Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.432
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-36673796

RESUMO

Cancer is one of the longest-known human diseases, yet only in recent times have we begun to perceive that the percentage of neoplasms caused by environmental factors, lifestyle and chemicals, is likely underestimated. The first medical reports associating cancer with pollutants like tars appeared by the early 20th century, but despite initial evidence relating oncogenesis and chromosomal alterations, only after the structure of DNA had been elucidated in the 1950s have genetic disorders been fully perceived as cause. This led to a growing interest in genotoxic and mutagenic pollutants. Even though we are now familiar with a range of environmental carcinogens spanning between aromatic hydrocarbons and asbestos to radionuclides and forms of carbon nanomaterials, establishing causal networks between pollutants and cancer remains cumbersome. In most part, this is due to the complexity of toxicant matrices, unknown modes-of-action of chemicals or their mixtures, the widening array of novel pollutants plus difficulties in subtracting background effects from true aetiology of disease. Recent advances in analytical chemistry, high-throughput toxicology, next-generation sequencing, computational biology and databases that allocate whole normal and cancer genomes, all indicate that we are on the verge of a new age of research into mechanistic 'oncotoxicology', but how can it impact risk assessment and prevention?


Assuntos
Carcinógenos Ambientais , Poluentes Ambientais , Neoplasias , Humanos , Carcinógenos/toxicidade , Mutagênicos/toxicidade , Neoplasias/induzido quimicamente , Neoplasias/genética , Poluentes Ambientais/toxicidade , Carcinógenos Ambientais/toxicidade , Causalidade
2.
Chemosphere ; 315: 137748, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36610509

RESUMO

In vivo, in vitro, and epidemiological evidence suggests that perfluoroalkyl substances (PFAS) may alter thyroid function in human health, with negative effects on maternal and fetal development outcomes. However, data on the effects of PFAS on thyroid hormones remain controversial. Here, we conducted a meta-analysis of 13 eligible studies searched from Embase, PubMed, and Web of Science by July 10, 2022, to explore the relationship between maternal exposure to PFAS and thyroid health effects, including thyroid stimulating hormone (TSH), triiodothyronine (TT3), thyroxin (TT4), free T3 (FT3), and free T4 (FT4). The estimated values (ß) and the corresponding confidence intervals (95%CI) were extracted for analysis. The tests for heterogeneity, sensitivity and publication bias between studies were performed using Stata 15.0. The combined results showed a positive association between changes in TSH and exposure to perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA), with no significant correlation observed between changes in other thyroid hormones and exposure to PFAS. This difference was attributed to sample size, region, sample type, body mass index (BMI), and gestational week. Our data recommend verifying the relationship between PFAS exposure and thyroid health effects in a large sample population cohort in future studies. In addition, health care should be taken into account in early and mid-pregnancy.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorcarbonetos , Gravidez , Feminino , Humanos , Glândula Tireoide , Poluentes Ambientais/toxicidade , Hormônios Tireóideos , Tireotropina , Fluorcarbonetos/toxicidade , Ácidos Alcanossulfônicos/toxicidade
4.
Theriogenology ; 198: 305-316, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634444

RESUMO

Due to environmental contamination, the environment constantly receives pollutants from various anthropic actions. These pollutants put ecological health at risk due to contamination and accumulation in living organisms, including wild animals and humans. Exposure can cause physiological, morphological, and behavioral changes in living beings. In this context, laboratory studies have frequently investigated how environmental contaminants affect the male reproductive system and gametes. However, few studies have examined how these contaminants affect male reproduction in naturally exposed animals. To better understand this topic, we conducted a systematic review of the effects of exposing male vertebrate animals to polluted environments on their reproductive functions. After an extensive search using the PubMed/MEDLINE, Scopus, and Web of Science databases, 39 studies met our inclusion criteria and were eligible for this review. This study showed that reproductive damages were frequent in fishes, amphibians, reptiles, birds, and mammals exposed to contaminated environments. Wild animals are exposed mainly to endocrine-disrupting compounds (EDCs), toxic metals, and radiation. Exposure to pollutants causes a reduction in androgen levels, impaired spermatogenesis, morphological damage to reproductive organs, and decreased sperm quality, leading to reduced fertility and population decline. Although several species have been studied, the number of studies is limited for some groups of vertebrates. Wildlife has proven valuable to our understanding of the potential effects of environmental contaminants on human and ecosystem health. Thus, some recommendations for future investigations are provided. This review also creates a baseline for the understanding state of the art in reproductive toxicology studies.


