Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.113
Filtrar
1.
J Hazard Mater ; 416: 125822, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492784

RESUMO

Biochar adsorbents for removing As(III) suffer from the problems of low adsorption capacity and ineffective removal. Herein, a granular MgO-embedded biochar (g-MgO-Bc) adsorbent is fabricated in the form of millimeter-sized particles through a simple gelation-calcination method using chitosan as biochar sources. High-density MgO nanoparticles are evenly dispersed throughout the biochar matrix and can be fully exposed to As(III) through the rich pores in g-MgO-Bc. These features endow the adsorbent with a high adsorption capacity of 249.1 mg/g for As(III). The g-MgO-Bc can efficiently remove As(III) over a wide pH of 3-10. The coexisting carbonate, nitrate, sulfate, silicate, and humic acid exert a negligible influence on As(III) removal. 300 µg/L of As(III) can be purified to far below 10 µg/L using only 0.3 g/L g-MgO-Bc. The spent g-MgO-Bc could be well regenerated by simple calcination. In fixed-bed column experiments, the effective treatment volume of As(III)-spiked groundwater achieves 1500 BV (30 L) (3 g of adsorbent, solution flow rate of 2.0 mL/min, C0 = 50 µg/L). The Mg(OH)2 generated in situ in g-MgO-Bc is responsible for the adsorption of As(III) through the inner-sphere complex mechanism. The work would extend the potential applicability of biochar adsorbent for As(III) removal to a great extent.


Assuntos
Óxido de Magnésio , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Cinética , Porosidade , Água , Poluentes Químicos da Água/análise
2.
J Hazard Mater ; 416: 125860, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492808

RESUMO

Facile synthesis of nano porous organic cages with small size and good fluorescence property is highly desirable, but still challenging and scarce for their sensing applications. Here we report a rapid room-temperature recrystallization method for the preparation of nano porous organic cages with ultra-small size as a fluorescent probe for copper ion. The prepared nano porous organic cages gave the diameter of 2.49 ± 0.04 nm, and exhibited stable emission at 535 nm with absolute quantum yield of 0.68%. On the basis of the coordination interaction and charge transfer between the nano porous organic cages and copper ion, a simple fluorescent probe for copper ion in aqueous solution was developed. The developed method gave a calibration function of QE = 0.4815lg[Cu2+] + 0.5847 (where QE is the quenching efficiency; [Cu2+] in µM) (R2 = 0.9987) in a concentration range of 0.1-2 µM, the limit of detection (3s) of 8 nM, and the relative standard deviation of 0.36% for 10 replicate determinations of 0.5 µM copper ion. The recoveries of spiked copper ion in tap water samples ranged from 96.8% to 103.0%. The proposed method possesses good sensitivity, selectivity and accuracy.


Assuntos
Cobre , Água , Fluorescência , Corantes Fluorescentes , Porosidade , Espectrometria de Fluorescência , Temperatura
3.
J Hazard Mater ; 416: 125897, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492835

RESUMO

Interconnected macro-porous cryogels with robust and pore-tunable structures have been fabricated using chemically crosslinked microfibrillated cellulose (MFC). Periodate oxidation was initially conducted to introduce aldehyde groups into the MFC surface, followed by the freeze-induced chemical crosslinking via the formation of hemiacetal bonds between aldehyde and hydroxyl at -12 °C. The cryogels with pore-tunable structures and sharply enhanced mechanical strengths were finally achieved by re-assembly of MFCs through soaking in NaIO4 solution. Furthermore, the MFC cryogels were post-crosslinked by polyethyleneimine (PEI), bestowing the cryogels with the capability of adsorbing anionic dyes. The stress of the PEI-MFC cryogel at the 80% strain was determined to be 304.5 kPa, which is the maximum value for the nanocellulose-based cryogels reported so far. Finally, the adsorption performances of PEI-MFC cryogels for methyl orange (MO) were evaluated. Maximum adsorption capacity of 500 mg/g could be obtained by the Langmuir model, outperforming that of previous absorbent materials. Reuse experiments indicated that over 90% of adsorption capacity was retained after 6 cycles. Continuous clean-up experiments demonstrated excellent MO removal abilities of the PEI-MFC cryogel. This study shows that the novel, green strategy to fabricate the robust cryogel extends the practical applications of nanocellulose adsorbents for environmental remediation.


Assuntos
Criogéis , Nanofibras , Adsorção , Compostos Azo , Celulose , Corantes , Porosidade
4.
Se Pu ; 39(9): 998-1005, 2021 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-34486839

RESUMO

In this work, a polymer precursor was first synthesized using p-terphenyl (TP) and terephthaloyl chloride (TC) as monomers. Then, cross-linking was realized by means of a Schiff base reaction with melamine (MA) as a modifier to obtain an amine-functionalized porous organic polymer TP-TC-MA. The synthesized polymers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), and point of zero charge (pHpzc) measurements, as well as on the basis of nitrogen adsorption-desorption isotherms. Adsorption experiments were carried out to evaluate the adsorption properties of TP-TC-MA for methyl orange (MO), a typical anionic azo dye that has widespread industrial application. The amount of MO adsorbed on TP-TC-MA was evaluated by ultraviolet-visible (UV-Vis) spectroscopy at a wavelength of 463 nm. Microscopic analysis revealed that the as-synthesized polymer had an aggregated particle-shaped structure. XRD spectra confirmed that TP-TC-MA was an amorphous polymer, consistent with the results of high-resolution TEM experiments. The Brunauer-Emmett-Teller (BET) specific surface area and total pore volume of TP-TC-MA were determined as 708.5 m 2/g and 0.556 cm3/g, respectively. The measured pHpzc of TP-TC-MA was 4.0, probably because of the abundant nitrogen-containing groups provided by MA. The factors affecting adsorption, such as pH, adsorbent dosage, contact time, initial pollutant concentration, and ionic strength, were investigated. Because of the protonation of the N-atom in TP-TC-MA, the pH had a strong impact on the adsorption of MO. The removal efficiency could be maximized at the optimized pH of 3.0. The adsorption equilibrium isotherm, measured at 25 ℃ and a concentration of 50-500 mg/L, showed that the MO adsorption over TP-TC-MA followed the Langmuir isotherm, with a maximum adsorption capacity of 156.3 mg/g. The modeling of the experimental adsorption data was consistent with the pseudo-second-order kinetic model, which indicated fast adsorption and chemisorption as the dominant mechanism. With increasing ionic strength, the adsorption of MO slightly decreased, suggesting a partial antagonistic ion effect. Results of the selectivity study revealed that TP-TC-MA was more selective toward MO than methylene blue (MB), which indicated that electrostatic interactions played a significant role during the adsorption progress. Five adsorption-desorption cycles showed that TP-TC-MA could be regenerated without significant deterioration of its adsorption efficiency, indicating that it has good stability and reusability. The observed adsorption performance indicated that this MA-modified porous organic polymer offers prospects for further research and application in the treatment of dye-containing wastewaters.


Assuntos
Polímeros , Poluentes Químicos da Água , Adsorção , Compostos Azo , Concentração de Íons de Hidrogênio , Cinética , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Triazinas , Poluentes Químicos da Água/análise
5.
ACS Biomater Sci Eng ; 7(9): 4535-4544, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34468120

RESUMO

Mechanical stimuli have been shown to play a large role in cellular behavior, including cellular growth, differentiation, morphology, homeostasis, and disease. Therefore, developing bioreactor systems that can create complex mechanical environments for both tissue engineering and disease modeling drug screening is appealing. However, many of existing systems are restricted because of their bulky size with external force generators, destructive microenvironment control, and low throughput. These shortcomings have preceded to the utilization of magnetic stimuli responsive materials, given their untethered, fast, and tunable actuation potential at both the microscale and macroscale level, for seamless integration into cell culture wells and microfluidic systems. Nevertheless, magnetic soft materials for cell culture have been limited due to the inability to develop well-defined 3D structures for more complex and physiological relevant mechanical actuation. Herein, we introduce a facile fabrication process to develop magnetic-PDMS (polydimethylsiloxane) porous composite designs with both well-defined and controllable microlevel and macrolevel features to dynamically manipulate 3D cell-laden gel at the scale. The intrinsic stiffness of the magnetic-PDMS porous composites is also modulated to control the deformation potential to mimic physiological relevant strain levels, with 2.89-11% observed in magnetic actuation studies. High cell viability was achieved with the culturing of both human adipose stem cells (hADMSCs) and human umbilical cord mesenchymal stem cells (hUCMSCs) in 3D cell-laden gel interfaced with the magnetic-PDMS porous composite. Also, the highly interconnected porous network of the magnetic-PDMS composites facilitated free diffusion throughout the porous structure showcasing the potential of a multisurface contact 3D porous magnetic structure in both reservoir and 96-well plate insert designs for more complex dynamic mechanical actuation. In conclusion, these studies provide a means for establishing a biocompatible, tunable magnetic-PDMS porous composite with fast and programmable dynamic strain potential making it a suitable platform for high-throughput, dynamic 3D cell culture.


Assuntos
Técnicas de Cultura de Células , Engenharia Tecidual , Sobrevivência Celular , Humanos , Fenômenos Magnéticos , Porosidade
6.
J Hazard Mater ; 416: 126126, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492920

RESUMO

Biomass-derived heteroatom-doped porous carbon-based materials are emerging as low-cost adsorbents for removing common pollutants, although the adsorption performance is still unsatisfactory and the main adsorption mechanisms are still controversial. Herein, we report a facile and general method for fabricating biomass-derived N/S dual-doped hierarchically porous carbon adsorbent (MZ-NSPC). The MZ-NSPC material exhibits excellent adsorption capacity (295.8 mg/g for bisphenol F (BPF), 308.7 mg/g for bisphenol S (BPS)), short equilibrium time (30 min), and good reusability (the decline efficiency < 6.15% after five times). The remarkable adsorption performance originates from a large BET surface area, hierarchically porous structure, and N/S heteroatoms dual-doping. Combined with comparative experiments and density functional theory (DFT) calculations, we revealed that the doped N, S heteroatoms played a synergistic effect which promoted the adsorption performance and adsorption sites are mainly the oxidized-S and pyridinic-N. Importantly, for BPF, the proportion contribution of different mechanisms followed the order of hydrophobic interaction > π-π interaction > hydrogen bonding interaction. However, adsorption mechanism of BPS was mainly controlled by π-π interaction. This work not only promotes the development of low-cost and sustainable heteroatom-doped carbon-based materials, but also systematically studies adsorption mechanism of heteroatom-doped carbon-based materials for bisphenols.


Assuntos
Carbono , Compostos Benzidrílicos , Biomassa , Fenóis , Porosidade , Sulfonas
7.
J Hazard Mater ; 416: 126183, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492954

RESUMO

In this work, a modified g-C3N4/MgZnAl-calcined layered double hydroxide composite (M-CN/cLDH) was successfully fabricated via a template method. The composite material is a hierarchical porous flower-like nanostructure self-assembled from stacked hybrid flakes. The 3D M-CN/cLDH architectures exhibit a synergistic effect of adsorption and photocatalysis for eliminating typical tetracycline antibiotics in seawater, i.e., oxytetracycline (OTC), tetracycline (TC), chlortetracycline (CTC), and doxycycline (DXC). The synergistic removal rate of OTC in seawater of M-CN/cLDH is 2.73 times higher than that of g-C3N4 after 120 min of visible-light illumination, and M-CN/cLDH also performs better adsorption-photocatalytic degradation on OTC in the continuous flow reaction process. The superior adsorption capability of the M-CN/cLDH is attributed to the open porous structures of cLDH, and its excellent photocatalytic degradation activity is ascribed to the closely bonded heterojunctions between g-C3N4 (CN) and cLDH double layers. The mass spectra reveals the degradation pathways of OTC, and its byproducts are less toxic after degradation for 120 min. The exploration of the M-CN/cLDH in synthetic mariculture wastewater suggested a huge potential for its practical application. With the assistance of magnesium ammonium phosphate (MAP) precipitation pretreatment, the material can effectively retain the high OTC removal rate in the synthetic mariculture wastewater circumstance.


Assuntos
Antibacterianos , Águas Residuárias , Adsorção , Catálise , Porosidade , Água do Mar
8.
Mater Sci Eng C Mater Biol Appl ; 128: 112255, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34474817

RESUMO

OBJECTIVES: The aim of this work was to combine engineered hard and soft tissue, adopting a new method for interfacial adhesion of osteo-mucosal construct. We hypothesized that the chemical procedure involved in this method not only adheres the components, but also improves the cell growth inside them. METHODS: 3D-printed functionally-graded porous hard-tissue scaffolds were characterized, functionalized by aminolysis and tyrosinase, and accommodated by human osteoblast cells. Introducing amino groups through aminolysis and inducing dopaquinones by tyrosinase can take part in the Michael additions to cause the adhesion. Subsequently, fully-differentiated engineered oral mucosa was formed directly on the surface of hard tissue. Constructs were assessed in term of morphology, structure, chemical composition, histology, and cytocompatibility. Interfacial adhesion was compared to a control group prepared by using a biological glue for the attachment of the soft and hard tissues. RESULTS: The data confirmed higher proliferation of osteoblast cells via aminolysis and improved osteoblast cells distribution and differentiation by incorporation of tyrosinase in collagen. There was evidence of multilayered, stratified epithelium on the osteo-mucosal model with viable fibroblasts and osteoblasts within the lamina propria and bone tissue layers. Our method of adhesion resulted in cohesive debonding within the engineered soft tissue; while in the control group, adhesive debonding and complete separation of the oral mucosa from the hard tissue was observed. Although the shear strength of the osteo-mucosal model (157.6 kDa ± 25.1) was slightly higher than that of the control group (149.4 kDa ± 23.1), there was no statistically significant difference between them (p > 0.05). However, the advantage of our in situ adhesion approach is the absence of a barrier like glue which can disrupt direct cellular communications between tissues. SIGNIFICANCE: This study provides a novel method of directly combining tissue-engineered human bone with oral mucosa, which has the potential to improve cell-ingrowth and tissue integration. This engineered tissue construct, after further optimization, can be used clinically as a graft material in various oral surgeries and can also be employed as an in vitro model to investigate many aspects of oral diseases and examine dental materials and oral health care products as a replacement of in vivo models.


Assuntos
Engenharia Tecidual , Tecidos Suporte , Humanos , Mucosa Bucal , Osteoblastos , Porosidade
9.
Mater Sci Eng C Mater Biol Appl ; 128: 112300, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34474851

RESUMO

The present experimental study aims to extend know-how on resorbable polycaprolactone/hydroxyapatite (PCL/HA, 70/30 wt%) scaffolds, produced by Laser Powder Bed Fusion (LPBF) technology, to geometrically complex lattice structures and micro porous struts. Using optimized LPBF printing parameters, micro- and macro-porous scaffolds for bone tissue regeneration were produced by regularly repeating in space Diamond (DO) and Rhombic Dodecahedron (RD) elementary unit cells. After production, scaffolds were submitted to structural, mechanical, and biological characterization. The interaction of scaffolds with human Mesenchymal Stem Cells (hMSCs) allowed studying the degradative processes of the PCL matrix. Biomechanical performances and biodegradation of scaffolds were compared to literature results and bone tissue data. Mechanical compression test, biological viability up to 4 days of incubation and degradation rate evidenced strong dependence of scaffold behavior on unit cell geometry as well as on global geometrical features.


Assuntos
Engenharia Tecidual , Tecidos Suporte , Osso e Ossos , Durapatita , Humanos , Lasers , Poliésteres , Porosidade , Pós
10.
Mater Sci Eng C Mater Biol Appl ; 128: 112326, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34474877

RESUMO

Bone defects remain a challenging problem for doctors and patients in clinical practice. Processed pyritum is a traditional Chinese medicine that is often used to clinically treat bone fractures. It contains mainly Fe, Zn, Cu, Mn, and other elements. In this study, we added the extract of processed pyritum to ß-tricalcium phosphate and produced a porous composite TPP (TCP/processed pyritum) scaffold using digital light processing (DLP) 3D printing technology. Scanning electron microscopy (SEM) analysis revealed that TPP scaffolds contained interconnected pore structures. When compared with TCP scaffolds (1.35 ± 0.15 MPa), TPP scaffolds (5.50 ± 0.24 MPa) have stronger mechanical strength and can effectively induce osteoblast proliferation, differentiation, and mineralization in vitro. Meanwhile, the in vivo study showed that the TPP scaffold had better osteogenic capacity than the TCP scaffold. Furthermore, the TPP scaffold had good biosafety after implantation. In summary, the TPP scaffold is a promising biomaterial for the clinical treatment of bone defects.


Assuntos
Fosfatos de Cálcio , Tecidos Suporte , Humanos , Porosidade , Impressão Tridimensional
11.
Mater Sci Eng C Mater Biol Appl ; 128: 112327, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34474878

RESUMO

Chitosan oligosaccharide (COS), a time-dependent antimicrobial carbohydrate, is found antifungal active with a short duration of action due to excessive solubility. We attempted to address this issue by employing a hydrogel as a COS carrier. In this research, macroporous zwitterionic composite cryogels composed of COS and poly(N-methacryl arginine) (PMarg) were fabricated, serving as long-term antifungal dressings. Firstly, Marg was synthesized and characterized by Fourier transform infrared spectroscopy (FT-IR), 1H and 13C nuclear magnetic resonance (NMR), and high-resolution mass spectrometry (HRMS). Then, the COS/PMarg cryogels were prepared by redox initiation cryopolymerization. The macroporous morphology of the cryogels was confirmed by scanning electron microscope (SEM) with pore size varying from 20.86 to 50.87 µm. FTIR indicated that hydrogen bonding formed between COS and PMarg, and the interaction elevated thermal stability of the cryogels as evidenced by thermal-gravimetric analysis (TGA). Swelling capacity, mechanical properties, and COS release behavior of the COS/PMarg cryogels were investigated. With the release of COS, the antifouling activity of the cryogel increased. Antimicrobial tests indicated the COS/PMarg cryogel could effectively inhibit the proliferation of Candida albicans. It demonstrated that the macroporous zwitterionic COS/PMarg composite cryogel might be a potential antifungal dressing with sequential "sterilization-release" capacity.


Assuntos
Quitosana , Criogéis , Antifúngicos/farmacologia , Oligossacarídeos , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Mater Sci Eng C Mater Biol Appl ; 128: 112333, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34474884

RESUMO

Polyetheretherketone (PEEK) was widely applied into fabricating of orthopaedic implants, benefitting its excellent biocompatibility and similar mechanical properties to native bones. However, the inertness of PEEK hinders its integration with the surrounding bone tissue. Here PEEK scaffolds with a series of hydroxyapatite (HA) contents in gradient were manufactured via fused filament fabrication (FFF) 3D printing techniques. The influence of the pore size, HA content and printing direction on the mechanical properties of the PEEK/HA scaffolds was systematically evaluated. By adjusting the pore size and HA contents, the elastic modulus of the PEEK/HA scaffolds can be widely tuned in the range of 624.7-50.6 MPa, similar to the variation range of natural cancellous bone. Meanwhile, the scaffolds exhibited higher Young's modulus and lower compressive strength along Z printing direction. The mapping relationship among geometric parameters, HA content, printing direction and mechanical properties was established, which gave more accurate predictions and controllability of the modulus and strength of scaffolds. The PEEK/HA scaffolds with the micro-structured surface could promote cell attachment and mineralization in vitro. Therefore, the FFF-printed PEEK/HA composites scaffolds can be a good candidate for bone grafting and tissue engineering.


Assuntos
Durapatita , Cetonas , Benzofenonas , Polietilenoglicóis , Polímeros , Porosidade , Impressão Tridimensional , Tecidos Suporte
13.
Mater Sci Eng C Mater Biol Appl ; 128: 112344, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34474894

RESUMO

A micron scale alginate based 3D platform embedded with a carbon dot pH sensor, that enables continuous growth monitoring of encapsulated cells in real time is reported. The alginate based 3D micro-scaffold closely mimics a tumor microenvironment by providing a spatial demarcation and making it possible to encapsulate different cells in close proximity. The micro-scaffold contains carbon dot based nanosensors that enable real time monitoring of pH change in the tumor microenvironment avoiding the need for end-point assays for studying cellular growth. The micro-scaffolds have heterogeneous architecture and a hypoxic core region can be observed in as less as 96 h of culture. In this completely synthetic platform, there also exist the flexibility of artificially modifying the porosity of the micro-scaffold as per the requirement of the studies where a denser ECM mimic is required. The micro-scaffolds were conducive for cell growth as suggested by the enhanced functional profile of hepatocellular carcinoma cells and positively influence the genetic expression of the cell specific markers. Additionally, similar to a 3D tumor, non-homogeneous diffusion of molecules is also observed making this an ideal platform for cancer modelling and drug screening.


Assuntos
Alginatos , Neoplasias , Técnicas de Cultura de Células , Proliferação de Células , Humanos , Porosidade , Tecidos Suporte , Microambiente Tumoral
14.
Mater Sci Eng C Mater Biol Appl ; 128: 112354, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34474902

RESUMO

In this paper, silk fibroin (SF) porous microcarriers containing strontium were constructed as injectable bone tissue engineering vehicles. The effects of SF concentration and strontium content on micromorphology, element distribution, strontium ion release and cellular behavior of the constructed microcarriers were investigated. The microcarriers with an open interconnected pore can be fabricated by controlling the concentration of SF. The strontium functionalized SF microcarriers showed the sustained release of strontium ion and allowed bone mesenchymal stem cells (BMSCs) to attach, proliferate and secrete extracellular matrix. Furthermore, the strontium functionalized SF microcarriers improved the osteogenic capability of BMSCs in vitro compared with those microcarriers without sustained release of strontium ion. This study presents a valuable approach to fabricate polymeric microcarriers with the capability of sustained release of strontium ion that show potential in bone tissue engineering applications.


Assuntos
Fibroínas , Diferenciação Celular , Osteogênese , Porosidade , Estrôncio , Engenharia Tecidual , Tecidos Suporte
15.
Chemosphere ; 282: 131110, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34470162

RESUMO

Fibrous activated carbon has attracted emerging research interests due to its remarkable adsorption performance for volatile organic compounds (VOCs). Though this adsorption behavior for VOCs is closely related to the pore structure on the surface of activated carbon fiber (ACF), few researchers paid attentions to the influence of textural properties of this adsorption process. Especially, cotton-based activated carbon fiber (CACF) for adsorbing benzene pollutant is rarely reported. Herein, in order to develop a high-performance adsorbent for the removal of VOCs pollutants, this work studied the influence of textural properties of CACF on the adsorption of benzene. The results showed that the increase of carbonization temperature would lead to the reduction of mesopores but the increase of micropores for CACF; the embedment of phosphoric acid and its derivatives into the carbon layers contributed to the formation of pore structure for CACF; furthermore, specific surface area of CACF can also be enlarged by increasing the concentration of phosphoric acid. More importantly, it was found that the adsorption capacity of CACF for benzene was strongly dependent on the specific surface area and volume of micropores within CACF because micropores can provide more favorable binding sites. This adsorption process preferred to occur on the wall of micropores, then the accumulated benzene would slowly fill the pores. Interestingly, the decrease of pore size of micropores can unexpectedly improve the affinity of CACF to benzene on the contrary. This work provides a new strategy to develop porous structured ACF materials for the high-performance adsorption of VOCs.


Assuntos
Benzeno , Carvão Vegetal , Adsorção , Fibra de Carbono , Porosidade
16.
Georgian Med News ; (316-317): 173-178, 2021.
Artigo em Russo | MEDLINE | ID: mdl-34511467

RESUMO

The advantage of polylactide-based implants is their rapid and complete biodegradation, followed by replacement of the defect with bone tissue. The disadvantage of materials with a high biodegradation rate is their low support ability. The admixture of ceramic materials increases the strength of the implants and reduces the rate of biodegradation. 3D printing technology allows you to reduce the negative factors of ceramic impurities through the manufacture of implants of various porosities. Target. Determine the ultimate strength of a composite material based on PLA and TCP, manufactured by 3D printing with different porosity options, depending on the duration of hydration. Were made 9 samples of material with a size of 10x10x10 mm with different porosity 40%, 30%, 20%. Samples of the material were hydrated in saline. Strength tests were carried out on days 2, 10, and 20 after hydration, 3 samples of material of each porosity. All samples were tested for compression. The carried out comparative analysis indicates that the tested samples are statistically significant (at the level of p <0.05) differ from each other depending on the value of porosity at all periods of hydration. Although the average values of the ultimate strength of samples of the same porosity tend to decrease depending on the period of their hydration, these changes do not acquire statistical significance even between the extreme periods of observation. This is confirmed by the values of the indicator of the statistical significance of the differences p equal to 0.07; 0.759 and 0.124 for specimens with porosity of 20%, 30% and 40%, respectively. The tensile strength of samples of material based on polylactide and tricalcium phosphate, made using 3D printing, directly depends on their porosity, the smaller the pore volume, the stronger the samples. The hydration of the samples in saline solution for 20 days does not entail statistically significant changes in their strength regardless of the pore volume, although the average values of the ultimate strength for all tested samples tend to decrease.


Assuntos
Poliésteres , Tecidos Suporte , Fosfatos de Cálcio , Teste de Materiais , Porosidade , Impressão Tridimensional
17.
Anal Chim Acta ; 1179: 338812, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34535246

RESUMO

Metal active species combined with N-doped porous carbon nanosheets usually own excellent electrochemical activity and sensing performance owing to its unique microstructure and composition. In this work, monodispersed Ni active sites anchored on N-doped porous carbon nanosheets (Ni@N-PCN) were facilely prepared via rational metal-organic frameworks (MOFs) route. Firstly, zeolitic imidazolate frameworks-8 (ZIF-8) was in situ grown on physically-exfoliated graphene nanosheets (GN) with homogeneous sandwich-like structure (ZIF-8@GN). Secondly, nickel bonded ZIF-8@GN hybrids (Ni/ZIF-8@GN) were obtained by ionic exchange reaction, and then transformed into Ni@N-PCN by high-temperature pyrolysis. Benefiting from the monodispersed Ni active sites and highly reactive N-doped porous carbon nanosheets (N-PCN), the as-prepared Ni@N-PCN hybrids displayed superior catalytic performance toward hydrogen peroxide (H2O2) sensing. As a result, a highly sensitive electrochemical sensing platform for H2O2 was fabricated with low detection limit (0.032 µM), wide detection linearity (0.2-2332.8 µM), and high sensitivity (6085 µA cm-2 mM-1). Besides, the as-developed electrochemical sensing platform was successfully applied to detect H2O2 contents in biological medicine and food specimens with satisfied results. This study will provide effective guidance for the preparation of novel metal/N-doped carbon nanomaterials and establishment of high-performance electrochemical sensors.


Assuntos
Carbono , Estruturas Metalorgânicas , Domínio Catalítico , Peróxido de Hidrogênio , Porosidade
18.
Anal Chim Acta ; 1180: 338851, 2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34538318

RESUMO

The intrinsic peak profiles (free from the delay and dispersion caused by state-of-the art UHPLC systems) generated by narrow-bore and microbore chromatographic columns used in liquid chromatography-mass spectrometry (LC-MS) proteomic analyses are extracted from two different deconvolution methods. The first method is based on the classical discrete Fourier transform (DFT) while the second method refers to the Taylor expansion of the continuous Fourier transform (FT). The two numerical methods are compared regarding the accurate determination of the intrinsic peak profiles of the non-retained compound (toluene) expected on a narrow-bore 2.1 mm × 100 mm column packed with 1.6 µm CORTECS-C18 superficially porous particles and installed on three different LC systems (ACQUITY i-class UPLC, ACQUITY H-class UPLC, and Arc LC systems). The DFT-based method is most relevant when the low-frequency band of the chromatographic peak does not overlap with the high-frequency bands related to the experimental baseline noise (pump/detector). The Taylor expansion-based method is successful for the extraction of the intrinsic peak profiles of narrow-bore 2.1 mm i.d. columns packed with sub-2 µm particles installed on standard UHPLC systems. When the LC system dispersion significantly exceeds that of the column, the DFT-based method is preferred over the Taylor expansion-based method and is successfully applied to extract the intrinsic peak profiles generated by a microbore 1.0 mm × 100 mm column packed with 1.8 µm HSS-C18 fully porous particles (volume variance ∼ 0.15 µL2 for the non-retained compound toluene) run on the low-dispersion ACQUITY i-class UPLC system (∼ 1 µL2 volume variance). This result opens up promising avenues for the development, quality control, and LC-MS analyses of microbore 1 mm i.d. columns using the state-of-the-art UHPLC instruments at flow rates larger than 0.1 mL/min.


Assuntos
Proteômica , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Espectrometria de Massas , Porosidade
19.
ACS Sens ; 6(8): 2967-2978, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34387077

RESUMO

The ultimate detection limit of optical biosensors is often limited by various noise sources, including those introduced by the optical measurement setup. While sophisticated modifications to instrumentation may reduce noise, a simpler approach that can benefit all sensor platforms is the application of signal processing to minimize the deleterious effects of noise. In this work, we show that applying complex Morlet wavelet convolution to Fabry-Pérot interference fringes characteristic of thin film reflectometric biosensors effectively filters out white noise and low-frequency reflectance variations. Subsequent calculation of the average difference in extracted phase between the filtered analyte and reference signals enables a significant reduction in the limit of detection (LOD). This method is applied on experimental data sets of thin film porous silicon sensors (PSi) in buffered solution and complex media obtained from two different laboratories. The demonstrated improvement in the LOD achieved using wavelet convolution and average phase difference paves the way for PSi optical biosensors to operate with clinically relevant detection limits for medical diagnostics, environmental monitoring, and food safety.


Assuntos
Técnicas Biossensoriais , Limite de Detecção , Porosidade , Silício
20.
ACS Sens ; 6(8): 3125-3132, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34399053

RESUMO

The sensing field has shed light on an urgent necessity for field-deployable, user-friendly, sensitive, and scalable platforms that are able to translate solutions into the real world. Here, we attempt to meet these requests by addressing a simple, low-cost, and fast electrochemical approach to provide sensitive assays that consist of dropping a small volume (0.5 µL) of off-the-shelf alcohols on pyrolyzed paper-based electrodes before adding the sample (150 µL). This method was applied in the detection of phosphate after the formation of the phosphomolybdate complex (250-860 nm in size). Prior drops of isopropanol allow for the fast penetration of the sample through pores of this hydrophobic paper, delivering hindrance-free redox reactions across increasing active areas and ultimately improving the detection performance. The sensitivity (-1.9 10-6 mA cm-2 ppb-1) and limit of detection (1.1 ppb) were improved, respectively, by factors of 33 and 99 over the data achieved without the addition of isopropanol, listing among the lowest values when compared with those results reported in the literature for phosphate (expressed in terms of the concentration of phosphorus). The approach enabled the quantification of this analyte in real samples with accuracies ranging from 87 to 103%. Furthermore, preliminary measurements demonstrated the successful performance of the electrodes with prior addition of other widely used alcohols, that is, methanol and ethanol. These results may extend the applicability of the method. In special, the scalability and eco-friendly character of the electrode fabrication combined with the sensitivity and simplicity of the analyses make the developed platform a promising alternative that may help to pave the way for a new generation of disposable sensors toward the daily monitoring of phosphate in water samples, thus contributing to prevent ecological side effects.


Assuntos
Técnicas Eletroquímicas , Fosfatos , Ação Capilar , Eletrodos , Etanol , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...