Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36.502
Filtrar
1.
Int J Nanomedicine ; 19: 6337-6358, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38946884

RESUMO

Background: It is well-established that osteoclast activity is significantly influenced by fluctuations in intracellular pH. Consequently, a pH-sensitive gated nano-drug delivery system represents a promising therapeutic approach to mitigate osteoclast overactivity. Our prior research indicated that naringin, a natural flavonoid, effectively mitigates osteoclast activity. However, naringin showed low oral availability and short half-life, which hinders its clinical application. We developed a drug delivery system wherein chitosan, as gatekeepers, coats mesoporous silica nanoparticles loaded with naringin (CS@MSNs-Naringin). However, the inhibitory effects of CS@MSNs-Naringin on osteoclasts and the underlying mechanisms remain unclear, warranting further research. Methods: First, we synthesized CS@MSNs-Naringin and conducted a comprehensive characterization. We also measured drug release rates in a pH gradient solution and verified its biosafety. Subsequently, we investigated the impact of CS@MSNs-Naringin on osteoclasts induced by bone marrow-derived macrophages, focusing on differentiation and bone resorption activity while exploring potential mechanisms. Finally, we established a rat model of bilateral critical-sized calvarial bone defects, in which CS@MSNs-Naringin was dispersed in GelMA hydrogel to achieve in situ drug delivery. We observed the ability of CS@MSNs-Naringin to promote bone regeneration and inhibit osteoclast activity in vivo. Results: CS@MSNs-Naringin exhibited high uniformity and dispersity, low cytotoxicity (concentration≤120 µg/mL), and significant pH sensitivity. In vitro, compared to Naringin and MSNs-Naringin, CS@MSNs-Naringin more effectively inhibited the formation and bone resorption activity of osteoclasts. This effect was accompanied by decreased phosphorylation of key factors in the NF-κB and MAPK signaling pathways, increased apoptosis levels, and a subsequent reduction in the production of osteoclast-specific genes and proteins. In vivo, CS@MSNs-Naringin outperformed Naringin and MSNs-Naringin, promoting new bone formation while inhibiting osteoclast activity to a greater extent. Conclusion: Our research suggested that CS@MSNs-Naringin exhibited the strikingly ability to anti-osteoclasts in vitro and in vivo, moreover promoted bone regeneration in the calvarial bone defect.


Assuntos
Regeneração Óssea , Flavanonas , Nanopartículas , Osteoclastos , Dióxido de Silício , Flavanonas/química , Flavanonas/farmacologia , Flavanonas/farmacocinética , Flavanonas/administração & dosagem , Animais , Osteoclastos/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Dióxido de Silício/química , Concentração de Íons de Hidrogênio , Nanopartículas/química , Ratos , Camundongos , Ratos Sprague-Dawley , Quitosana/química , Masculino , Liberação Controlada de Fármacos , Porosidade , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Reabsorção Óssea/tratamento farmacológico , Células RAW 264.7 , Sistemas de Liberação de Medicamentos/métodos , Diferenciação Celular/efeitos dos fármacos
2.
Int J Nanomedicine ; 19: 6449-6462, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38946883

RESUMO

Purpose: Functional inorganic nanomaterials (NMs) are widely exploited as bioactive materials and drug depots. The lack of a stable form of application of NMs at the site of skin injury, may impede the removal of the debridement, elevate pH, induce tissue toxicity, and limit their use in skin repair. This necessitates the advent of innovative wound dressings that overcome the above limitations. The overarching objective of this study was to exploit strontium-doped mesoporous silicon particles (PSiSr) to impart multifunctionality to poly(lactic-co-glycolic acid)/gelatin (PG)-based fibrous dressings (PG@PSiSr) for excisional wound management. Methods: Mesoporous silicon particles (PSi) and PSiSr were synthesized using a chemo-synthetic approach. Both PSi and PSiSr were incorporated into PG fibers using electrospinning. A series of structure, morphology, pore size distribution, and cumulative pH studies on the PG@PSi and PG@PSiSr membranes were performed. Cytocompatibility, hemocompatibility, transwell migration, scratch wound healing, and delineated angiogenic properties of these composite dressings were tested in vitro. The biocompatibility of composite dressings in vivo was assessed by a subcutaneous implantation model of rats, while their potential for wound healing was discerned by implantation in a full-thickness excisional defect model of rats. Results: The PG@PSiSr membranes can afford the sustained release of silicon ions (Si4+) and strontium ions (Sr2+) for up to 192 h as well as remarkably promote human umbilical vein endothelial cells (HUVECs) and NIH-3T3 fibroblasts migration. The PG@PSiSr membranes also showed better cytocompatibility, hemocompatibility, and significant formation of tubule-like networks of HUVECs in vitro. Moreover, PG@PSiSr membranes also facilitated the infiltration of host cells and promoted the deposition of collagen while reducing the accumulation of inflammatory cells in a subcutaneous implantation model in rats as assessed for up to day 14. Further evaluation of membranes transplanted in a full-thickness excisional wound model in rats showed rapid wound closure (PG@SiSr vs control, 96.1% vs 71.7%), re-epithelialization, and less inflammatory response alongside skin appendages formation (eg, blood vessels, glands, hair follicles, etc.). Conclusion: To sum up, we successfully fabricated PSiSr particles and prepared PG@PSiSr dressings using electrospinning. The PSiSr-mediated release of therapeutic ions, such as Si4+ and Sr2+, may improve the functionality of PLGA/Gel dressings for an effective wound repair, which may also have implications for the other soft tissue repair disciplines.


Assuntos
Bandagens , Gelatina , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Silício , Pele , Estrôncio , Cicatrização , Gelatina/química , Animais , Estrôncio/química , Estrôncio/farmacologia , Cicatrização/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Pele/efeitos dos fármacos , Porosidade , Ratos , Humanos , Silício/química , Ratos Sprague-Dawley , Camundongos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Masculino , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
3.
Nat Commun ; 15(1): 5518, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951539

RESUMO

Determining short-lived intermediate structures in chemical reactions is challenging. Although ultrafast spectroscopic methods can detect the formation of transient intermediates, real-space structures cannot be determined directly from such studies. Time-resolved serial femtosecond crystallography (TR-SFX) has recently proven to be a powerful method for capturing molecular changes in proteins on femtosecond timescales. However, the methodology has been mostly applied to natural proteins/enzymes and limited to reactions promoted by synthetic molecules due to structure determination challenges. This work demonstrates the applicability of TR-SFX for investigations of chemical reaction mechanisms of synthetic metal complexes. We fix a light-induced CO-releasing Mn(CO)3 reaction center in porous hen egg white lysozyme (HEWL) microcrystals. By controlling light exposure and time, we capture the real-time formation of Mn-carbonyl intermediates during the CO release reaction. The asymmetric protein environment is found to influence the order of CO release. The experimentally-observed reaction path agrees with quantum mechanical calculations. Therefore, our demonstration offers a new approach to visualize atomic-level reactions of small molecules using TR-SFX with real-space structure determination. This advance holds the potential to facilitate design of artificial metalloenzymes with precise mechanisms, empowering design, control and development of innovative reactions.


Assuntos
Manganês , Muramidase , Muramidase/química , Manganês/química , Cristalografia por Raios X , Porosidade , Complexos de Coordenação/química , Modelos Moleculares , Animais , Monóxido de Carbono/química , Fatores de Tempo , Galinhas
4.
BMC Musculoskelet Disord ; 25(1): 510, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961446

RESUMO

PURPOSE: Crowe IV developmental dysplasia of the hip (DDH) is a catastrophic hip disease. Moreover, obtaining ideal clinical efficacy in conventional total hip arthroplasty (THA) is often difficult. In this study, we aimed to assess the mid-term clinical results of THA with porous tantalum trabecular metal (TM) pads for acetabular reconstruction in the treatment of Crowe IV DDH. METHODS: A cohort of 28 patients (32 hips) diagnosed with Crowe type IV DDH who underwent acetabular reconstruction during THA using TM pads with scheduled follow-up between 2011 and 2018, were included in this study. Eight cases were men and 24 were women, with a mean age of 48.4 years (range, 36-72 years) and a mean follow-up was 74.3 months (range, 42-132 months). All patients underwent acetabular reconstruction using TM pads and total hip replacement with subtrochanteric osteotomy. RESULTS: At the final follow-up, 28 hips (87.5%) demonstrated mild or no postoperative limping. The Harris Hip Score improved from 58.4 ± 10.6 preoperatively to 85.6 ± 8.9. The mean pain, stiffness, and function scores on the Western Ontario and McMaster University Osteoarthritis index were 86.5 ± 10.2, 87.3 ± 12.4 and 85.4 ± 11.6 respectively. The mean score of patient satisfaction was 90.4 ± 7.6. Additionally, the SF-12 physical summary score was 41.8 ± 5.6 and the SF-12 mental summary score was 51.6 ± 5.4. TM construct survivorship due to all-cause failure was 90.6% at 5 years with 3 hips at risk, 87.5% at 10 years with 4 hips at risk. The survivorship due to failure from aseptic loosening was 96.9% at 5 years with 1hips at risk and 93.75% at 10 years with 2 hips at risk. CONCLUSION: This study demonstrated satisfactory mid-term clinical and radiological results with the application of TM pads for acetabular reconstruction combined with THA in patients with Crowe IV DDH. TRIAL REGISTRATION NUMBER: ChiCTR1800014526, Date: 18/01/2018.


Assuntos
Artroplastia de Quadril , Displasia do Desenvolvimento do Quadril , Prótese de Quadril , Tantálio , Humanos , Artroplastia de Quadril/instrumentação , Artroplastia de Quadril/métodos , Pessoa de Meia-Idade , Feminino , Masculino , Idoso , Adulto , Seguimentos , Displasia do Desenvolvimento do Quadril/cirurgia , Displasia do Desenvolvimento do Quadril/diagnóstico por imagem , Resultado do Tratamento , Acetábulo/cirurgia , Acetábulo/diagnóstico por imagem , Desenho de Prótese , Estudos Retrospectivos , Porosidade
5.
Anal Chim Acta ; 1316: 342879, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969416

RESUMO

BACKGROUND: Chirality is a ubiquitous phenomenon in nature, but enantiomers exhibit different pharmacological activities and toxicological effects. Therefore, Chiral recognition plays a pivotal role in various fields such as life sciences, chemical synthesis, drug development, and materials science. The synthesis of novel chiral composites with well-defined loading capabilities and ordered structures holds significant potential for electrochemical chiral recognition applications. However, the design of selective and stable electrochemical chiral recognition materials remains a challenging task. RESULT: In this work, we construct a simple and rapid electrochemical sensing platform for tryptophan (Trp) enantiomer recognition using cyclodextrin-modified microporous organic network as chiral recognition agent. CD-MON with chiral microenvironment was prepared by Sonogashira-Hagihara coupling reaction of the chiral molecule heptyl-6-iodo-6-deoxyß-cyclodextrin and 1, 4-Diethynylbenzene. The adhesion of BSA makes CD-MON firmly fixed on the electrode surface, and as a chiral protein, it can improve the chiral recognition ability through synergistic effect. Chiral amino acids are in full contact with the chiral microenvironment during pore conduction of MON, and L-Trp is more stably bound to CD-MON/BSA due to steric hindrance, host-guest recognition and hydrogen bonding. Therefore, the electrochemical sensor can effectively identify tryptophan enantiomers (IL-Trp/ID-Trp = 2.02), and it exhibits a detection limit of 2.6 µM for L-Trp. UV-Vis spectroscopy confirmed the adsorption capacity of CD-MON towards tryptophan enantiomers in agreement with electrochemistry results. SIGNIFICANCE: The prepared chiral sensor has excellent stability, reproducibility (RSD = 3.7%) and selectivity, realizes the quantitative detection of single isomer in tryptophan racemic and quantitative analysis in real samples with 94.0%-101.0% recovery. This work represents the first application of MON in chiral electrochemistry which expands the application scope of chiral sensors and holds great significance in separation science and electrochemical sensing.


Assuntos
Ciclodextrinas , Técnicas Eletroquímicas , Estereoisomerismo , Técnicas Eletroquímicas/métodos , Ciclodextrinas/química , Porosidade , Triptofano/análise , Triptofano/química , Aminoácidos/análise , Aminoácidos/química , Limite de Detecção , Animais , Eletrodos , Soroalbumina Bovina/química
6.
Methods Enzymol ; 700: 455-483, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38971610

RESUMO

Over the years, it has become more and more obvious that lipid membranes show a very complex behavior. This behavior arises in part from the large number of different kinds of lipids and proteins and how they dynamically interact with each other. In vitro studies using artificial membrane systems have shed light on the heterogeneity based on lipid-lipid interactions in multicomponent bilayer mixtures. Inspired by the raft hypothesis, the coexistence of liquid-disordered (ld) and liquid-ordered (lo) phases has drawn much attention. It was shown that ternary lipid mixtures containing low- and high-melting temperature lipids and cholesterol can phase separate into a lo phase enriched in the high-melting lipids and cholesterol and a ld phase enriched in the low-melting lipids. Depending on the model membrane system under investigation, different domain sizes, shapes, and mobilities have been found. Here, we describe how to generate phase-separated lo/ld phases in model membrane systems termed pore-spanning membranes (PSMs). These PSMs are prepared on porous silicon substrates with pore sizes in the micrometer regime. A proper functionalization of the top surface of the substrates is required to achieve the spreading of giant unilamellar vesicles (GUVs) to obtain PSMs. Starting with lo/ld phase-separated GUVs lead to membrane heterogeneities in the PSMs. Depending on the functionalization strategy of the top surface of the silicon substrate, different membrane heterogeneities are observed in the PSMs employing fluorescence microscopy. A quantitative analysis of the heterogeneity as well as the dynamics of the lipid domains is described.


Assuntos
Bicamadas Lipídicas , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Porosidade , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Colesterol/química
7.
J Mater Sci Mater Med ; 35(1): 38, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958834

RESUMO

Fabrication of porous tissue-engineering scaffolds from bioactive glasses (BAG) is complicated by the tendency of BAG compositions to crystallize in thermal treatments during scaffold manufacture. Here, experimental biocompatible glass S59 (SiO2 59.7 wt%, Na2O 25.5 wt%, CaO 11.0 wt%, P2O5 2.5 wt%, B2O3 1.3 wt%), known to be resistant to crystallization, was used in sintering of glass granules (300-500 µm) into porous scaffolds. The dissolution behavior of the scaffolds was then studied in vivo in rabbit femurs and under continuous flow conditions in vitro (14 days in vitro/56 days in vivo). The scaffolds were osteoconductive in vivo, as bone could grow into the scaffold structure. Still, the scaffolds could not induce sufficiently rapid bone ingrowth to replace the strength lost due to dissolution. The scaffolds lost their structure and strength as the scaffold necks dissolved. In vitro, S59 dissolved congruently throughout the 14-day experiments, resulting in only a slight reaction layer formation. Manufacturing BAG scaffolds from S59 that retain their amorphous structure was thus possible. The relatively rapid and stable dissolution of the scaffold implies that the glass S59 may have the potential to be used in composite implants providing initial strength and stable, predictable release of ions over longer exposure times.


Assuntos
Materiais Biocompatíveis , Vidro , Teste de Materiais , Engenharia Tecidual , Alicerces Teciduais , Animais , Coelhos , Alicerces Teciduais/química , Vidro/química , Materiais Biocompatíveis/química , Porosidade , Engenharia Tecidual/métodos , Fêmur , Solubilidade , Substitutos Ósseos/química , Regeneração Óssea
8.
PLoS One ; 19(7): e0303595, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38995911

RESUMO

The reaction between the lixiviant and the minerals in the aquifer of In-situ uranium leaching (ISL) will result mineral dissolution and precipitation. ISL will cause changes in the chemical composition of groundwater and the porosity and permeability of aquifer, as well as groundwater pollution. Previous studies lack three-dimension numerical simulation that includes a variety of minerals and considers changes in porosity and permeability properties simultaneously. To solve these problems, a three-dimensional reactive transport model (RTM) which considered minerals, main water components and changes in porosity and permeability properties in Bayanwula mine has been established. The results revealed that: (1) Uranium elements were mainly distributed inside the mining area and had a weak trend of migration to the outside. The strong acidity liquid is mainly in the mining area, and the acidity liquid dissolved the minerals during migrating to the outside of the mining area. The concentration front of major metal cations such as K+, Na+, Ca2+ and Mg2+ is about 150m away from the boundary. (2) The main dissolved minerals include feldspar, pyrite, calcite, sodium montmorillonite and calcium montmorillonite. Calcite is the most soluble mineral and one of the sources of gypsum precipitation. Other minerals will dissolve significantly after calcite is dissolved. (3) ISL will cause changes in porosity and permeability of the mining area. Mineral dissolution raises porosity and permeability near the injection well. Mineral precipitation reduced porosity and permeability near the pumping well, which can plugging the pore throat and affect recovery efficiency negatively.


Assuntos
Água Subterrânea , Minerais , Mineração , Urânio , Urânio/análise , Urânio/química , Água Subterrânea/química , Água Subterrânea/análise , China , Minerais/análise , Minerais/química , Poluentes Radioativos da Água/análise , Poluentes Radioativos da Água/química , Porosidade
9.
AAPS PharmSciTech ; 25(6): 162, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997615

RESUMO

In 1987, Won invented the solid-phase porous microsphere (MS), which stores bioactive compounds in many interconnected voids. Spherical particles (5-300 µm), MS, may form clusters of smaller spheres, resulting in many benefits. The current investigation focussed on gel-encased formulation, which can be suitable for dermal usage. First, quasi-emulsion (w/o/w) solvent evaporation was used to prepare 5-fluorouracil (5 FU) MS particles. The final product was characterized (SEM shows porous structure, FTIR and DSC showed drug compatibility with excipients, and gel formulation is shear-thinning) and further scaled up using the 8-fold method. Furthermore, CCD (Central Composite Design) was implemented to obtain the optimized results. After optimizing the conditions, including the polymer (600 mg, ethyl cellulose (EC), eudragit RS 100 (ERS)), stirring speed (1197 rpm), and surfactant concentration (2% w/v), we achieved the following results: optimal yield (63%), mean particle size (152 µm), drug entrapment efficiency (76%), and cumulative drug release (74.24% within 8 h). These findings are promising for industrial applications and align with the objectives outlined in UN Sustainable Development Goals 3, 9, and 17, as well as the goals of the G20 initiative.