Assuntos
Ecossistema , Poluentes Ambientais , Animais , Masculino , Humanos , Sêmen , Vertebrados , Animais Selvagens , Poluentes Ambientais/toxicidade , Poluição Ambiental , Mamíferos , Genitália Masculina , Reprodução
5.
Artigo em Inglês | MEDLINE | ID: mdl-36673903

RESUMO

The Mohawks at Akwesasne have been highly exposed to polychlorinated biphenyls (PCBs), via releases from three aluminum foundries located near the reserve. They are also exposed to organochlorine pesticides, namely hexachlorobenzene (HCB), dichlorodiphenyldichloroethylene (DDE), and mirex. Previous studies have demonstrated reduced cognition in relation to total PCBs, but the effects of the mixtures of different PCB congener groups, HCB, DDE, and mirex on cognitive function have not been studied. Therefore, cognitive performance for executive function, scored via the digit symbol substitution test (DSST), in Mohawk adults aged 17-79 years (n = 301), was assessed in relation to serum concentrations of low-chlorinated PCBs, high-chlorinated PCBs, total PCBs, HCB, DDE, and mirex. We used mixture models employing the quantile-based g-computation method. The mixture effects of low-chlorinated PCBs, high-chlorinated PCBs, HCB, DDE, and mirex were significantly associated with 4.01 DSST scores decrements in the oldest age group, 47-79 years old. There were important contributions to mixture effects from low-chlorinated PCBs, high-chlorinated PCBs, and total PCBs, with smaller contributions of HCB and DDE. Our findings indicate that exposures to both low- and high-chlorinated PCBs increase the risk of cognitive decline in older adults, while DDE and HCB have less effect.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Clorados , Índios Norte-Americanos , Praguicidas , Bifenilos Policlorados , Humanos , Idoso , Pessoa de Meia-Idade , Bifenilos Policlorados/toxicidade , Mirex , Hexaclorobenzeno , Exposição Ambiental/análise , Hidrocarbonetos Clorados/toxicidade , Praguicidas/toxicidade , Cognição , Poluentes Ambientais/toxicidade
6.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674557

RESUMO

Humans are constantly exposed to many environmental pollutants, some of which have been largely acknowledged as key factors in the development of metabolic disorders such as diabetes and obesity. These chemicals have been classified as endocrine-disrupting chemicals (EDCs) and, more recently, since they can interfere with metabolic functions, they have been renamed as metabolism-disrupting chemicals (MDCs). MDCs are present in many consumer products, including food packaging, personal care products, plastic bottles and containers, and detergents. The scientific literature has ever-increasingly focused on insulin-releasing pancreatic ß-cells as one of the main targets for MDCs. Evidence highlights that these substances may disrupt glucose homeostasis by altering pancreatic ß-cell physiology. However, their potential impact on glucagon-secreting pancreatic α-cells remains poorly known despite the essential role that this cellular type plays in controlling glucose metabolism. In the present study, we have selected seven paradigmatic MDCs representing major toxic classes, including bisphenols, phthalates, perfluorinated compounds, metals, and pesticides. By using an in vitro cell-based model, the pancreatic α-cell line αTC1-9, we have explored the effects of these compounds on pancreatic α-cell viability, gene expression, and secretion. We found that cell viability was moderately affected after bisphenol-A (BPA), bisphenol-F (BPF), and perfluorooctanesulfonic acid (PFOS) exposure, although cytotoxicity was relatively low. In addition, all bisphenols, as well as di(2-ethylhexyl) phthalate (DEHP) and cadmium chloride (CdCl2), promoted a marked decreased on glucagon secretion, together with changes in the expression of glucagon and/or transcription factors involved in cell function and identity, such as Foxo1 and Arx. Overall, our results indicated that most of the selected chemicals studied caused functional alterations in pancreatic α-cells. Moreover, we revealed, for the first time, their direct effects on key molecular aspects of pancreatic α-cell biology.


Assuntos
Disruptores Endócrinos , Poluentes Ambientais , Humanos , Glucagon , Sobrevivência Celular , Poluentes Ambientais/toxicidade , Insulina , Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Expressão Gênica
10.
Environ Health ; 21(Suppl 1): 121, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635700

RESUMO

BACKGROUND: Understanding, characterizing, and quantifying human exposures to environmental chemicals is critical to protect public health. Exposure assessments are key to determining risks to the general population and for specific subpopulations given that exposures differ between groups. Exposure data are also important for understanding where interventions, including public policies, should be targeted and the extent to which interventions have been successful. In this review, we aim to show how inadequacies in exposure assessments conducted by polluting industries or regulatory agencies have led to downplaying or disregarding exposure concerns raised by communities; that underestimates of exposure can lead regulatory agencies to conclude that unacceptable risks are, instead, acceptable, allowing pollutants to go unregulated; and that researchers, risk assessors, and policy makers need to better understand the issues that have affected exposure assessments and how appropriate use of exposure data can contribute to health-protective decisions. METHODS: We describe current approaches used by regulatory agencies to estimate human exposures to environmental chemicals, including approaches to address limitations in exposure data. We then illustrate how some exposure assessments have been used to reach flawed conclusions about environmental chemicals and make recommendations for improvements. RESULTS: Exposure data are important for communities, public health advocates, scientists, policy makers, and other groups to understand the extent of environmental exposures in diverse populations. We identify four areas where exposure assessments need to be improved due to systemic sources of error or uncertainty in exposure assessments and illustrate these areas with examples. These include: (1) an inability of regulatory agencies to keep pace with the increasing number of chemicals registered for use or assess their exposures, as well as complications added by use of 'confidential business information' which reduce available exposure data; (2) the failure to keep assessments up-to-date; (3) how inadequate assumptions about human behaviors and co-exposures contribute to underestimates of exposure; and (4) that insufficient models of toxicokinetics similarly affect exposure estimates. CONCLUSION: We identified key issues that impact capacity to conduct scientifically robust exposure assessments. These issues must be addressed with scientific or policy approaches to improve estimates of exposure and protect public health.


Assuntos
Exposição Ambiental , Poluentes Ambientais , Humanos , Exposição Ambiental/efeitos adversos , Exposição Ambiental/prevenção & controle , Poluentes Ambientais/toxicidade , Poluentes Ambientais/análise , Saúde Pública , Política Pública , Incerteza , Medição de Risco
11.
Ecotoxicol Environ Saf ; 250: 114491, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36603486

RESUMO

Many priority pollutants are concentrated in the environment due to human activity. Most are highly toxic to various organisms, including endocrine disruptors EDCs, aromatic polycyclic hydrocarbons PAHs, pesticides. While the effects of single and binary exposure have been widely explored, several pollutants can be simultaneously present at the same time in the environment, in in more or less polluted matrices. Effective pollution control requires the presence and sources of contamination to be identified. Previously we used Drosophila melanogaster to investigate metal pollution. Here, we re-used Drosophila to identify the biomarkers of pollution, and to determine if they can be used for specific types of pollution. Single and combined exposure of Bis(2-ethylhexyl) phthalate (DEHP), bisphenol A, nonylphenol, benzo(a)pyrene, and glyphosate was investigated. The impact of these pollutants on post-embryonic development and the expression pattern of 38 molecular targets were examined using qPCR. During single exposure, different profiles were observed at the molecular level. In complex mixtures, the expression profile resembled that of bisphenol A. In contrast, relatively specific gene expression profiles were obtained for the effects of each pollutant separately. While direct pollutant-gene profiling remains difficult in mixtures, molecular biology analyses enhance pollution monitoring, and should be incorporated in toxicological studies.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Animais , Humanos , Poluentes Ambientais/toxicidade , Poluentes Ambientais/análise , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Desenvolvimento Embrionário , Expressão Gênica
12.
J Toxicol Environ Health B Crit Rev ; 26(1): 28-65, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36617662

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are legacy pollutants of considerable public health concern. Polycyclic aromatic hydrocarbons arise from natural and anthropogenic sources and are ubiquitously present in the environment. Several PAHs are highly toxic to humans with associated carcinogenic and mutagenic properties. Further, more severe harmful effects on human- and environmental health have been attributed to the presence of high molecular weight (HMW) PAHs, that is PAHs with molecular mass greater than 300 Da. However, more research has been conducted using low molecular weight (LMW) PAHs). In addition, no HMW PAHs are on the priority pollutants list of the United States Environmental Protection Agency (US EPA), which is limited to only 16 PAHs. However, limited analytical methodologies for separating and determining HMW PAHs and their potential isomers and lack of readily available commercial standards make research with these compounds challenging. Since most of the PAH kinetic data originate from animal studies, our understanding of the effects of PAHs on humans is still minimal. In addition, current knowledge of toxic effects after exposure to PAHs may be underrepresented since most investigations focused on exposure to a single PAH. Currently, information on PAH mixtures is limited. Thus, this review aims to critically assess the current knowledge of PAH chemical properties, their kinetic disposition, and toxicity to humans. Further, future research needs to improve and provide the missing information and minimize PAH exposure to humans.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Animais , Humanos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Monitoramento Ambiental/métodos , Corpo Humano , Poluentes Ambientais/toxicidade , Poluentes Ambientais/análise , Carcinógenos
13.
Environ Res ; 219: 115158, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36580988

RESUMO

Occupational workers and residents near petrochemical industry facilities are exposed to multiple contaminants on a daily basis. However, little is known about the co-exposure effects of different pollutants based on biotransformation. The study examined benzo[a]pyrene (BaP), a representative polycyclic aromatic hydrocarbon related to the petrochemical industry, to investigate changes in toxicity and co-exposure mechanism associated with different monoaromatic hydrocarbons (MAHs). A central composite design method was used to simulate site co-exposure scenarios to reveal biotransformation of BaP when co-exposed with benzene, toluene, chlorobenzene, or nitrobenzene in microsome systems. BaP metabolism depended on MAH concentration, and association of MAH with microsome concentration/incubation time. Particularly, MAH co-exposure negatively affected BaP glucuronidation, an important phase Ⅱ detoxification process. BaP metabolite intensities decreased to 43%-80% for OH-BaP-G, and 32%-71% for diOH-BaP-G in co-exposure system with MAHs, compared with control group. Furthermore, glucuronidation was affected by competitive and time-dependent inhibition. Co-exposure significantly decreased gene expression of UGT 1A10 and BCRP/ABCG2 in HepG2 cells, which are involved in BaP detoxification through metabolism and transmembrane transportation. Therefore, human co-exposure to multiple contaminants may deteriorate toxic effects of these chemicals by disturbing metabolic pathways. This study provides a reference for assessing toxic effects and co-exposure risks of pollutants.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Benzo(a)pireno/toxicidade , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Proteínas de Neoplasias/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Ambientais/toxicidade , Tolueno
14.
Environ Res ; 216(Pt 3): 114718, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334833

RESUMO

OBJECTIVE: The reproductive toxicity of perfluoroalkyl and polyfluoroalkyl substances (PFAS) has been verified in both animal and in vitro experiments, however, the association between PFAS and female fertility remains contradictory in population studies. Therefore, in this systematic review and meta-analysis, we evaluated the effects of PFAS on female fertility based on population evidence. METHODS: Electronic searches of the Web of Science, PubMed, The Cochrane Library, and Embase databases were conducted (from inception to March 2022) to collect observational studies related to PFAS and female fertility. Two evaluators independently screened the literature, extracted information and evaluated the risk of bias for the included studies, meta-analysis was performed using R software. RESULTS: A total of 5468 records were searched and 13 articles fully met the inclusion criteria. Meta-analysis showed that perfluorooctanoic acid (PFOA) exposure was negatively associated with the female fecundability odds ratio (FOR = 0.88, 95% confidence interval (Cl) [0.78; 0.98]) and positively associated with the odds ratio for infertility (OR = 1.33, 95%Cl [1.03; 1.73]). Perfluorooctane sulfonate (PFOS) exposure was negatively associated with the fecundability odds ratio (FOR = 0.94, 95% CI [0.90; 0.98]). Pooled effect values for perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluorohexane sulfonate (PFHxS) exposure did not find sufficient evidence for an association with female fertility. CONCLUSION: Based on the evidence provided by the current study, increased levels of PFAS exposure are associated with reduced fertility in women, this was characterized by a reduction in fecundability odds ratio and an increase in odds ratio for infertility. This finding could partially explain the decline in female fertility and provide insight into risk assessment when manufacturing products containing PFAS.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorcarbonetos , Infertilidade , Animais , Feminino , Fluorcarbonetos/toxicidade , Poluentes Ambientais/toxicidade , Ácidos Alcanossulfônicos/toxicidade , Reprodução , Fertilidade
15.
Environ Int ; 171: 107678, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36516674

RESUMO

Prenatal phthalate exposure has previously been linked to the development of autism spectrum disorder (ASD). However, the underlying biological mechanisms remain unclear. We investigated whether maternal and child central carbon metabolism is involved as part of the Barwon Infant Study (BIS), a population-based birth cohort of 1,074 Australian children. We estimated phthalate daily intakes using third-trimester urinary phthalate metabolite concentrations and other relevant indices. The metabolome of maternal serum in the third trimester, cord serum at birth and child plasma at 1 year were measured by nuclear magnetic resonance. We used the Small Molecule Pathway Database and principal component analysis to construct composite metabolite scores reflecting metabolic pathways. ASD symptoms at 2 and 4 years were measured in 596 and 674 children by subscales of the Child Behavior Checklist and the Strengths and Difficulties Questionnaire, respectively. Multivariable linear regression analyses demonstrated (i) prospective associations between higher prenatal di-(2-ethylhexyl) phthalate (DEHP) levels and upregulation of maternal non-oxidative energy metabolism pathways, and (ii) prospective associations between upregulation of these pathways and increased offspring ASD symptoms at 2 and 4 years of age. Counterfactual mediation analyses indicated that part of the mechanism by which higher prenatal DEHP exposure influences the development of ASD symptoms in early childhood is through a maternal metabolic shift in pregnancy towards non-oxidative energy pathways, which are inefficient compared to oxidative metabolism. These results highlight the importance of the prenatal period and suggest that further investigation of maternal energy metabolism as a molecular mediator of the adverse impact of prenatal environmental exposures such as phthalates is warranted.


Assuntos
Transtorno do Espectro Autista , Dietilexilftalato , Poluentes Ambientais , Ácidos Ftálicos , Efeitos Tardios da Exposição Pré-Natal , Criança , Gravidez , Lactente , Recém-Nascido , Feminino , Humanos , Pré-Escolar , Estudos de Coortes , Dietilexilftalato/toxicidade , Transtorno do Espectro Autista/induzido quimicamente , Poluentes Ambientais/toxicidade , Austrália , Ácidos Ftálicos/toxicidade , Ácidos Ftálicos/análise , Exposição Ambiental/análise , Metabolismo Energético , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Exposição Materna/efeitos adversos
16.
Environ Int ; 171: 107711, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36566717

RESUMO

Micro/nanoplastics (MPs/NPs) are ubiquitous in the environment and living organisms have been exposed to these substances for a long time. When MPs/NPs enter different organisms, they transport various pollutants, including heavy metals, persistent organic pollutants, drugs, bacteria, and viruses, from the environment. On this basis, this paper summarizes the combined toxicity induced by MPs/NPs accumulating contaminants from the environment and entering organisms through a systematic review of 162 articles. Moreover, the factors influencing toxic interactions are critically discussed, thus highlighting the dominant role of the relative concentrations of contaminants in the combined toxic effects. Furthermore, for the first time, we describe the threats posed by MPs/NPs combined with other pollutants to human health, as well as their cytotoxic behavior and mechanism. We found that the "Trojan horse" effect of nanoplastics can increase the bioaccessibility of environmental pollutants, thus increasing the carcinogenic risk to humans. Simultaneously, the complex pollutants entering the cells are observed to be constantly dissociated due to the transport of lysosomes. However, current research on the intracellular release of MP/NP-loaded pollutants is relatively poor, which hinders the accurate in vivo toxicity assessment of combined pollutants. Based on the findings of our critical review, we recommend analyzing the toxic effects by clarifying the dose relationship of each component pollutant in cells, which is challenging yet crucial to exploring the toxic mechanism of combined pollution. In the future, our findings can contribute to establishing a system modeling the complete load-translocation toxicological mechanism of MP/NP-based composite pollutants.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Humanos , Poluentes Ambientais/toxicidade , Microplásticos/toxicidade , Plásticos/toxicidade , Poluentes Químicos da Água/análise , Poluição Ambiental
17.
Environ Pollut ; 319: 120956, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36581241

RESUMO

Previous studies have shown associations between prenatal phthalate exposure and neurobehavioral changes in children. However, few studies have focused on neonatal neurobehavioral development. This study aimed to examine the associations between prenatal phthalate exposure and neonatal neurobehavioral development in the early days of life after birth. This cohort study included 283 mother-infant pairs who participated in the Taiwan Mother Infant Cohort Study during 2012-2015. Each mother was interviewed, and urine samples were collected during the third trimester of pregnancy (weeks 29-40). Eleven common phthalate metabolites in maternal urine were analyzed. The Chinese version of the Neonatal Neurobehavioral Examination was used to evaluate early infant neurobehavioral development within five days of birth. We performed multiple linear regressions to explore the associations between phthalate exposure and neonatal neurobehavioral development. Sex differences in the association between phthalate metabolites and neonatal neurobehaviors were noted. Among girls, tertiles of phthalate metabolite concentrations were associated with worse behavioral responses and tone and motor patterns in the high-molecular-weight phthalate (HMW) and low-molecular-weight phthalate (LMW) groups. Girls in the highest tertile of di-2-ethylhexyl phthalate (DEHP) and mono-isobutyl phthalate (MiBP) had a negative association with tone and motor patterns. Girls in the highest tertile of mono-n-butyl phthalate (MnBP) and MiBP showed a negative association with behavioral responses. In contrast, tertiles of phthalate metabolite exposure were associated with improved neurobehaviors in mono-methyl phthalate (MMP) among boys. The highest tertile of MMP was positively associated with behavioral responses, primitive reflexes, and tone and motor patterns. Our findings suggest that maternal phthalate exposure affects neonatal neurobehavioral development in a sex-specific manner. Despite the relatively small sample size, our findings add to the existing research linking maternal phthalate exposure to neonatal neurobehavioral development. Additional research is needed to determine the potential long-term effects of prenatal phthalate exposure on children.


Assuntos
Poluentes Ambientais , Ácidos Ftálicos , Efeitos Tardios da Exposição Pré-Natal , Criança , Gravidez , Recém-Nascido , Humanos , Masculino , Lactente , Feminino , Estudos de Coortes , Taiwan , Exposição Materna/efeitos adversos , Ácidos Ftálicos/metabolismo , Sobrepeso , Exposição Ambiental , Poluentes Ambientais/toxicidade , Poluentes Ambientais/urina
18.
Environ Pollut ; 317: 120828, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36481468

RESUMO

Prenatal exposure to endocrine-disrupting chemicals has been linked to gestational hypertension (GH) and preeclampsia (PE). However, the results were conflicting and inconclusive. We conducted a systematic review and meta-analysis for an overview of these relationships. We searched PubMed, and Google Scholar for studies investigating bisphenol A, phthalates, and per or poly-fluoroalkyl substances and GH or PE. Pooled odds ratio (OR) with a 95% confidence interval (CI) were calculated for risk estimate using the generic inverse variance method. A total of 14 studies were included in the present analysis. The pooled results demonstrated that perfluorooctanoic acid (PFOA, OR:1.20, 95% CI: 1.04, 1.39), perfluoro octane sulfonic acid (PFOS, (OR:1.23, 95% CI: 1.10, 1.38), and perfluononanoic acid (PFNA, OR:1.20, 95% CI: 1.03, 1.40) were significantly associated with an increased risk of PE. There was no significant association observed with perfluoro hexane sulfonic acid (PFHxS), perfluoro decanoic acid (PFDA), perfluoro heptanoic acid (PFHpA), and perfluoro undecanoic acid (PFUnDA) and PE. For GH, a statistically significant positive association was found with PFOA (OR:1.18, 95% CI: 1.01, 1.39) and PFHxS (OR:1.15, 95% CI: 1.02, 1.29). Among various phthalates analysed only mono-ethyl phthalate (MEP, OR:1.37, 95% CI: 1.11, 1.70) showed an association with GH. From our analysis, bisphenol A exposure during pregnancy did not show a significant association with the risk of PE. Our findings indicated that exposure to PFASs such as PFOA, PFOS, and PFNA during pregnancy is associated with an increased risk of PE and PFOA and PFHxS with GH. We also found that MEP was associated with GH. Most of the results were unstable in sensitivity analysis. Since most of these associations have limited evidence, more research is needed to confirm these findings.


Assuntos
Ácidos Alcanossulfônicos , Disruptores Endócrinos , Poluentes Ambientais , Fluorcarbonetos , Hipertensão Induzida pela Gravidez , Pré-Eclâmpsia , Feminino , Gravidez , Humanos , Hipertensão Induzida pela Gravidez/induzido quimicamente , Hipertensão Induzida pela Gravidez/epidemiologia , Pré-Eclâmpsia/induzido quimicamente , Pré-Eclâmpsia/epidemiologia , Poluentes Ambientais/toxicidade , Disruptores Endócrinos/toxicidade , Ácidos Sulfônicos , Fluorcarbonetos/toxicidade
19.
Environ Res ; 216(Pt 1): 114342, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181894

RESUMO

Plastics, micro- and nano-plastics pollution are undoubtedly a severe and crucial ecological threat due to the durability of plastics and their destructive impacts on humans and wildlife. Most scientific investigations have addressed the classification, types, distribution, ingestion, fate, impacts, degradation, and various adverse effect of plastics. Heretofore, scanty reports have addressed implementing strategies for the remediation and mitigation of plastics. Therefore, in this paper, we review the current studies on the degradation of plastics, micro- and nano-plastics aided by microorganisms, and explore the relevant degradation properties and mechanisms. Diverse microorganisms are classified, such as bacteria, fungi, algae, cyanobacteria, wax worms, and enzymes that can decompose various plastics. Furthermore, bio-degradation is influenced by microbial features and environmental parameters; therefore, the ecological factors affecting plastic degradation and the resulting degradation consequences are discussed. In addition, the mechanisms underlying microbial-mediated plastic degradation are carefully studied. Finally, upcoming research directions and prospects for plastics degradation employing microorganisms are addressed. This review covers a comprehensive overview of the microorganism-assisted degradation of plastics, micro- and nano-plastics, and serves as a resource for future research into sustainable plastics pollution management methods.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Humanos , Poluentes Ambientais/toxicidade , Poluentes Ambientais/metabolismo , Microplásticos/toxicidade , Poluição Ambiental , Fungos , Biotecnologia , Biodegradação Ambiental , Poluentes Químicos da Água/metabolismo
20.
Environ Res ; 216(Pt 1): 114474, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36202243

RESUMO

BACKGROUND: Phenolic compounds with potential adverse health effects are gradually being replaced. Little is known about the potential health risks of BPA, BP3, and TCS exposure in children and adolescents aged 6-19 years in the United States. OBJECTIVES: To determine trends and rates of change in hazard indices (HI) for three phenolics in U.S. children and adolescents for BPA, BP3, TCS, and to assess changes in gender, race/ethnicity, age, and potential health risks. METHODS: Metabolic biomonitoring data from field-collected urine samples from the National Health and Nutrition Examination Survey (NHANES) were utilized. Daily intake of three phenols (bisphenol A, benzophenone-3, and triclosan) between 2005 and 2016 in children and adolescents were obtained. Cumulative risk indicators, including hazard quotient (HQ), hazard index (HI), and maximum cumulative ratio (MCR), were used for the health risk assessment of the three phenols. RESULTS: During this period, the change in LSGM HI was -2.9% per cycle [95% Cl: (-3.7%, -2.2%)], and the percentage of participants with HI > 0.1 decreased from 15.6% to 10.5%. Children (6-11 years) had higher mean HI values than adolescents (12-19 years), while female had higher LSGM HI values than male. MCR values were generally low and negatively correlated with HI. However, the average value of MCR increased from 1.722 to 2.107 during this period. CONCLUSION: Exposure to phenolics among U.S. children and adolescents has changed in recent decades. However, gaps in data limit the interpretation of trends but legislative activity and advocacy campaigns by nongovernmental organizations may play a role in changing trends. Moreover, there are growing concerns about the potential health risks associated with exposure to multiple phenols in children and adolescents.


Assuntos
Poluentes Ambientais , Triclosan , Criança , Adolescente , Masculino , Feminino , Humanos , Estados Unidos , Triclosan/toxicidade , Triclosan/urina , Inquéritos Nutricionais , Poluentes Ambientais/toxicidade , Poluentes Ambientais/urina , Exposição Ambiental , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/urina , Fenóis/toxicidade , Fenóis/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...