Nanopartículas/toxicidade , Microplásticos/toxicidade , Dose Letal Mediana , Hormônios/metabolismo , Espermatozoides/efeitos dos fármacos
4.
Environ Health Perspect ; 132(6): 64003, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38922330

RESUMO

Mice exposed orally to microspheres showed changes in lipid and other metabolic pathways, and the particles were detected in tissues throughout the body. Changes were greater after exposure to mixed microplastics compared with polystyrene alone.


Assuntos
Microplásticos , Animais , Microplásticos/toxicidade , Camundongos , Microesferas , Masculino , Poliestirenos/toxicidade , Administração Oral
5.
Sci Total Environ ; 945: 174026, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38885706

RESUMO

The rising global prevalence of microplastics (MPs) has highlighted their diverse toxicological effects. The oxytocin (OT) system in mammals, deeply intertwined with social behaviors, is recognized to be vulnerable to environmental stressors. We hypothesized that MP exposure might disrupt this system, a topic not extensively studied. We investigated the effects of MPs on behavioral neuroendocrinology via the gut-brain axis by exposing adolescent male C57BL/6 mice to varied sizes (5 µm and 50 µm) and concentrations (100 µg/L and 1000 µg/L) of polystyrene MPs over 10 weeks. The results demonstrated that exposure to 50 µm MPs significantly reduced colonic mucin production and induced substantial alterations in gut microbiota. Notably, the 50 µm-100 µg/L group showed a significant reduction in OT content within the medial prefrontal cortex and associated deficits in sociality, along with damage to the blood-brain barrier. Importantly, blocking the vagal pathway ameliorated these behavioral impairments, emphasizing the pivotal role of the gut-brain axis in mediating neurobehavioral outcomes. Our findings confirm the toxicity of MPs on sociality and the corresponding neuroendocrine systems, shedding light on the potential hazards and adverse effects of environmental MPs exposure on social behavior and neuroendocrine frameworks in social mammals, including humans.


Assuntos
Eixo Encéfalo-Intestino , Encéfalo , Camundongos Endogâmicos C57BL , Microplásticos , Ocitocina , Poliestirenos , Comportamento Social , Animais , Ocitocina/metabolismo , Camundongos , Masculino , Poliestirenos/toxicidade , Microplásticos/toxicidade , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Eixo Encéfalo-Intestino/fisiologia , Eixo Encéfalo-Intestino/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos
6.
Sci Total Environ ; 945: 173931, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38885718

RESUMO

Microplastics (MPs) and cadmium (Cd) are toxic to rice; however, the effects and mechanisms of their combined exposure are unclear. The combined exposure effects of polystyrene microplastics (PS-MPs) with different particle sizes (1-10 µm, 50-150 µm) and concentrations (50, 500 mg·L-1) and Cd on rice were explored. PS-MPs combined with Cd amplifies the inhibition of each individual exposure on the height and biomass of rice seedlings, and they showed antagonistic effects. PS-MPs reduced the content of chlorophyll and increased the content of carotenoid rice seedlings significantly. High concentrations of PS-MPs enhanced the inhibition of Cd on chlorophyll content. Cd, PS-MPs single and combined exposures significantly altered the antioxidant enzyme (POD, CAT, SOD) activities in rice seedlings. Under PS-MPs exposure, overall, the MDA content in shoots and roots exhibited opposite trends, with a decrease in the former and an increase in the latter. In comparison with Cd treatment, the combined exposures' shoot and root MDA content was reduced. Cd and PS-MPs showed "low concentration antagonism, high concentration synergism" on the composite physiological indexes of rice seedlings. PS-MPs significantly increased the Cd accumulation in shoots. PS-MPs promoted the root absorption of Cd at 50 mg·L-1 while inhibited at 500 mg·L-1. Cd and PS-MPs treatments interfered with the balance of microelements (Mn, Zn, Fe, Cu, B, Mo) and macroelements (S, P, K, Mg, Ca) in rice seedlings; Mn was significantly inhibited. PS-MPs can enhance of Cd's toxicity to rice seedlings. The combined toxic effects of the two contaminants appear to be antagonistic or synergistic, relying on the particle size and concentration of the PS-MPs. Our findings offer information to help people understanding the combined toxicity of Cd and MPs on crops.