Assuntos
Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Fluoruracila , Microesferas , Tamanho da Partícula , Fluoruracila/administração & dosagem , Fluoruracila/química , Sistemas de Liberação de Medicamentos/métodos , Porosidade , Emulsões/química , Celulose/química , Celulose/análogos & derivados , Química Farmacêutica/métodos , Polímeros/química , Excipientes/química , Solventes/química , Tensoativos/química , Resinas Acrílicas/química , Portadores de Fármacos/química , Géis/química
10.
ACS Appl Bio Mater ; 7(7): 4747-4759, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39005189

RESUMO

Current engineered synthetic scaffolds fail to functionally repair and regenerate ruptured native tendon tissues, partly because they cannot satisfy both the unique biological and biomechanical properties of these tissues. Ideal scaffolds for tendon repair and regeneration need to provide porous topographic structures and biological cues necessary for the efficient infiltration and tenogenic differentiation of embedded stem cells. To obtain crimped and porous scaffolds, highly aligned poly(l-lactide) fibers were prepared by electrospinning followed by postprocessing. Through a mild and controlled hydrogen gas foaming technique, we successfully transformed the crimped fibrous mats into three-dimensional porous scaffolds without sacrificing the crimped microstructure. Porcine derived decellularized tendon matrix was then grafted onto this porous scaffold through fiber surface modification and carbodiimide chemistry. These biofunctionalized, crimped, and porous scaffolds supported the proliferation, migration, and tenogenic induction of tendon derived stem/progenitor cells, while enabling adhesion to native tendons. Together, our data suggest that these biofunctionalized scaffolds can be exploited as promising engineered scaffolds for the treatment of acute tendon rupture.


Assuntos
Materiais Biocompatíveis , Teste de Materiais , Regeneração , Tendões , Alicerces Teciduais , Alicerces Teciduais/química , Tendões/citologia , Animais , Suínos , Porosidade , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Engenharia Tecidual , Proliferação de Células/efeitos dos fármacos , Tamanho da Partícula , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacologia , Poliésteres/química
11.
ACS Appl Bio Mater ; 7(7): 4642-4653, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38967050

RESUMO

Titanium-based implants have long been studied and used for applications in bone tissue engineering, thanks to their outstanding mechanical properties and appropriate biocompatibility. However, many implants struggle with osseointegration and attachment and can be vulnerable to the development of infections. In this work, we have developed a composite coating via electrophoretic deposition, which is both bioactive and antibacterial. Mesoporous bioactive glass particles with gentamicin were electrophoretically deposited onto a titanium substrate. In order to validate the hypothesis that the quantity of particles in the coatings is sufficiently high and uniform in each deposition process, an easy-to-use image processing algorithm was designed to minimize human dependence and ensure reproducible results. The addition of loaded mesoporous particles did not affect the good adhesion of the coating to the substrate although roughness was clearly enhanced. After 7 days of immersion, the composite coatings were almost dissolved and released, but phosphate-related compounds started to nucleate at the surface. With a simple and low-cost technique like electrophoretic deposition, and optimized stir and suspension times, we were able to synthesize a hemocompatible coating that significantly improves the antibacterial activity when compared to the bare substrate for both Gram-positive and Gram-negative bacteria.


Assuntos
Antibacterianos , Quitosana , Eletroforese , Gentamicinas , Vidro , Teste de Materiais , Nanopartículas , Tamanho da Partícula , Propriedades de Superfície , Titânio , Gentamicinas/farmacologia , Gentamicinas/química , Titânio/química , Titânio/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Vidro/química , Nanopartículas/química , Quitosana/química , Quitosana/farmacologia , Porosidade , Testes de Sensibilidade Microbiana , Humanos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Próteses e Implantes , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
12.
Braz Dent J ; 35: 5907, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045992

RESUMO

To assess the effect of cleaning protocols on dentin contaminated with blood in reparative endodontic materials, bovine root samples were divided: no contamination (N); contamination (P); contamination and cleaning with saline (S), 2.5% NaOCl+saline (Na) or 2.5% NaOCl+17% EDTA+saline (NaE) and filled with: mineral trioxide aggregate (MTA), calcium-aluminate-cement (C), or C+collagen (Ccol) (n=13). The samples were evaluated for porosity, chemical composition, and bond strength. MTA porosity was lower than C (p=0.02) and higher than Ccol (p<0.001). P and NaE were similar (p=1.00), but higher than the other groups (p<0.001). MTA bond strength was similar to Ccol (p=0.777) and lower than C (p=0.028). P presented lower bond strength than the N (p<0.001); S and Na were similar to each other (p=0.969), but higher than P and lower than N (p<0.001). It was observed a predominance of mixed and cohesive failures. None of the samples showed Ca/P ratio values similar to human hydroxyapatite. This study showed that contamination with blood increased the materials porosity, but dentin cleaning with 2.5% NaOCl reduced this effect, and the collagen additive reduced the material porosity. Furthermore, blood contamination reduced the materials bond strength, and cleaning with saline or 2.5% NaOCl diminished this effect.


Assuntos
Sangue , Colágeno , Dentina , Porosidade , Bovinos , Dentina/efeitos dos fármacos , Colágeno/química , Animais , Raiz Dentária/química , Silicatos/química , Compostos de Cálcio/química , Colagem Dentária/métodos , Compostos de Alumínio/química , Cerâmica/química , Teste de Materiais , Materiais Biocompatíveis/química , Óxidos/química , Materiais Restauradores do Canal Radicular/química , Combinação de Medicamentos , Hipoclorito de Sódio/química
13.
Sci Rep ; 14(1): 16768, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039132

RESUMO

This study evaluated the biocompatibility, bioactivity, porosity, and sealer/dentin interface of Sealer Plus BC (SP), Bio-C Sealer (BIOC), TotalFill BC Sealer (TF), and AH Plus (AHP). Dentin tubes filled with the sealers and empty tubes (control group) were implanted in the subcutaneous tissue of rats for different periods (n = 6 per group/period). Number of inflammatory cells (ICs), capsule thickness, von Kossa reaction, interleukin-6 (IL-6) and osteocalcin (OCN) were evaluated. Porosity and voids in the interface dentin/sealers were assessed by micro-computed tomography. The data were submitted to ANOVA/Tukey's tests (α = 0.05). Greater capsule thickness, ICs and IL-6 immunolabeling cells were observed in AHP. No significant difference in thickness of capsule, ICs, and IL-6- immunolabeling cells was detected between SP and TF, in all periods, and after 30 and 60 days between all groups. At 60 days all groups had reduction in capsule thickness, ICs and IL-6 immunolabeling cells. Von Kossa-positive and birefringent structures were observed in the capsules around the sealers. BIOC, SP, and TF exhibited OCN-immunolabeling cells. All sealers had porosity values below 5%, besides low and similar interface voids. BIOC, SP and TF are biocompatible, bioactive, and have low porosity and voids. The dentin-tube model used is an alternative for evaluating bioceramic materials.


Assuntos
Materiais Biocompatíveis , Dentina , Teste de Materiais , Animais , Porosidade , Dentina/química , Dentina/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Ratos , Cerâmica/química , Interleucina-6/metabolismo , Microtomografia por Raio-X , Masculino , Ratos Wistar , Selantes de Fossas e Fissuras/química
14.
Environ Sci Pollut Res Int ; 31(33): 45711-45717, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38977551

RESUMO

Carbonaceous materials hydrothermally produced using waste biomass have small specific surface areas (SSA) and poor porosity properties. In this study, we prepare a novel carbonaceous material with excellent porosity properties by suppressing the formation of a secondary char phase (spheres) and promoting biomass hydrolysis by controlling the hydrothermal conditions. Rice husk powders, as the starting material, are hydrothermally treated using acidic solvents of different types and concentrations at 180 °C. The surfaces of the samples hydrothermally prepared using the acidic solvents have no spheres. In the case of 0.1-0.2 mol L-1 hydrochloric acid (HA), the amorphous carbonaceous materials contain numerous mesopores and exhibit a larger SSA (approximately 100 m2 g-1) than those prepared using acetic acid and distilled water. An increase in the hydrothermal temperature reduces the porosity properties of the materials. Finally, the high-porosity amorphous carbonaceous material showed excellent trimethylamine adsorption ability.


Assuntos
Oryza , Oryza/química , Porosidade , Biomassa , Carbono/química , Adsorção
15.
Biomed Mater ; 19(5)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38986475

RESUMO

Bioactive and biodegradable scaffolds that mimic the natural extracellular matrix of bone serve as temporary structures to guide new bone tissue growth. In this study, 3D-printed scaffolds composed of poly (lactic acid) (PLA)-tricalcium phosphate (TCP) (90-10 wt.%) were modified with 1%, 5%, and 10 wt.% of ZnO to enhance bone tissue regeneration. A commercial chain extender named Joncryl was incorporated alongside ZnO to ensure the printability of the composites. Filaments were manufactured using a twin-screw extruder and subsequently used to print 3D scaffolds via fused filament fabrication (FFF). The scaffolds exhibited a homogeneous distribution of ZnO and TCP particles, a reproducible structure with 300 µm pores, and mechanical properties suitable for bone tissue engineering, with an elastic modulus around 100 MPa. The addition of ZnO resulted in enhanced surface roughness on the scaffolds, particularly for ZnO microparticles, achieving values up to 241 nm. This rougher topography was responsible for enhancing protein adsorption on the scaffolds, with an increase of up to 85% compared to the PLA-TCP matrix. Biological analyses demonstrated that the presence of ZnO promotes mesenchymal stem cell (MSC) proliferation and differentiation into osteoblasts. Alkaline phosphatase (ALP) activity, an important indicator of early osteogenic differentiation, increased up to 29%. The PLA-TCP composite containing 5% ZnO microparticles exhibited an optimized degradation rate and enhanced bioactivity, indicating its promising potential for bone repair applications.


Assuntos
Materiais Biocompatíveis , Regeneração Óssea , Fosfatos de Cálcio , Diferenciação Celular , Proliferação de Células , Células-Tronco Mesenquimais , Osteoblastos , Poliésteres , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Óxido de Zinco , Alicerces Teciduais/química , Fosfatos de Cálcio/química , Poliésteres/química , Regeneração Óssea/efeitos dos fármacos , Engenharia Tecidual/métodos , Células-Tronco Mesenquimais/citologia , Óxido de Zinco/química , Materiais Biocompatíveis/química , Diferenciação Celular/efeitos dos fármacos , Osteoblastos/citologia , Osteogênese/efeitos dos fármacos , Teste de Materiais , Osso e Ossos , Regeneração Tecidual Guiada/métodos , Humanos , Animais , Fosfatase Alcalina/metabolismo , Módulo de Elasticidade , Porosidade , Propriedades de Superfície
16.
J Agric Food Chem ; 72(29): 16475-16483, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38987705

RESUMO

Emerging technologies for cell-cultured fish meat as an environmentally friendly protein source for humans still have many obstacles, including large-scale production of high-quality cells, differentiation and bioassembly of cellular material, and improvement of the quality of meat products. Here, we used edible porous microcarriers as scaffolds to support scalable skeletal muscle cell expansion to prepare centimeter-scale cell-cultured fish (CCM) of Carassius auratus for the first time. The quality of CCM was assessed by analyzing the texture, nutrition, flavor, and safety. The results indicated that CCM demonstrated a softer texture than natural fish due to a high moisture content. CCM contained higher protein and lower fat contents, with no significant difference in energy from natural golden crucian carp meat (NGM). CCM had better digestible properties, and 17 volatile components were identified in CCM, ten cocontained compared to NGM. ELISA quantified penicillin, streptomycin, vitamin D, and insulin residues as risk factors in CCM. In conclusion, we utilized edible porous microcarriers to scale-up the expansion of Carassius auratus skeletal muscle cells and bioassembled high-quality CCM of Carassius auratus for the first time, which represents a state-of-the-art protocol applicable to different fish species and even to other economic animals and provides a theoretical basis for scaling up cell-cultured meat production.


Assuntos
Carpa Dourada , Músculo Esquelético , Animais , Músculo Esquelético/química , Músculo Esquelético/citologia , Porosidade , Carne/análise , Técnicas de Cultura de Células , Proteínas de Peixes/química , Células Cultivadas , Alimentos Marinhos/análise
17.
Drug Deliv ; 31(1): 2381340, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39041383

RESUMO

Pulmonary delivery and formulation of biologics are among the more complex and growing scientific topics in drug delivery. We herein developed a dry powder formulation using disordered mesoporous silica particles (MSP) as the sole excipient and lysozyme, the most abundant antimicrobial proteins in the airways, as model protein. The MSP had the optimal size for lung deposition (2.43 ± 0.13 µm). A maximum lysozyme loading capacity (0.35 mg/mg) was achieved in 150 mM PBS, which was seven times greater than that in water. After washing and freeze-drying, we obtained a dry powder consisting of spherical, non-aggregated particles, free from residual buffer, or unabsorbed lysozyme. The presence of lysozyme was confirmed by TGA and FT-IR, while N2 adsorption/desorption and SAXS analysis indicate that the protein is confined within the internal mesoporous structure. The dry powder exhibited excellent aerodynamic performance (fine particle fraction <5 µm of 70.32%). Lysozyme was released in simulated lung fluid in a sustained kinetics and maintaining high enzymatic activity (71-91%), whereas LYS-MSP were shown to degrade into aggregated nanoparticulate microstructures, reaching almost complete dissolution (93%) within 24 h. MSPs were nontoxic to in vitro lung epithelium. The study demonstrates disordered MSP as viable carriers to successfully deliver protein to the lungs, with high deposition and retained activity.


Assuntos
Pulmão , Muramidase , Tamanho da Partícula , Pós , Dióxido de Silício , Dióxido de Silício/química , Muramidase/administração & dosagem , Muramidase/química , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Porosidade , Pós/química , Portadores de Fármacos/química , Administração por Inalação , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Humanos , Excipientes/química , Animais , Química Farmacêutica/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Liofilização
18.
Molecules ; 29(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38998912

RESUMO

Managing chronic non-healing wounds presents a significant clinical challenge due to their frequent bacterial infections. Mesoporous silica-based materials possess robust wound-healing capabilities attributed to their renowned antimicrobial properties. The current study details the advancement of mesoporous silicon-loaded MnO and CaO molecules (HMn-Ca) against bacterial infections and chronic non-healing wounds. HMn-Ca was synthesized by reducing manganese chloride and calcium chloride by urotropine solution with mesoporous silicon as the template, thereby transforming the manganese and calcium ions on the framework of mesoporous silicon. The developed HMn-Ca was investigated using scanning electron microscopy (SEM), transmission electron microscope (TEM), ultraviolet-visible (UV-visible), and visible spectrophotometry, followed by the determination of Zeta potential. The production of reactive oxygen species (ROS) was determined by using the 3,3,5,5-tetramethylbenzidine (TMB) oxidation reaction. The wound healing effectiveness of the synthesized HMn-Ca is evaluated in a bacterial-infected mouse model. The loading of MnO and CaO inside mesoporous silicon enhanced the generation of ROS and the capacity of bacterial capture, subsequently decomposing the bacterial membrane, leading to the puncturing of the bacterial membrane, followed by cellular demise. As a result, treatment with HMn-Ca could improve the healing of the bacterial-infected wound, illustrating a straightforward yet potent method for engineering nanozymes tailored for antibacterial therapy.


Assuntos
Compostos de Manganês , Nanopartículas , Óxidos , Espécies Reativas de Oxigênio , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Camundongos , Nanopartículas/química , Óxidos/química , Óxidos/farmacologia , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Porosidade , Espécies Reativas de Oxigênio/metabolismo , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Compostos de Cálcio/química , Compostos de Cálcio/farmacologia , Oxirredução , Antibacterianos/farmacologia , Antibacterianos/química , Manganês/química , Manganês/farmacologia , Testes de Sensibilidade Microbiana
19.
Molecules ; 29(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38999074

RESUMO

This study presents properties of hydroethanolic extracts prepared from Pinot Noir (PN) grape pomace through conventional, ultrasound-assisted or solvothermal extraction. The components of the extracts were identified by HPLC. The total content of polyphenols, flavonoids, anthocyanins, and condensed tannins, as well as antioxidant activity and α-glucosidase inhibitory activity of extracts were evaluated using UV-vis spectroscopy. All extracts were rich in phenolic compounds, proving a good radical scavenging activity. The extract obtained by conventional extraction at 80 °C showed the best α-glucosidase inhibitory activity close to that of (-)-epigallocatechin gallate. To improve the chemical stability of polyphenols, the chosen extract was incorporated in porous silica-based supports: amine functionalized silica (MCM-NH2), fucoidan-coated amine functionalized silica (MCM-NH2-Fuc), MCM-41, and diatomite. The PN extract exhibited moderate activity against Gram-positive S. aureus (MIC = 156.25 µg/mL) better than against Gram-negative E. coli (MIC = 312.5 µg/mL). The biocompatibility of PN extract, free and incorporated in MCM-NH2 and MCM-NH2-Fuc, was assessed on RAW 264.7 mouse macrophage cells, and the samples showcased a good cytocompatibility at 10 µg/mL concentration. At this concentration, PN and PN@MCM-NH2-Fuc reduced the inflammation by inhibiting NO production. The anti-inflammatory potential against COX and LOX enzymes of selected samples was evaluated and compared with that of Indomethacin and Zileuton, respectively. The best anti-inflammatory activity was observed when PN extract was loaded on MCM-NH2-Fuc support.


Assuntos
Anti-Inflamatórios , Antioxidantes , Hipoglicemiantes , Extratos Vegetais , Dióxido de Silício , Vitis , Vitis/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Animais , Camundongos , Dióxido de Silício/química , Células RAW 264.7 , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Porosidade , Polifenóis/farmacologia , Polifenóis/química
20.
ACS Appl Mater Interfaces ; 16(27): 34578-34590, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38946497

RESUMO

Meeting the exacting demands of wound healing encompasses rapid coagulation, superior exudate absorption, high antibacterial efficacy, and imperative support for cell growth. In this study, by emulating the intricate structure of natural skin, we prepare a multifunctional porous bilayer artificial skin to address these critical requirements. The bottom layer, mimicking the dermis, is crafted through freeze-drying a gel network comprising carboxymethyl chitosan (CMCs) and gelatin (GL), while the top layer, emulating the epidermis, is prepared via electrospinning poly(l-lactic acid) (PLLA) nanofibers. With protocatechuic aldehyde and gallium ion complexation (PA@Ga) as cross-linking agents, the bottom PA@Ga-CMCs/GL layer featured an adjustable pore size (78-138 µm), high hemostatic performance (67s), and excellent bacterial inhibition rate (99.9%), complemented by an impressive liquid-absorbing capacity (2000% swelling rate). The top PLLA layer, with dense micronanostructure and hydrophobic properties, worked as a shield to effectively thwarted liquid or bacterial penetration. Furthermore, accelerated wound closure, reduced inflammatory responses, and enhanced formation of hair follicles and blood vessels are achieved by the porous artificial skin covered on the surface of wound. Bilayer artificial skin integrates the advantages of nanofibers and freeze-drying porous materials to effectively replicate the protective properties of the epidermal layer of the skin, as well as the cell migration and tissue regeneration of the dermis. This bioabsorbable artificial skin demonstrates structural and functional comparability to real skin, which would advance the field of wound care through its multifaceted capabilities.


Assuntos
Quitosana , Nanofibras , Pele Artificial , Cicatrização , Cicatrização/efeitos dos fármacos , Quitosana/química , Quitosana/análogos & derivados , Porosidade , Animais , Nanofibras/química , Poliésteres/química , Poliésteres/farmacologia , Gelatina/química , Antibacterianos/química , Antibacterianos/farmacologia , Camundongos , Staphylococcus aureus/efeitos dos fármacos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA