Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.110
Filtrar
1.
Sci Total Environ ; 792: 148363, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34465051

RESUMO

The alpine meadow in the Qinghai-Tibet Plateau has been seriously degraded due to human activities and climate change in recent decades. Understanding the changes of the soil microbial community in response to the degradation process helps reveal the mechanism underlying the degradation process of alpine meadows. We surveyed and analyzed changes of the vegetation, soil physicochemical properties, and soil microbial community in three degradation levels, namely, non-degradation (ND), moderate degradation (MD), and severe degradation (SD), of the alpine meadows in the northeastern Qinghai-Tibet Plateau. We found that as the level of degradation increased, plant cover, plant density (PD), above-ground biomass (AGB), plant Shannon-Wiener index (PS), soil water content (SWC), soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available nitrogen (AN), available phosphorus (AP), and available potassium (AK) decreased significantly, while the soil pH increased from 7.20 to 8.57. Alpine meadow degradation significantly changed the composition of soil bacterial and fungal communities but had no significant impact on the diversity of the microbial communities. Functional predictions indicated that meadow degradation increased the relative abundances of aerobic_chemoheterotrophy, undefined_saprotroph, and plant_pathogen, likely increasing the risk of plant diseases. Redundancy analysis revealed that in ND, the soil microbial community was mainly regulated by PS, PH, PD, SWC, and soil pH. In MD, the soil microbial community was regulated by the soil's available nutrients and SOC. In SD, the soil microbial community was not only regulated by the soil's available nutrients but also influenced by plant characteristics. These results indicate that during alpine meadow degradation, while the changes in the plants and soil environmental factors both affect the composition of the soil microbial community, the influence of soil factors is greater. The soil's available nutrients are the main driving factors regulating the change in the soil microbial community's composition alongside degradation levels.


Assuntos
Microbiota , Solo , Carbono/análise , Pradaria , Humanos , Nutrientes , Microbiologia do Solo , Tibet
2.
Trop Anim Health Prod ; 53(5): 455, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34537924

RESUMO

Gastrointestinal nematode (GIN) infestations remain a major challenge to the health, productivity and reproductive performance of small ruminants. A longitudinal study was conducted to assess the effect of vegetation type, season and parity on the burden of GIN in indigenous does that were foraging in grassland and forestland vegetation types. Body condition scores (BCS), packed cell volume (PCV), FAMACHA score and faecal egg counts (FEC) were determined in Xhosa lob-eared does (n = 165) during the cool-dry, hot-wet and post-rainy seasons in both vegetation types. Faecal samples were collected from the rectum and analysed using the modified McMaster technique. There was a significant association between vegetation type and season on the recorded BCS, body weight (BW), FEC, PCV and FAMACHA scores. Xhosa lob-eared does in the forestland had higher (P < 0.05) BCS as compared to those in grassland. Higher FEC (P < 0.05) were observed in Xhosa lob-eared does in the grassland vegetation compared to those in forestland. Body condition scores, FEC and FAMACHA scores were significantly higher in the hot-wet season than cool-dry and post-rainy seasons, while PCV was significantly higher during the cool-dry compared to hot-wet season in forestland. Strongyles and Strongyloides eggs were higher in does grazing in the grassland than those in the forestland during the hot-wet season. Strategies for the effective control of GIN in goats should consider that infestation levels differ with vegetation type, season and parity. Controlling of GIN in goats, therefore, requires an integrated control strategy that should consider the vegetation type that the goats are reared on.


Assuntos
Doenças das Cabras , Nematoides , Infecções por Nematoides , Animais , Fezes , Florestas , Cabras , Pradaria , Estudos Longitudinais , Infecções por Nematoides/epidemiologia , Infecções por Nematoides/veterinária , Óvulo , Contagem de Ovos de Parasitas/veterinária
3.
Phytochemistry ; 190: 112894, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34364088

RESUMO

The cuticle is the outermost region of the epidermal cell wall of plant aerial organs. The cuticle acts as a two-way lipid barrier for water diffusion; therefore, it plays a vital role in foliar water uptake (FWU). We hypothesised that the chemical composition of the cuticular waxes influences the FWU strategy that plants adopt in a foggy tropical ecosystem. We analysed the leaf cuticular waxes of six plant species known by their different FWU strategies, in both qualitative and quantitative approaches, to test this hypothesis. We also investigated the fine structure of the plant cuticle by scanning electron microscopy. Neither the total wax loads nor the amounts of single wax compound classes correlated to the FWU. In contrast, the qualitative chemical composition of the cuticular waxes was related to the water absorption speed but not to the maximum water absorbed. The presence of wax crystals might interfere with the FWU. Our findings suggest that a complex three-dimensional network of the cuticular compounds contributes to different strategies of FWU in six plant species from foggy tropical mountaintops.


Assuntos
Ecossistema , Água , Pradaria , Folhas de Planta , Ceras
4.
Sci Total Environ ; 791: 148379, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34412395

RESUMO

Alpine grasslands play important functions in mitigating climate change and regulating water resources. However, the spatiotemporal variability of their carbon and water budgets remains unquantified. Here, 47 site-year observations of CO2 and water vapor fluxes (ET) are analyzed at sites situated along a hydrothermal gradient across the Qinghai-Tibetan Plateau, including an alpine wetland (wettest), an alpine shrub (coldest), an alpine meadow, an alpine meadow-steppe, and an alpine steppe (driest and warmest). The results show that the benchmarks for annual net ecosystem exchange (NEE) are -79.3, -77.8, -66.7, 20.2, and 100.9 g C m-2 year-1 at the meadow, shrub, meadow-steppe, steppe, and wetland, respectively. The peak daily NEE normalized by peak leaf area index converges to 0.93 g C m-2 d-1 at the 5 sites. Except in the wetland (722.8 mm), the benchmarks of annual ET fluctuate from 511.0 mm in the steppe to 589.2 mm in the meadow. Boosted regression trees-based analysis suggests that the enhanced vegetation index (EVI) and net radiation (Rn) determine the variations of growing season monthly CO2 fluxes and ET, respectively, although the effect is to some extent site-specific. Inter-annual variability in NEE, ecosystem respiration (RES), and ET are tightly (R2 > 0.60) related to the inter-growing season NEE, RES, and ET, respectively. Both annual RES and annual NEE are significantly constrained by annual gross primary productivity (GPP), with 85% of the per-unit GPP contributing to RES (R2 = 0.84) and 15% to NEE (R2 = 0.12). Annual GPP significantly correlates with annual ET alone at the drier sites of the meadow-steppe and the steppe, suggesting the coupling of carbon and water is moisture-dependent in alpine grasslands. Over half of the inter-annual spatial variability in GPP, RES, NEE, and ET is explained by EVI, atmospheric water vapor, topsoil water content, and bulk surface resistance (rs), respectively. Because the spatial variations of EVI and rs are strongly regulated by atmospheric water vapor (R2 = 0.48) and topsoil water content (R2 = 0.54), respectively, we conclude that atmospheric water vapor and topsoil water content, rather than the expected air/soil temperatures, drive the spatiotemporal variations in CO2 fluxes and ET across temperature-limited grasslands. These findings are critical for improving predictions of the carbon sequestration and water holding capacity of alpine grasslands.


Assuntos
Pradaria , Solo , Dióxido de Carbono , Ecossistema , Vapor , Tibet
5.
Huan Jing Ke Xue ; 42(9): 4527-4537, 2021 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-34414753

RESUMO

Global climate change has significantly changed precipitation patterns. Soil respiration (SR), as an important pathway through which CO2 is released from the soil carbon pool into the atmosphere, may affect the carbon cycle process of terrestrial ecosystems and have a feedback effect on global climate change in response to precipitation change. However, at present there is limited understanding of how SR is affected by precipitation change. Field precipitation control experiments were conducted (with -40%, -20%, natural, 20%, and 40% precipitation) on desert grassland in the west of the Loess Plateau, to investigate the influence of precipitation change on SR dynamics and its relationship with soil water content, soil temperature, aboveground biomass, soil organic carbon, microbial biomass carbon, carbon-nitrogen ratio, and other factors. The results show that the diurnal variations of SR under different precipitation treatments were consistent in unimodal and bimodal models over three years. SR showed an increasing trend with added precipitation, relative to the control, and significant differences were observed between the second year (wetter) and the third year (drier) of the precipitation-manipulation experiment, indicating that precipitation changes had a legacy effect on SR. At the same time, SR was lowest under the -40% treatment and highest under the 40% treatment during the wetter year. The negative response of SR to precipitation exclusion treatments was stronger than the positive response to precipitation addition treatments. SR in drier years was significantly higher under precipitation addition treatments than the control, and the positive response of SR to increased precipitation treatment was significantly stronger than that under decreased precipitation treatment. In addition, soil water content, aboveground biomass, soil organic carbon, and carbon-nitrogen ratio were the environmental factors that obviously affected SR and increased with additional precipitation. SR increased with increases in soil water content, aboveground biomass, soil organic carbon, and carbon-nitrogen ratio, but decreased with increases in microbial biomass carbon. Among these factors, soil water content had the highest interpretation rate for SR, indicating that soil water content was the main environmental factor controlling SR in desert grassland. In both wetter and drier years, the amplitude of plant biomass input was lower than the amplitude of SR output under precipitation change, indicating that precipitation change may be unfavorable to soil carbon sequestration, especially in drier years, when precipitation change has a stronger influence on carbon pool output. Therefore, precipitation changes on SR in desert grassland in various dry and wet years may have different influences on the carbon cycle process of ecosystems, thus providing a reference for regional carbon budget assessment.


Assuntos
Carbono , Solo , Ecossistema , Pradaria , Respiração
6.
Environ Sci Pollut Res Int ; 28(36): 50931-50940, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34378132

RESUMO

Industrial revolution markedly increased the environmental contamination by different pollutants, which include the metal lead (Pb). The phytoremediation potential of native species from tropical regions is little known, especially for woody plants. The present study aimed to evaluate the performance of Lonchocarpus cultratus (Fabaceae), a tree species from the Brazilian savanna, grown in soil that was artificially contaminated with increasing Pb concentrations (control and 4 Pb treatments, 56, 120, 180, and 292 mg kg-1) for 6 months. The biomass of L. cultratus was not depressed by exposure to Pb, despite the high accumulation of this metal (up to 7421.23 µg plant-1), indicating a high plant tolerance to this trace metal. Lead was mainly accumulated in roots (from 67 to 99%), suggesting that the low root-to-shoot Pb translocation is a plant strategy to avoid Pb-induced damages in photosynthetic tissues. Accordingly, the content of chlorophylls a and b was maintained at similar levels between Pb-treated and control plants. Moreover, increments in leaf area were noticed in Pb-treated plants in comparison to the control plants (on average, 24.7%). In addition, root length was boosted in plants under Pb exposure (22.6-66.7%). In conclusion, L. cultratus is able to endure the exposure to high Pb concentrations in soil, being a potential plant species to be used for Pb phytostabilization in metal-contaminated soils in tropical regions.


Assuntos
Fabaceae , Poluentes do Solo , Biodegradação Ambiental , Pradaria , Chumbo , Raízes de Plantas/química , Solo , Poluentes do Solo/análise , Árvores
7.
Front Cell Infect Microbiol ; 11: 695087, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434901

RESUMO

Grasslands are major primary producers and function as major components of important watersheds. Although a concise definition of grasslands cannot be given using a physiognomic or structural approach, grasslands can be described as vegetation communities experiencing periodical droughts and with canopies dominated by grasses and grass-like plants. Grasslands have a cosmopolitan distribution except for the Antarctic region. Fungal interactions with grasses can be pathogenic or symbiotic. Herbivorous mammals, insects, other grassland animals, and fungal pathogens are known to play important roles in maintaining the biomass and biodiversity of grasslands. Although most pathogenicity studies on the members of Poaceae have been focused on economically important crops, the plant-fungal pathogenic interactions involved can extend to the full range of ecological circumstances that exist in nature. Hence, it is important to delineate the fungal pathogen communities and their interactions in man-made monoculture systems and highly diverse natural ecosystems. A better understanding of the key fungal players can be achieved by combining modern techniques such as next-generation sequencing (NGS) together with studies involving classic phytopathology, taxonomy, and phylogeny. It is of utmost importance to develop experimental designs that account for the ecological complexity of the relationships between grasses and fungi, both above and below ground. In grasslands, loss in species diversity increases interactions such as herbivory, mutualism, predation or infectious disease transmission. Host species density and the presence of heterospecific host species, also affect the disease dynamics in grasslands. Many studies have shown that lower species diversity increases the severity as well as the transmission rate of fungal diseases. Moreover, communities that were once highly diverse but have experienced decreased species richness and dominancy have also shown higher pathogenicity load due to the relaxed competition, although this effect is lower in natural communities. This review addresses the taxonomy, phylogeny, and ecology of grassland fungal pathogens and their interactions in grassland ecosystems.


Assuntos
Ecossistema , Pradaria , Animais , Biodiversidade , Fungos/genética , Humanos , Microbiologia do Solo
8.
Proc Biol Sci ; 288(1956): 20210318, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34344176

RESUMO

Formation of long-term pair-bonds is a complex process, involving multiple neural circuits and is context- and experience-dependent. While laboratory studies using prairie voles have identified the involvement of several neural mechanisms, efforts to translate these findings into predictable field outcomes have been inconsistent at best. Here we test the hypothesis that inhibition of oestrogen receptor alpha (ERα) in the medial amygdala of male prairie voles would significantly increase the expression of social monogamy in the field. Prairie vole populations of equal sex ratio were established in outdoor enclosures with males bred for high levels of ERα expression and low levels of prosocial behaviour associated with social monogamy. Medial amygdala ERα expression was knocked down in half the males per population. Knockdown males displayed a greater degree of social monogamy in five of the eight behavioural indices assessed. This study demonstrates the robust nature of ERα in playing a critical role in the expression of male social monogamy in a field setting.


Assuntos
Receptor alfa de Estrogênio , Comportamento Social , Tonsila do Cerebelo/metabolismo , Animais , Arvicolinae/genética , Arvicolinae/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Pradaria , Masculino
9.
Animal ; 15(9): 100336, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34371468

RESUMO

Many of the studies in Campos grasslands focus on management aspects such as the control of herbage allowance, and application of nutrients and/or overseeding with legumes. However, there is little literature on how the Campos grassland resource is utilised, especially regarding the grazing pattern and the relationship between pasture quantity and quality on daily grazing activities. The study of the ingestive behaviour in species-rich and heterogeneous native grasslands during daylight hours, and understanding how animals prioritise quality or quantity of intake in relation to pasture attributes, are important to comprehend the ingestive-digestive processes modulating the energy intake of animals and to achieve a better grazing management. Therefore, the objective was to describe and quantify the daily grazing behaviour of growing cattle grazing native pasture with different structures as a result of different management practices, and study the relationship of pasture attributes and intake through multivariate analysis. The study was carried out at the Faculty of Agronomy, Paysandú, Uruguay. Treatments were native grassland, overseeding with Trifolium pratense and Lotus tenuis + phosphorus, and native pasture + nitrogen-phosphorus. Grazing activities were discriminated into grazing, searching (defined when animals take 1-2 bites in one feeding station and then change to another feeding station and so on), ruminating and idling. The probability of time allocated to each activity was continuously measured during daylight hours (0700-1930) and was related to pasture structure and forage quality using regression tree models, while the bite rate was determined every 2 h. The diurnal pattern of growing cattle showed grazing and searching sessions, followed by ruminating and idling sessions. The length of sessions (as the probability of time allocated to each activity) varied throughout the day. The grazing probability was greater during afternoon than morning and midday (0.74 vs 0.45 vs 0.46, respectively), and it was associated with higher bite rate (34.2 bites/min). Regression tree models showed different grazing, searching and ruminating strategies according to pasture attributes. During the morning, animals modified grazing, searching, ruminating and idling strategies according to bite rate, crude protein in diet and herbage allowance. At midday, they only adjusted ruminating and idling, while during afternoon sessions, grazing activities were modified by pasture quantity attributes such as herbage mass and herbage allowance. By controlling the herbage allowance, herbage mass and pasture height, animals prioritise quality in the morning and quantity in the afternoon, integrating and modifying the grazing-searching and ruminating-idling pattern.


Assuntos
Comportamento Alimentar , Pradaria , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Ingestão de Alimentos , Feminino , Lactação
10.
Sci Total Environ ; 790: 148264, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34380248

RESUMO

Nitrogen (N) deposition often promotes aboveground net primary productivity (ANPP), but has adverse effects on terrestrial ecosystem biodiversity. It is unclear, however, whether biomass production and biodiversity are equally altered by seasonal N enrichment, as there is a temporal pattern to atmospheric N deposition. By adding N in autumn, winter, or growing season from October 2014 to May 2019 in a temperate grassland in China, we found that N addition promoted peak plant community ANPP, but tended to decrease plant richness. Regardless of seasonal N additions, precipitation was positively correlated with plant community ANPP, confirming that precipitation is the primary limiting factor in this semiarid grassland. Unexpectedly, N addition in autumn or growing season, but not in winter, increased the sensitivity of plant communities to precipitation (i.e., the slope of the positive relationship between community ANPP and precipitation), indicating that precipitation determines the influence of seasonal N enrichment on plant community biomass production. These findings suggest that previous studies in which N was added in a single season, e.g., the growing season, have likely overestimated the effects of N deposition on ecosystem primary productivity, especially during wet years. This study illustrates that multi-season N addition in agreement with predicted seasonal patterns of N deposition needs to be evaluated to precisely assess ecosystem responses.


Assuntos
Pradaria , Nitrogênio , Biomassa , Ecossistema , Plantas , Poaceae , Estações do Ano
11.
Sci Total Environ ; 790: 148155, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34380252

RESUMO

Passive restoration (without any intervention) has been proposed as an effective strategy for grassland restoration in abandoned croplands. However, whether the vegetation in abandoned croplands can change towards the desired state and the time needed to reach a relative stable state are context-dependent. We investigated three abandoned croplands with different recovery times (5, 15 and 20 years) and one natural grassland in each of two different types of steppe (desert steppe and typical steppe) in the agro-pastoral ecotone of northern China to assess the restoration potential of grassland on abandoned croplands. Above- and below-ground biomass as well as species biodiversity increased gradually with increasing recovery time. After 20 years of restoration there was no significant difference between abandoned cropland and natural steppe in the typical steppe site, but above- and below-ground biomass and species biodiversity were still lower in abandoned cropland in the desert steppe site. At the beginning of restoration, the communities were dominated mainly by annual species, especially in the desert steppe. As recovery time increased, the biomass and richness of perennial graminoids and forbs increased significantly and replaced annual species as the dominant species. In both desert steppe and typical steppes, species similarity between restored and natural steppe increased over time, suggesting that previously cultivated grassland recovered towards the desired state. Our results indicate that 20 years was sufficient time for the restoration of croplands in the typical steppe, but more time may be needed in the desert steppe.


Assuntos
Biodiversidade , Pradaria , China , Produtos Agrícolas , Ecossistema , Solo
12.
Sci Total Environ ; 795: 148675, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34328947

RESUMO

Studies of plant water sources generally assume that xylem water integrates the isotopic composition (δ2H and δ18O) of water sources and does not fractionate during uptake or transport along the transpiration pathway. However, woody xerophytes, halophytes, and trees in mesic environments can show isotopic fractionation from source waters. Isotopic fractionation and variation in isotope composition can affect the interpretation of tree water sources, but most studies to date have been greenhouse experiments. Here we present a field-based forensic analysis of xylem water isotope composition for 12 Eucalyptus tetrodonta and Corymbia nesophila trees. We used a 25-tonne excavator to access materials from the trees' maximum rooting depth of 3 m to their highest canopies at 38 m. Substantial within-tree variation occurred in δ2H (-91.1‰ to -35.7‰ E. tetrodonta; -88.8‰ to -24.5‰ C. nesophila) and δ18O (-12.3‰ to -5.0‰ E. tetrodonta; -10.9‰ to -0.3‰ C. nesophila), with different root-to-branch isotope patterns in each species. Soil water δ2H and δ18O dual isotope slopes (7.26 E. tetrodonta, 6.66 C. nesophila) were closest to the Local Meteoric Water Line (8.4). The dual isotope slopes of the trees decreased progressively from roots (6.45 E. tetrodonta, 6.07 C. nesophila), to stems (4.61 E. tetrodonta, 5.97 C. nesophila) and branches (4.68 E. tetrodonta, 5.67 C. nesophila), indicative of fractionation along the xylem stream. Roots of both species were more enriched in 2H and 18O than soil water at all sampled depths. Bayesian mixing model analysis showed that estimated proportions of water sourced from different depths reflected the contrasting root systems of these species. Our study adds evidence of isotopic fractionation from water uptake and along the transpiration stream in mature trees in monsoonal environments, affecting the interpretation of water sources. We discuss the findings with view of interpreting aboveground xylem water isotopic composition, incorporating knowledge of root systems.


Assuntos
Pradaria , Xilema , Teorema de Bayes , Isótopos , Água
13.
Glob Chang Biol ; 27(19): 4894-4908, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34240513

RESUMO

Global change factors such as changed rainfall regimes and nitrogen (N) deposition contribute to increases in the emission of the greenhouse gas nitrous oxide (N2 O) from the soil. In previous research, N deposition has often been simulated by using a single or a series of N addition events over the course of a year, but wet N deposition actually co-occurs with rainfall. How soil N2 O emissions respond to altered rainfall amount and frequency, wet N deposition, and their interactions is still not fully understood. We designed a three-factor, fully factorial experiment with factors of rainfall amounts (ambient, -30%) rainfall frequency (ambient, ±50%) and wet N deposition (with/without) co-occurring with rainfall in semi-arid grassland mesocosms, and measured N2 O emissions and their possible biotic and abiotic drivers. Across all treatments, reduced rainfall amount and N deposition increased soil N2 O emissions by 35% and 28%, respectively. A significant interactive effect was observed between rainfall amount and N deposition, and to a lesser extent between rainfall frequency and N deposition. Without N deposition, reduced rainfall amount and altered rainfall frequency indirectly affected soil N2 O emissions by changing the abundance of nirK and soil net N mineralization, and the changes in nirK abundance were indirectly driven by soil N availability rather than directly by soil moisture. With N deposition, both the abundance of nirK and the level of soil water-filled pore space contributed to changes in N2 O emissions in response to altered rainfall regimes, and the changes in the abundance of nirK were indirectly driven by plant N uptake and nitrifier (ammonia-oxidizing bacteria) abundance. Our results imply that unlike wetter grassland ecosystems, reduced precipitation may increase N2 O emissions, and N deposition may only slightly increase N2 O emissions in arid and semi-arid N-limited ecosystems that are dominated by grasses with high soil N uptake capacity.


Assuntos
Pradaria , Solo , Ecossistema , Nitrogênio/análise , Óxido Nitroso/análise
14.
BMC Ecol Evol ; 21(1): 145, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34266378

RESUMO

BACKGROUND: Climate change models predict changes in the amount, frequency and seasonality of precipitation events, all of which have the potential to affect the structure and function of grassland ecosystems. While previous studies have examined plant or herbivore responses to these perturbations, few have examined their interactions; even fewer have included belowground herbivores. Given the ecological, economic and biodiversity value of grasslands, and their importance globally for carbon storage and agriculture, this is an important knowledge gap. To address this, we conducted a precipitation manipulation experiment in a former mesic pasture grassland comprising a mixture of C4 grasses and C3 grasses and forbs, in southeast Australia. Rainfall treatments included a control [ambient], reduced amount [50% ambient] and reduced frequency [ambient rainfall withheld for three weeks, then applied as a single deluge event] manipulations, to simulate predicted changes in both the size and frequency of future rainfall events. In addition, half of all experimental plots were inoculated with adult root herbivores (Scarabaeidae beetles). RESULTS: We found strong seasonal dependence in plant community responses to both rainfall and root herbivore treatments. The largest effects were seen in the cool season with lower productivity, cover and diversity in rainfall-manipulated plots, while root herbivore inoculation increased the relative abundance of C3, compared to C4, plants. CONCLUSIONS: This study highlights the importance of considering not only the seasonality of plant responses to altered rainfall, but also the important role of interactions between abiotic and biotic drivers of vegetation change when evaluating ecosystem-level responses to future shifts in climatic conditions.


Assuntos
Pradaria , Herbivoria , Mudança Climática , Ecossistema , Poaceae
15.
Ecol Lett ; 24(10): 2054-2064, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34319652

RESUMO

Livestock grazing is a major driver shaping grassland biodiversity, functioning and stability. Whether grazing impacts on grassland ecosystems are scale-dependent remains unclear. Here, we conducted a sheep-grazing experiment in a temperate grassland to test grazing effects on the temporal stability of productivity across scales. We found that grazing increased species stability but substantially decreased local community stability due to reduced asynchronous dynamics among species within communities. The negative effect of grazing on local community stability propagated to reduce stability at larger spatial scales. By decreasing biodiversity both within and across communities, grazing reduced biological insurance effects and hence the upscaling of stability from species to communities and further to larger spatial scales. Our study provides the first evidence for the scale dependence of grazing effects on grassland stability through biodiversity. We suggest that ecosystem management should strive to maintain biodiversity across scales to achieve sustainability of grassland ecosystem functions and services.


Assuntos
Ecossistema , Pradaria , Animais , Biodiversidade , Ovinos
16.
Environ Health ; 20(1): 82, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34261495

RESUMO

BACKGROUND: Everyday people are exposed to multiple environmental factors, such as surrounding green, air pollution and traffic noise. These exposures are generally spatially correlated. Hence, when estimating associations of surrounding green, air pollution or traffic noise with health outcomes, the other exposures should be taken into account. The aim of this study was to evaluate associations of long-term residential exposure to surrounding green, air pollution and traffic noise with mortality. METHODS: We followed approximately 10.5 million adults (aged ≥ 30 years) living in the Netherlands from 1 January 2013 until 31 December 2018. We used Cox proportional hazard models to evaluate associations of residential surrounding green (including the average Normalized Difference Vegetation Index (NDVI) in buffers of 300 and 1000 m), annual average ambient air pollutant concentrations [including particulate matter (PM2.5), nitrogen dioxide (NO2)] and traffic noise with non-accidental and cause-specific mortality, adjusting for potential confounders. RESULTS: In single-exposure models, surrounding green was negatively associated with all mortality outcomes, while air pollution was positively associated with all outcomes. In two-exposure models, associations of surrounding green and air pollution attenuated but remained. For respiratory mortality, in a two-exposure model with NO2 and NDVI 300 m, the HR of NO2 was 1.040 (95%CI: 1.022, 1.059) per IQR increase (8.3 µg/m3) and the HR of NDVI 300 m was 0.964 (95%CI: 0.952, 0.976) per IQR increase (0.14). Road-traffic noise was positively associated with lung cancer mortality only, also after adjustment for air pollution or surrounding green. CONCLUSIONS: Lower surrounding green and higher air pollution were associated with a higher risk of non-accidental and cause-specific mortality. Studies including only one of these correlated exposures may overestimate the associations with mortality of that exposure.


Assuntos
Poluição do Ar/análise , Causas de Morte , Exposição Ambiental , Ruído dos Transportes , Plantas , Características de Residência , Adulto , Idoso , Estudos de Coortes , Fazendas , Feminino , Florestas , Pradaria , Humanos , Masculino , Pessoa de Meia-Idade , Países Baixos/epidemiologia
17.
Oecologia ; 196(4): 1153-1166, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34304304

RESUMO

Understanding the relationship of soil carbon storage and species diversity in grasslands can provide insights into managing these ecosystems. We studied relationships among soil C and plant species richness within ~ 9700 ha of grasslands in Colorado, US. Using 141 grassland transects, we tested how soil C was related to plant species richness, grassland type, soil texture, and prairie dog presence. Soil C was significantly, positively related to plant species richness, while native perennial graminoid species richness exhibited an even stronger positive relationship. However, the relationship of soil C and plant richness was not found in all three grassland types studied, but instead was unique to the most common grassland type, mixed grass prairie, and absent from both xeric tallgrass and mesic tallgrass prairie. The presence of a single indicator species, Andropogon gerardii, showed a significant, positive relationship with soil carbon. Our best possible model explained 45% of the variance in soil C using species richness, grassland type, and their interaction. Surprisingly, soil C was negatively related to soil clay, suggesting that surface clays amplify evaporation and water runoff rather than protecting soil organic matter from decomposition. Soil C was negatively related to prairie dog presence, suggesting that prairie dogs do not enhance soil carbon sequestration; in fact, prairie dog occupied sites had significantly lower soil C, likely related to loss of topsoil from prairie dog colonies. Our results suggest that management for species richness provides the co-benefit of soil C storage, and high clay and prairie dog disturbance compromises both.


Assuntos
Pradaria , Solo , Biodiversidade , Carbono , Ecossistema , Plantas
18.
Sci Total Environ ; 794: 148684, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34214805

RESUMO

Soil respiration (RS) is affected by many factors and shows significant diurnal and seasonal changes at different spatial and temporal scales. However, in a semi-arid steppe, the mechanism of the dynamic influence of environmental factors on RS is not clear, and the effect of subtle changes of soil water on RS under drought stress is yet to be explored. Therefore, Xilin River Basin, was the study area and a hydrological gradient on the four ecosystems for RS and hydrometeorological monitoring was selected. We proposed the use of dynamic sunrise and sunset time to distinguish day from night and determine related statistics. Additionally, we analyzed the temporal variation of RS and its response process and mechanism for hydrometeorological factors during the growing season and at daily scales. Further, we quantitatively simulated the RS of 594 scenarios in different growing season stages, ecosystems, and precipitation patterns. Results showed that: (1) in the hydrological gradient belt, different ecosystems exhibited the same trend but different characteristics of RS regulation. From May to November 2020, RS was 2.34-3.89, 1.89-5.97, 1.90-5.27 and 2.29-3.45 gC m-2 day-1 for the four ecosystems. (2) The use of dynamic sunrise and sunset time to distinguish day and night can more accurately describe the statistical value of each variable, which exhibits remarkable feasibility in daily scale research. (3) The changes in RS were adequately explained by temperature at various time scales, and the photosynthetically active radiation was positively correlated with RS at the daily scale. The special soil water content (MS) condition in the study area was not sufficient to explain RS. (4) Precipitation can affect RS by changing soil and air; however, only when precipitation exceeds the effective precipitation threshold of 0.6 ± 0.3 mm, it significantly affects RS.


Assuntos
Ecossistema , Solo , China , Pradaria , Respiração , Estações do Ano
19.
Sci Total Environ ; 794: 148601, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34217080

RESUMO

Water quality and riparian communities are among the most affected stream components by agriculture. However, little is known about the effects of riparian management for both aquatic and terrestrial taxa at different spatial scales. Here, we surveyed aquatic (diatoms) and terrestrial taxa (bryophytes, vascular plants, litter-dwelling snails, and ground and volant arthropods), to compare the abundance and richness of riparian taxa and chemical quality between reference and exposed sites in two stream reaches each of c. 3.5 km in northwestern Spain. Impacts in exposed sites were mainly due to traditional farming practices (TFPs), which included traditional meadow management, weirs built for now-unused water mills and sporadic timber harvesting. Therefore, we measured ten covariates and predictors related to the intensification of TFPs at local and within-stream scales and explored associations with riparian and water-quality measures to study the potential effects of TFPs in more detail. Reference and exposed sites did not differ significantly in water properties (diatom-biotic indices, conductivity, total organic carbon and nitrates), but exposed sites had less concentrations of soil metals Cd, Cu, Ni and Zn and less cover and richness of riparian trees, as inferred by the index QBR. Exposed sites had more volant insect decomposers and reference sites a greater abundance or richness of snails, ground predators and decomposers. Bryophyte richness was greater in reference sites. Our inferences may inform the joint cumulative downstream effects of weirs, meadow uses and riparian alterations but were generally consistent with most riparian taxa benefiting from having larger forested areas. Given the contrasting responses among taxa, we argue that land snails, terrestrial flies, and centipedes may be valuable additions to current riparian assessments mostly based on plants, beetles and spiders as indicator taxa. Our study also suggests caution when inferring farming impacts on streams from the surface area of pastoral land.


Assuntos
Pradaria , Qualidade da Água , Agricultura , Animais , Ecossistema , Florestas , Árvores
20.
Ecol Lett ; 24(10): 2100-2112, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34240557

RESUMO

The effects of altered nutrient supplies and herbivore density on species diversity vary with spatial scale, because coexistence mechanisms are scale dependent. This scale dependence may alter the shape of the species-area relationship (SAR), which can be described by changes in species richness (S) as a power function of the sample area (A): S = cAz , where c and z are constants. We analysed the effects of experimental manipulations of nutrient supply and herbivore density on species richness across a range of scales (0.01-75 m2 ) at 30 grasslands in 10 countries. We found that nutrient addition reduced the number of species that could co-occur locally, indicated by the SAR intercepts (log c), but did not affect the SAR slopes (z). As a result, proportional species loss due to nutrient enrichment was largely unchanged across sampling scales, whereas total species loss increased over threefold across our range of sampling scales.


Assuntos
Biodiversidade , Pradaria , Ecossistema , Herbivoria , Nutrientes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...