Assuntos
Cádmio , Microplásticos , Oryza , Poliestirenos , Plântula , Poluentes do Solo , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Cádmio/toxicidade , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Poliestirenos/toxicidade , Microplásticos/toxicidade , Poluentes do Solo/toxicidade , Clorofila/metabolismo
7.
Sci Total Environ ; 945: 174114, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38906280

RESUMO

As an emerging organic pollutant, tributyl phosphate (TnBP) can be easily adsorbed by microplastics, resulting in compound toxic effects. In the present work, the effects of polystyrene microplastics (PS-MPs) and TnBP on the survival, growth, reproduction and oxidative stress of Daphnia magna (D. magna) have been evaluated through multigenerational test. Compared with the alone exposure groups, the somatic growth rate and the expression values of growth related genes rpa1, mre11, rnha, and rfc3_5 in the F1 generation of the combined exposure groups were significantly lower (p < 0.05), indicating synergistic effect of PS-MPs and TnBP on the growth toxicity and transgenerational effects. In addition, compared with the PS-MPs groups, significantly lower average number of offspring and expression values of reproduction related genes ccnb, mcm2, sgrap, and ptch1 were observed in the combined exposure group and TnBP group (p < 0.05), indicating TnBP might be the major factor causing reproductive toxicity to D. magna. Although PS-MPs and TnBP alone or in combination also had toxic impacts on the growth, survival and reproduction of D. magna in generations F0 and F2, the effects were less than F1 generation. Regarding oxidative stress, the activity of SOD, CAT and GSH-Px and MDA content in the generations F0 and F1 of combined exposure groups were higher than the TnBP group but lower than the PS-MPs groups, suggesting that PS-MPs might be the dominant cause of the oxidative damage in D. magna and the presence of TnBP would alleviate oxidative stress by reducing the bioaccumulation of PS-MPs. The present work will provide a theoretical basis for further understanding of the toxic effects and ecological risks of combined TnBP and microplastic pollution on aquatic organisms.


Assuntos
Daphnia , Microplásticos , Estresse Oxidativo , Poliestirenos , Poluentes Químicos da Água , Animais , Daphnia/fisiologia , Daphnia/efeitos dos fármacos , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Poliestirenos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Organofosfatos/toxicidade , Reprodução/efeitos dos fármacos , Daphnia magna
8.
Ecotoxicol Environ Saf ; 280: 116523, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38850707

RESUMO

In recent years micro- and nanoplastics and metal-oxide nanomaterials have been found in several environmental compartments. The Antarctic soft clam Laternula elliptica is an endemic Antarctic species having a wide distribution in the Southern Ocean. Being a filter-feeder, it could act as suitable bioindicator of pollution from nanoparticles also considering its sensitivity to various sources of stress. The present study aims to assess the impact of polystyrene nanoparticles (PS-NP) and the nanometal titanium-dioxide (n-TiO2) on genome-wide transcript expression of L. elliptica either alone and in combination and at two toxicological relevant concentrations (5 and 50 µg/L) during 96 h exposure. Transcript-target qRT-PCR was performed with the aim to identify suitable biomarkers of exposure and effects. As expected, at the highest concentration tested, the clustering was clearer between control and exposed clams. A total of 221 genes resulted differentially expressed in exposed clams and control ones, and 21 of them had functional annotation such as ribosomal proteins, antioxidant, ion transport (osmoregulation), acid-base balance, immunity, lipid metabolism, cell adhesion, cytoskeleton, apoptosis, chromatin condensation and cell signaling. At functional level, relevant transcripts were shared among some treatments and could be considered as general stress due to nanoparticle exposure. After applying transcript-target approach duplicating the number of clam samples, four ecologically relevant transcripts were revealed as biomarkers for PS-NP, n-TiO2 and their combination at 50 µg/L, that could be used for monitoring clams' health status in different Antarctic localities.


Assuntos
Bivalves , Nanopartículas , Titânio , Transcriptoma , Poluentes Químicos da Água , Animais , Bivalves/efeitos dos fármacos , Bivalves/genética , Titânio/toxicidade , Regiões Antárticas , Nanopartículas/toxicidade , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Biomarcadores/metabolismo , Poliestirenos/toxicidade , Monitoramento Ambiental/métodos
9.
Ecotoxicol Environ Saf ; 280: 116580, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38865938

RESUMO

Inhaling microplastics (MPs) and nanoplastics (NPs) in the air can damage lung function. Xenobiotics in the body can cause endoplasmic reticulum (ER) stress, and the unfolded protein response (UPR) activation alleviates ER stress. Degradation of unfolded or misfolded proteins is an important pathway for recovering cellular homeostasis. The UPR and protein degradation induced by MPs/NPs in lung tissues are not well understood. Here, we investigated the UPR and protein ubiquitination in the lungs of mice exposed to polystyrene (PS)-NPs and their possible molecular mechanisms leading to protein ubiquitination. Mice were intratracheally administered with 5.6, 17, and 51 mg/kg PS-NPs once for 24 h. Exposure to PS-NPs elevated protein ubiquitination in the lungs of mice in a dose-dependent manner. PS-NPs activated three branches of UPR including inositol-requiring protein 1α (IRE1α), eukaryotic translation initiator factor 2α (eIF2α), and activating transcription factor 6α (ATF6α) in the lungs of mice. However, activated IRE1α did not trigger X-box binding protein 1 (XBP1) mRNA splicing. Exposure to PS-NPs induced an increase in the levels of E3 ubiquitin ligase hydroxymethyl glutaryl-coenzyme A reductase degradation protein 1 (HRD1) and carboxy terminus of Hsc70 interacting protein (CHIP) in the lungs of mice and BEAS-2B cells. ATF6α siRNA inhibited the levels of HRD1 and CHIP proteins induced by PS-NPs in BEAS-2B cells. These results suggest that ATF6α plays a critical role in increasing ubiquitination of unfolded or misfolded proteins by alleviating PS-NPs induced ER stress through UPR to achieve ER homeostasis in the lungs of mice.


Assuntos
Pulmão , Microplásticos , Poliestirenos , Ubiquitinação , Resposta a Proteínas não Dobradas , Animais , Ubiquitinação/efeitos dos fármacos , Camundongos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Poliestirenos/toxicidade , Microplásticos/toxicidade , Masculino , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Nanopartículas/toxicidade , Camundongos Endogâmicos C57BL
10.
Ecotoxicol Environ Saf ; 280: 116551, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875818

RESUMO

Polystyrene nanoplastics (PS-NPs), emerging and increasingly pervasive environmental contaminants, have the potential to cause persistent harm to organisms. Although previous reports have documented local accumulation and adverse effects in a variety of major organs after PS-NPs exposure, the impact of PS-NPs exposure on erectile function remains unexplored. Herein, we established a rat model of oral exposure to 100 nm PS-NPs for 28 days. To determine the best dose range of PS-NPs, we designed both low-dose and high-dose PS-NPs groups, which correspond to the minimum and maximum human intake doses, respectively. The findings indicated that PS-NPs could accumulate within the corpus cavernosum and high dose but not low dose of PS-NPs triggered erectile dysfunction. Moreover, the toxicological effects of PS-NPs on erectile function include fibrosis in the corpus cavernous, endothelial dysfunction, reduction in testosterone levels, elevated oxidative stress and apoptosis. Overall, this study revealed that PS-NPs exposure can cause erectile dysfunction via multiple ways, which provided new insights into the toxicity of PS-NPs.


Assuntos
Disfunção Erétil , Estresse Oxidativo , Pênis , Poliestirenos , Ratos Sprague-Dawley , Animais , Disfunção Erétil/induzido quimicamente , Masculino , Poliestirenos/toxicidade , Ratos , Estresse Oxidativo/efeitos dos fármacos , Pênis/efeitos dos fármacos , Testosterona/sangue , Nanopartículas/toxicidade , Apoptose/efeitos dos fármacos , Poluentes Ambientais/toxicidade
11.
J Hazard Mater ; 474: 134644, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838520

RESUMO

Nanoplastics, as emerging pollutants, have harmful effects on living organisms and the environment, the mechanisms and extent of which remain unclear. Microalgae, as one of the most important biological groups in the food chain and sensitive environmental indicators to various pollutants, are considered a suitable option for investigating the effects of nanoplastics. In this study, the effects of polystyrene nanoplastics on the growth rate, dry weight, chlorophyll a and carotenoid levels, proline, and lipid peroxidation in the Spirulina platensis were examined. Three concentrations of 0.1, 1, and 10 mg L-1 of PSNPs were used alongside a control sample with zero concentration, with four repetitions in one-liter containers for 20 days under optimal temperature and light conditions. Various analyses, including growth rate, dry weight, proline, chlorophyll a and carotenoid levels, and lipid peroxidation, were performed. The results indicated that exposure to PSNP stress led to a significant decrease in growth rate, dry weight, and chlorophyll a and carotenoid levels compared to the control sample. Furthermore, this stress increased the levels of proline and lipid peroxidation in Spirulina platensis. Morphological analysis via microscopy supported these findings, indicating considerable environmental risks associated with PSNPs.


Assuntos
Carotenoides , Clorofila , Peroxidação de Lipídeos , Microalgas , Poliestirenos , Prolina , Spirulina , Spirulina/efeitos dos fármacos , Spirulina/crescimento & desenvolvimento , Spirulina/metabolismo , Poliestirenos/toxicidade , Carotenoides/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Prolina/metabolismo , Clorofila/metabolismo , Microalgas/efeitos dos fármacos , Microalgas/crescimento & desenvolvimento , Clorofila A/metabolismo , Nanopartículas/toxicidade
12.
J Hazard Mater ; 474: 134800, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38850955

RESUMO

Microplastics have emerged as a prominent global environmental contaminant, and they have been found in both human placenta and breast milk. However, the potential effects and mechanisms of maternal exposure to microplastics at various gestational stages on offspring neurodevelopment remain poorly understood. This investigation delves into the potential neurodevelopmental ramifications of maternal exposure to polystyrene nanoplastics (PS-NPs) during distinct phases of pregnancy and lactation. Targeted metabolomics shows that co-exposure during both pregnancy and lactation primarily engendered alterations in monoamine neurotransmitters within the cortex and amino acid neurotransmitters within the hippocampus. After prenatal exposure to PS-NPs, fetal rats showed appreciably diminished cortical thickness and heightened cortical cell proliferation. However, this exposure did not affect the neurodifferentiation of radial glial cells and intermediate progenitor cells. In addition, offspring are accompanied by disordered neocortical migration, typified by escalated superficial layer neurons proliferation and reduced deep layer neurons populations. Moreover, the hippocampal synapses showed significantly widened synaptic clefts and diminished postsynaptic density. Consequently, PS-NPs culminated in deficits in anxiolytic-like behaviors and spatial memory in adolescent offspring, aligning with concurrent neurotransmitter and synaptic alterations. In conclusion, this study elucidates the sensitive windows of early-life nanoplastic exposure and the consequential impact on offspring neurodevelopment.


Assuntos
Lactação , Exposição Materna , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Gravidez , Lactação/efeitos dos fármacos , Exposição Materna/efeitos adversos , Hipocampo/efeitos dos fármacos , Hipocampo/crescimento & desenvolvimento , Poliestirenos/toxicidade , Masculino , Microplásticos/toxicidade , Ratos Sprague-Dawley , Ratos , Neurônios/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neurotransmissores/metabolismo , Nanopartículas/toxicidade , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento
13.
J Hazard Mater ; 474: 134844, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38852252

RESUMO

With advances in plastic resource utilization technologies, polystyrene (PS) and sulfonated polystyrene (SPS) microplastics continue to be produced and retained in environmental media, potentially posing greater environmental risks. These plastics, due to their different physicochemical properties, may have different environmental impacts when compounded with other pollutants. The objective of this study was to investigate the combined toxic effects of PS and SPS on wheat using cadmium (Cd) as a background contaminant. The results demonstrated that Cd significantly impeded the normal growth of wheat by disrupting root development. Both PS and SPS exhibited hormesis at low concentrations and promoted wheat growth. Under combined toxicity, PS reduced oxidative stress and promoted the uptake of essential metal elements in wheat. Additionally, KEGG pathway analysis revealed that PS facilitated the repair of Cd-induced blockage of the TCA cycle and glutathione metabolism. However, high concentrations of SPS in combined toxicity not only enhanced oxidative stress and interfered with the uptake of essential metal elements, but also exacerbated the blocked TCA cycle and interfered with pyrimidine metabolism. These differences are related to the different stability (Zeta potential, Hydrodynamic particle size) of the two microplastics in the aquatic environment and their ability to carry heavy metal ions, especially Cd. The results of this study provide important insights into understanding the effects of microplastics on crops in the context of Cd contamination and their environmental and food safety implications.


Assuntos
Cádmio , Estresse Oxidativo , Poliestirenos , Triticum , Poliestirenos/toxicidade , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Cádmio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Microplásticos/toxicidade , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes do Solo/toxicidade
14.
Sci Total Environ ; 940: 173575, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38823712

RESUMO

Decabromodiphenyl ethane (DBDPE) and polystyrene nanoplastics (PS-NPs) are emerging pollutants that seriously threaten the ecological safety of the aquatic environment. However, the hepatotoxicity effect of their combined exposure on aquatic organisms has not been reported to date. In, this study, the effects of single or co-exposure of DBDPE and PS-NPs on grass carp hepatocytes were explored and biomarkers related to oxidative stress, ferroptosis, and inflammatory cytokines were evaluated. The results show that both single and co-exposure to DBDPE and PS-NPs caused oxidative stress. Oxidative stress was induced by increasing the contents of pro-oxidation factors (ROS, MDA, and LPO), inhibiting the activity of antioxidant enzymes (CAT, GPX, T-SOD, GSH, and T-AOC), and downregulating the mRNA expressions of antioxidant genes (GPX1, GSTO1, SOD1, and CAT); the effects of combined exposure were stronger overall. Both single and co-exposure to DBDPE and PS-NPs also elevated Fe2+ content, promoted the expressions of TFR1, STEAP3, and NCOA4, and inhibited the expressions of FTH1, SLC7A11, GCLC, GSS, and GPX4; these effects resulted in iron overload-induced ferroptosis, where co-exposure had stronger adverse effects on ferroptosis-related biomarkers than single exposure. Moreover, single or co-exposure enhanced inflammatory cytokine levels, as evidenced by increased mRNA expressions of IL-6, IL-12, IL-17, IL-18, IL-1ß, TNF-α, IFN-γ, and MPO. Co-exposure exhibited higher expression of pro-inflammatory cytokines compared to single exposure. Interestingly, the ferroptosis inhibitor ferrostatin-1 intervention diminished the above changes. In brief, the results suggest that DBDPE and PS-NPs trigger elevated levels of inflammatory cytokines in grass crap hepatocytes. This elevation is achieved via oxidative stress and iron overload-mediated ferroptosis, where cytotoxicity was stronger under co-exposure compared to single exposure. Overall, the findings contribute to elucidating the potential hepatotoxicity mechanisms in aquatic organisms caused by co-exposure to DBDPE and PS-NPs.


Assuntos
Bromobenzenos , Carpas , Ferroptose , Hepatócitos , Estresse Oxidativo , Poliestirenos , Poluentes Químicos da Água , Animais , Estresse Oxidativo/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Carpas/fisiologia , Poluentes Químicos da Água/toxicidade , Hepatócitos/efeitos dos fármacos , Poliestirenos/toxicidade , Bromobenzenos/toxicidade , Inflamação/induzido quimicamente , Retardadores de Chama/toxicidade
15.
Mar Pollut Bull ; 204: 116519, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850758

RESUMO

Microplastics (MPs) have become pervasive in marine ecosystems, exerting detrimental effects on marine life. The concurrent presence and interaction of MPs and heavy metals in aquatic environments could engender more insidious toxicological impacts. This study aimed to elucidate the potential impacts and underlying mechanisms of polystyrene microplastics (PS-MPs), cadmium (Cd), and their combined stress (MPs-Cd) on sea cucumbers (Apostichopus japonicus). It focused on the growth, Cd bioaccumulation, oxidative stress responses, immunoenzymatic activities, and metabolic profiles, specifically considering PS-MPs sizes preferentially ingested by these organisms. The high-dose MPs (MH) treatment group exhibited an increase in cadmium bioavailability within the sea cucumbers. Exposure to PS-MPs or Cd triggered the activation of antioxidant defenses and immune responses. PS-MPs and Cd exhibited a synergistic effect on lysozyme (LZM) activity. A total of 149, 316, 211, 197, 215, 619, 434, and 602 differentially expressed metabolites were identified, distinguishing the low-dose MPs (ML), high-dose MPs (MH), low-dose Cd (LCd), low-dose MPs and low-dose Cd (MLLCd), high-dose MPs and low-dose Cd (MHLCd), high-dose Cd (HCd), low-dose MPs and high-dose Cd (MLHCd), high-dose MPs and high-dose Cd (MHHCd) groups, respectively. Metabolomic analyses revealed disruptions in lipid metabolism, nervous system function, signal transduction, and transport and catabolism pathways following exposure to PS-MPs, Cd, and MPs-Cd. Correlation analyses among key differentially expressed metabolites (DEMs) underscored the interregulation among these metabolic pathways. These results offer new perspectives on the distinct and synergistic toxicological impacts of microplastics and cadmium on aquatic species, highlighting the complex interplay between environmental contaminants and their effects on marine life.


Assuntos
Cádmio , Microplásticos , Poliestirenos , Poluentes Químicos da Água , Cádmio/toxicidade , Animais , Microplásticos/toxicidade , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade , Stichopus , Estresse Oxidativo , Adaptação Fisiológica
16.
Ecotoxicol Environ Saf ; 281: 116660, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38944012

RESUMO

Environmental accumulation of nano- and microplastics pose serious risks to human health. Polystyrene (PS) is a polymer commonly used in the production of plastics. However, PS can adsorb cadmium (Cd), thereby influencing bioavailability and toxicity in vivo. Moreover, PS and Cd can accumulate in the mammalian kidney. Therefore, the aim of the present study was to assess the effects of combined exposure to PS and Cd in the kidney. Kidney damage was evaluated in male mice gavaged with PS (diameter, 100 nm and/or 1 µm) and Cd for 25 days.The results showed that PS at 100 nm caused more severe oxidative damage and cell apoptosis than PS at 1 µm. Combined exposure to PS at both 100 nm and 1 µm caused more severe kidney damage than the single administration groups. The extent of kidney toxicity caused by Cd differed with the combination of PS particles at 100 nm vs. 1 µm. The degree of damage to kidney function, pathological changes, and cell apoptosis induced by Cd+100 nm PS+1µm PS was the most severe. An increase in the Bax/Bcl2 ratio and overexpression of p53 and caspase-3 revealed that renal cell apoptosis might be induced via the mitochondrial pathway. Collectively, these findings demonstrate that the size of PS particles dictates the combined effects of PS and Cd in kidney tissues. Kidney damage caused by the combination of different sizes of PS particle and Cd is more complicated under actual environmental conditions.


Assuntos
Apoptose , Cádmio , Rim , Tamanho da Partícula , Poliestirenos , Animais , Poliestirenos/toxicidade , Masculino , Rim/efeitos dos fármacos , Rim/patologia , Camundongos , Apoptose/efeitos dos fármacos , Cádmio/toxicidade , Caspase 3/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Poluentes Ambientais/toxicidade
17.
Environ Sci Technol ; 58(27): 11945-11957, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38917348

RESUMO

The increasing prevalence and persistence of nanoplastics (NPs) have become critical environmental concerns. These particles have the potential to enter the food chain and accumulate in living organisms, which exerts their adverse effects on human health. The release of nanoparticles from feeding bottles raises concerns about potential health issues, especially for newborns exposed to NPs at the neonatal stage. In this study, we examined the impacts of neonatal exposure to polystyrene nanoplastics (PS-NPs) on neurodevelopment. Our study demonstrates that exposure to PS-NPs in newborn mice impairs microglial autophagic function and energy metabolism, leading to the disruption of microglia-mediated synaptic pruning during early neurodevelopment. These mice subsequently develop social behavioral defects in adulthood, suggesting the long-lasting effects of neonatal PS-NP exposure on brain development and behavior. Together, these data provide insights into the mechanism by which PS-NPs affect early neurodevelopment, thus emphasizing the crucial need to address plastic pollution globally.


Assuntos
Microglia , Poliestirenos , Camundongos , Animais , Microglia/efeitos dos fármacos , Poliestirenos/toxicidade , Animais Recém-Nascidos , Nanopartículas/toxicidade , Comportamento Social , Plasticidade Neuronal/efeitos dos fármacos
18.
Environ Geochem Health ; 46(7): 238, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849627

RESUMO

Microplastics (MPs) are defined as plastic particles or fragments with a diameter of less than 5 mm. These particles have been identified as causing male reproductive toxicity, although the precise mechanism behind this association is yet to be fully understood. Recent research has found that exposure to polystyrene microplastics (PS-MPs) can disrupt spermatogenesis by impacting the integrity of the blood-testis barrier (BTB), a formidable barrier within mammalian blood tissues. The BTB safeguards germ cells from harmful substances and infiltration by immune cells. However, the disruption of the BTB leads to the entry of environmental pollutants and immune cells into the seminiferous tubules, resulting in adverse reproductive effects. Additionally, PS-MPs induce reproductive damage by generating oxidative stress, inflammation, autophagy, and alterations in the composition of intestinal flora. Despite these findings, the precise mechanism by which PS-MPs disrupt the BTB remains inconclusive, necessitating further investigation into the underlying processes. This review aims to enhance our understanding of the pernicious effects of PS-MP exposure on the BTB and explore potential mechanisms to offer novel perspectives on BTB damage caused by PS-MPs.


Assuntos
Barreira Hematotesticular , Microplásticos , Poliestirenos , Microplásticos/toxicidade , Poliestirenos/toxicidade , Masculino , Humanos , Barreira Hematotesticular/efeitos dos fármacos , Animais , Espermatogênese/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Poluentes Ambientais/toxicidade
19.
ACS Appl Mater Interfaces ; 16(27): 34524-34537, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38926154

RESUMO

In recent years, the study of microplastics (MPs) and nanoplastics (NPs) and their effects on human health has gained significant attention. The impacts of NPs on lipid metabolism and the specific mechanisms involved remain poorly understood. To address this, we utilized high-throughput sequencing and molecular biology techniques to investigate how endoplasmic reticulum (ER) stress might affect hepatic lipid metabolism in the presence of polystyrene nanoplastics (PS-NPs). Our findings suggest that PS-NPs activate the PERK-ATF4 signaling pathway, which in turn upregulates the expression of genes related to lipid synthesis via the ATF4-PPARγ/SREBP-1 pathway. This activation leads to an abnormal accumulation of lipid droplets in the liver. 4-PBA, a known ER stress inhibitor, was found to mitigate the PS-NPs-induced lipid metabolism disorder. These results demonstrate the hepatotoxic effects of PS-NPs and clarify the mechanisms of abnormal lipid metabolism induced by PS-NPs.


Assuntos
Fator 4 Ativador da Transcrição , Poliestirenos , Transdução de Sinais , eIF-2 Quinase , Poliestirenos/química , Poliestirenos/toxicidade , Poliestirenos/farmacologia , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Animais , Camundongos , Transdução de Sinais/efeitos dos fármacos , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , Transtornos do Metabolismo dos Lipídeos/metabolismo , Transtornos do Metabolismo dos Lipídeos/induzido quimicamente , Transtornos do Metabolismo dos Lipídeos/tratamento farmacológico , Nanopartículas/química , Nanopartículas/toxicidade , Microplásticos/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL
20.
J Hazard Mater ; 474: 134823, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38852254

RESUMO

Nanoplastics (NPs) pollution has become a global environmental problem, raising numerous health concerns. However, the cardiotoxicity of NPs exposure and the underlying mechanisms have been understudied to date. To address this issue, we comprehensively evaluated the cardiotoxicity of polystyrene nanoplastics (PS-NPs) in both healthy and pathological states. Briefly, mice were orally exposed to four different concentrations (0 mg/day, 0.1 mg/day, 0.5 mg/day, and 2.5 mg/day) of 100-nm PS-NPs for 6 weeks to assess their cardiotoxicity in a healthy state. Considering that individuals with underlying health conditions are more vulnerable to the adverse effects of pollution, we further investigated the cardiotoxic effects of PS-NPs on pathological states induced by isoprenaline. Results showed that PS-NPs induced cardiomyocyte apoptosis, cardiac fibrosis, and myocardial dysfunction in healthy mice and exacerbated cardiac remodeling in pathological states. RNA sequencing revealed that PS-NPs significantly upregulated homeodomain interacting protein kinase 2 (HIPK2) in the heart and activated the P53 and TGF-beta signaling pathways. Pharmacological inhibition of HIPK2 reduced P53 phosphorylation and inhibited the activation of the TGF-ß1/Smad3 pathway, which in turn decreased PS-NPs-induced cardiotoxicity. This study elucidated the potential mechanisms underlying PS-NPs-induced cardiotoxicity and underscored the importance of evaluating nanoplastics safety, particularly for individuals with pre-existing heart conditions.


Assuntos
Cardiotoxicidade , Poliestirenos , Proteínas Serina-Treonina Quinases , Proteína Smad3 , Fator de Crescimento Transformador beta1 , Proteína Supressora de Tumor p53 , Regulação para Cima , Animais , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Proteína Smad3/metabolismo , Proteína Smad3/genética , Cardiotoxicidade/etiologia , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Poliestirenos/toxicidade , Regulação para Cima/efeitos dos fármacos , Masculino , Transdução de Sinais/efeitos dos fármacos , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Apoptose/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Nanopartículas/toxicidade , Miocárdio/metabolismo , Miocárdio/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA