Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.491
Filtrar
1.
J Agric Food Chem ; 72(13): 6913-6920, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38517181

RESUMO

To explore natural product-based pesticide candidates, a series of indole derivatives containing the isoxazoline skeleton at the N-1 position were synthesized by 1,3-dipolar [2 + 3] cycloaddition reaction. Their structures were characterized by melting points (mp), infrared (IR) spectra, proton nuclear magnetic resonance spectra (1H NMR), carbon-13 nuclear magnetic resonance spectra (13C NMR), and high resolution mass spectrometry (HRMS). The single-crystal structures of five compounds were presented. Against Tetranychus cinnabarinus Boisduval, compound 3b showed greater than 3.8-fold acaricidal activity of indole and good control effects under glasshouse conditions. Against Aphis citricola Van der Goot, compounds 3b and 3q exhibited 48.3- and 36.8-fold aphicidal activity of indole and 6-methylindole, respectively. Particularly, compound 3b showed good bioactivities against T. cinnabarinus and A. citricola. Against Eriosoma lanigerum Hausmann, compound 3h and 3i showed 2.1 and 1.9 times higher aphicidal activity compared to indole. Furthermore, the construction of the epidermal cuticle layer of 3b-treated carmine spider mites was distinctly damaged, which ultimately led to their death.


Assuntos
Acaricidas , Inseticidas , Praguicidas , Tetranychidae , Animais , Praguicidas/farmacologia , Praguicidas/química , Estrutura Molecular , Acaricidas/farmacologia , Acaricidas/química , Espectroscopia de Ressonância Magnética , Indóis/farmacologia , Inseticidas/farmacologia , Inseticidas/química , Relação Estrutura-Atividade
2.
Math Biosci Eng ; 21(2): 3063-3094, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38454719

RESUMO

The occurrence of pests and diseases during agricultural production affects the quality and quantity of agricultural products. It is important to evaluate the impact of various factors on pests to achieve optimal results of integrated pest management (IPM) during its implementation. In this paper, we considered the transient and non-transient effects of chemical control on pests and the effects on natural enemies at different times, and developed a corresponding pest control model. Detailed studies and comparisons were conducted for spraying pesticides either more or less frequently as compared to strategies for releasing natural enemies. The threshold conditions for global asymptotic stabilization of the pest extinction period solution was obtained. Using two-parameter and sensitivity analysis techniques, the parameters affecting the variation of the threshold were discussed. By comparing these two pest control strategies, we found the existence of optimal application and release frequencies. Finally, in order to control pests below the economic threshold level, the state-dependent pest model was numerically investigated. The results show that the presence or absence of chemical control of pests can depend on the values taken for the parameters in the model. Based on this information, pest control experts can make decisions about the best spraying time and the best release rate.


Assuntos
Controle Biológico de Vetores , Praguicidas , Controle Biológico de Vetores/métodos , Praguicidas/farmacologia , Agricultura/métodos
3.
Environ Pollut ; 348: 123854, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38527586

RESUMO

Microplastic (MP) pollution is becoming an emerging environmental concern across aquatic and terrestrial ecosystems. Plastic mulching and the use of pesticides in agriculture can lead to microplastics and agrochemicals in soil, which can result in unintended exposure to non-target organisms. The combined toxicity of multiple stressors represents a significant paradigm shift within the field of ecotoxicology, and its exploration within terrestrial ecosystems involving microplastics is still relatively limited. The present study investigated the combined effects of polyethylene MP (PE-MP) and the agrochemical carbendazim (CBZ) on the earthworm Eisenia fetida at different biological levels of organization. While E. fetida survival and reproduction did not exhibit significant effects following PE-MP treatment, there was a reduction in cocoon and hatchling numbers. Notably, prolonged exposure revealed delayed toxicity, leading to substantial growth impairment. Exposure to CBZ led to significant alterations in the endpoints mentioned above. While there was a decrease in cocoon and hatchling numbers, the combined treatment did not yield significant effects on earthworm reproduction except at higher concentrations. However, lower concentrations of PE-MP alongside CBZ induced a noteworthy decline in biomass content, signifying a form of potentiation interaction. In addition, concurrent exposure led to synergistic effects, from oxidative stress to modifications in vital organs such as the body wall, intestines, and reproductive structures (spermathecae, seminal vesicles, and ovarian follicles). The comparison of multiple endpoints revealed that seminal vesicles and ovarian follicles were the primary targets during the combined exposure. The research findings suggest that there are variable and complex responses to microplastic toxicity in terrestrial ecosystems, especially when combined with other chemical stressors like agrochemicals. Despite these difficulties, the study implies that microplastics can alter earthworms' responses to agrochemical exposure, posing potential ecotoxicological risks to soil fauna.


Assuntos
Benzimidazóis , Carbamatos , Oligoquetos , Praguicidas , Poluentes do Solo , Animais , Feminino , Masculino , Microplásticos/toxicidade , Plásticos/toxicidade , Polietileno/toxicidade , Ecotoxicologia , Ecossistema , Poluentes do Solo/análise , Solo/química , Praguicidas/farmacologia
4.
ACS Nano ; 18(14): 10031-10044, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38547360

RESUMO

The increasing demand for improving pesticide utilization efficiency has prompted the development of sustainable, targeted, and stimuli-responsive delivery systems. Herein, a multi-stimuli-responsive nano/microcapsule bidirectional delivery system loaded with pyraclostrobin (Pyr) is prepared through interfacial cross-linking from a lignin-based Pickering emulsion template. During this process, methacrylated alkali lignin nanoparticles (LNPs) are utilized as stabilizers for the tunable oil-water (O/W) Pickering emulsion. Subsequently, a thiol-ene radical reaction occurs with the acid-labile cross-linkers at the oil-water interface, leading to the formation of lignin nano/microcapsules (LNCs) with various topological shapes. Through the investigation of the polymerization process and the structure of LNC, it was found that the amphiphilicity-driven diffusion and distribution of cyclohexanone impact the topology of LNC. The obtained Pyr@LNC exhibits high encapsulation efficiency, tunable size, and excellent UV shielding to Pyr. Additionally, the flexible topology of the Pyr@LNC shell enhances the retention and adhesion of the foliar surface. Furthermore, Pyr@LNC exhibits pH/laccase-responsive targeting against Botrytis disease, enabling the intelligent release of Pyr. The in vivo fungicidal activity shows that efficacy of Pyr@LNC is 53% ± 2% at 14 days postspraying, whereas the effectiveness of Pyr suspension concentrate is only 29% ± 4%, and the acute toxicity of Pyr@LNC to zebrafish is reduced by more than 9-fold compared with that of Pyr technical. Moreover, confocal laser scanning microscopy shows that the LNCs can be bidirectionally translocated in plants. Therefore, the topology-regulated bidirectional delivery system LNC has great practical potential for sustainable agriculture.


Assuntos
Lignina , Praguicidas , Estrobilurinas , Animais , Lignina/química , Praguicidas/farmacologia , Cápsulas/química , Emulsões/química , Peixe-Zebra , Água
5.
ACS Appl Mater Interfaces ; 16(12): 15143-15155, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38481099

RESUMO

Realizing controllable input of botanical pesticides is conducive to improving pesticide utilization, reducing pesticide residues, and avoiding environmental pollution but is extremely challenging. Herein, we constructed a smart pesticide-controlled release platform (namely, SCRP) for enhanced treatment of tobacco black shank based on encapsulating honokiol (HON) with mesoporous hollow structured silica nanospheres covered with pectin and chitosan oligosaccharide (COS). The SCRP has a loading capacity of 12.64% for HON and could effectively protect HON from photolysis. Owing to the pH- and pectinase-sensitive property of the pectin, the SCRP could smartly release HON in response to a low pH or a rich pectinase environment in the black shank-affected area. Consequently, the SCRP effectively inhibits the infection of P. nicotianae on tobacco with a controlled rate for tobacco black shank of up to 87.50%, which is mainly due to the SCRP's capability in accumulating ROS, changing cell membrane permeability, and affecting energy metabolism. In addition, SCRP is biocompatible, and the COS layer enables SCRP to show a significant growth-promoting effect on tobacco. These results indicate that the development of a stimuli-responsive controlled pesticide release system for plant disease control is of great potential and value for practical agriculture production.


Assuntos
Praguicidas , Praguicidas/farmacologia , Preparações de Ação Retardada/farmacologia , Preparações de Ação Retardada/química , Poligalacturonase , Agricultura , Pectinas
6.
ACS Biomater Sci Eng ; 10(3): 1507-1516, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38372256

RESUMO

Monochamus alternatus is an important stem-boring pest in forestry. However, the complex living environment of Monochamus alternatus creates a natural barrier to chemical control, resulting in a very limited control effect by traditional insecticidal pesticides. In this study, a stable pesticide dendritic mesoporous silica-loaded matrine nanopesticide (MAT@DMSNs) was designed by encapsulating the plant-derived pesticide matrine (MAT) in dendritic mesoporous silica nanoparticles (DMSNs). The results showed that MAT@DMSNs, sustainable nanobiopesticides with high drug loading capacity (80%) were successfully constructed. The release efficiency of DMSNs at alkaline pH was slightly higher than that at acidic pH, and the cumulative release rate of MAT was about 60% within 25 days. In addition, the study on the toxicity mechanism of MAT@DMSNs showed MAT@DMSNs were more effective than MAT and MAT (0.3% aqueous solutions) in touch and stomach toxicity, which might be closely related to their good dispersibility and permeability. Furthermore, MAT@DMSNs are also involved in water transport in trees, which can further transport the plant-derived insecticides to the target site and improve its insecticidal effect. Meanwhile, in addition, the use of essential oil bark penetrants in combination with MAT@DMSNs effectively avoids the physical damage to pines caused by traditional trunk injections and the development of new pests and diseases induced by the traditional trunk injection method, which provides a new idea for the application of biopesticides in the control of stem-boring pests in forestry.


Assuntos
Nanopartículas , Praguicidas , Animais , Matrinas , Dióxido de Silício/farmacologia , Praguicidas/farmacologia , Insetos
7.
J Agric Food Chem ; 72(9): 4658-4668, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38388372

RESUMO

Food security is an important issue in the 21st century; preventing and controlling crop diseases and pests are the key to solve this problem. The creation of new pesticides based on natural products is an important and effective method. Herein, coumarins were selected as parent structures, and a series of their derivatives were designed, synthesized, and evaluated for their antiviral activities, fungicidal activities, and insecticidal activities. We found that coumarin derivatives exhibited good to excellent antiviral activities against tobacco mosaic virus (TMV). The antiviral activities of I-1, I-2a, I-4b, II-2c, II-2g, II-3, and II-3b are better than that of ribavirin at 500 µg/mL. Molecular docking research showed that these compounds had a strong interaction with TMV CP. These compounds also showed broad-spectrum fungicidal activities against 14 plant pathogenic fungi. The EC50 values of I-1, I-2a, I-3c, and II-2d are in the range of 1.56-8.65 µg/mL against Rhizoctonia cerealis, Physalospora piricola, Sclerotinia sclerotiorum, and Pyricularia grisea. Most of the compounds also displayed good insecticidal activities against Mythimna separata. Pesticide-likeness analysis showed that these compounds are following pesticide-likeness and have the potential to be developed as pesticide candidates. The present work lays a foundation for the discovery of novel pesticide lead compounds based on coumarin derivatives.


Assuntos
Fungicidas Industriais , Inseticidas , Praguicidas , Vírus do Mosaico do Tabaco , Relação Estrutura-Atividade , Praguicidas/farmacologia , Fungicidas Industriais/química , Antivirais/química , Cumarínicos/química , Simulação de Acoplamento Molecular , Inseticidas/química , Desenho de Fármacos
8.
J Agric Food Chem ; 72(9): 4737-4746, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38390707

RESUMO

A methodology for the total and modulable synthesis of (4Z)-lachnophyllum lactone (1), on a gram scale, is reported for the first time. The present work started with the design of a retrosynthetic pathway for the target compound, with the key step identified in Pd-Cu bimetallic cascade cross-coupling cyclization. (4Z)-Lachnophyllum lactone (1) is an acetylenic furanone previously isolated, in a low amount, from the organic extract of the autotrophic weedConyza bonariensis. Tested against the stem parasitic weed Cuscuta campestris in a seedling growth bioassay, (4Z)-lachnophyllum lactone (1) showed almost 85% of inhibitory activity up to 0.3 mM in comparison with the control. At the same concentration, the compound displayed radicle growth inhibitory activity of the root parasitic weeds Orobanche minor and Phelipanche ramosa higher than 70 and 40%, respectively. Surprisingly, the compound showed a high percentage of inhibition, up to 0.1 mM, on C. bonariensis seed germination too. This versatile synthetic strategy was also used to obtain two further natural analogues, namely, (4E)-lachnophyllum lactone (8) and (4Z,8Z)-matricaria lactone (9), that showed, in most cases, the same inhibitory trend with slight differences, highlighting the importance of the stereochemistry and unsaturation of the side chain. Furthermore, all of the compounds showed antifungal activity at 1 mM reducing the mycelial growth of the olive pathogen Verticillium dahliae. The design and implementation of scalable and modulable total synthesis on a gram scale of acetylenic furanones allow the production of a large amount of these natural products, overcoming the limit imposed by isolation from natural sources. The results of the present study pave the way for the development of ecofriendly bioinspired pesticides with potential application in agrochemical practices as alternative to synthetic pesticides.


Assuntos
Alcaloides , Asteraceae , Orobanche , Praguicidas , Antifúngicos/farmacologia , Lactonas/química , Sementes , Plantas Daninhas , Agricultura , Alcaloides/farmacologia , Alcinos , Praguicidas/farmacologia , Germinação
9.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338986

RESUMO

Root knot nematodes cause serious damage to global agricultural production annually. Given that traditional chemical fumigant nematicides are harmful to non-target organisms and the environment, the development of biocontrol strategies has attracted significant attention in recent years. In this study, it was found that the Bacillus thuringiensis Berliner strain NBIN-863 exhibits strong fumigant nematicidal activity and has a high attraction effect on Meloidogyne incognita (Kofoid and White) Chitwood. Four volatile organic compounds (VOCs) produced by NBIN-863 were identified using solid-phase microextraction and gas chromatography-mass spectrometry. The nematicidal activity of four VOCs, namely, N-methylformamide, propenamide, 3-(methylthio)propionic acid, and phenylmalonic acid, was detected. Among these compounds, 3-(methylthio)propionic acid exhibited the highest direct contact nematicidal activity against M. incognita, with an LC50 value of 6.27 µg/mL at 24 h. In the fumigant bioassay, the mortality rate of M. incognita treated with 1 mg/mL of 3-(methylthio)propionic acid for 24 h increased to 69.93%. Furthermore, 3-(methylthio)propionic acid also exhibited an inhibitory effect on the egg-hatching of M. incognita. Using chemotaxis assays, it was determined that 3-(methylthio)propionic acid was highly attractive to M. incognita. In pot experiments, the application of 3-(methylthio)propionic acid resulted in a reduction in gall numbers, decreasing the number of galls per gram of tomato root from 97.58 to 6.97. Additionally, the root length and plant height of the treated plants showed significant increases in comparison with the control group. The current study suggests that 3-(methylthio)propionic acid is a novel nematicidal virulence factor of B. thuringiensis. Our research provides evidence for the potential use of NBIN-863 or its VOCs in biocontrol against root knot nematodes.


Assuntos
Bacillus thuringiensis , Praguicidas , Propionatos , Tylenchoidea , Compostos Orgânicos Voláteis , Animais , Antinematódeos/farmacologia , Praguicidas/farmacologia , Compostos Orgânicos Voláteis/farmacologia
10.
Ecotoxicol Environ Saf ; 271: 115918, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232521

RESUMO

Tetracycline antibiotics play a vital role in animal husbandry, primarily employed to uphold the health of livestock and poultry. Consequently, when manure is reintegrated into farmland, tetracycline antibiotics can persist in the soil. Simultaneously, to ensure optimal crop production, organochlorine pesticides (OCPs) are frequently applied to farmland. The coexistence of tetracycline antibiotics and OCPs in soil may lead to an increased risk of transmission of tetracycline resistance genes (TRGs). Nevertheless, the precise mechanism underlying the effects of OCPs on tetracycline antibiotics and TRGs remains elusive. In this study, we aimed to investigate the effects of OCPs on soil tetracycline antibiotics and TRGs using different concentrations of doxycycline (DOX) and pentachlorophenol (PCP). The findings indicate that PCP and DOX mutually impede their degradation in soil. Furthermore, our investigation identifies Sphingomonas and Bacillus as potential pivotal microorganisms influencing the reciprocal inhibition of PCP and DOX. Additionally, it is observed that the concurrent presence of PCP and DOX could impede each other's degradation by elevating soil conductivity. Furthermore, we observed that a high concentration of PCP (10.7 mg/kg) reduced the content of efflux pump tetA, ribosome protective protein tetM, tetQ, and passivating enzyme tetX. In contrast, a low PCP concentration (6.4 mg/kg) only reduced the content of ribosome protective protein tetQ. This suggests that PCP may reduce the relative abundance of TRGs by altering the soil microbial community structure and inhibiting the potential host bacteria of TRGs. These findings have significant implications in understanding the combined pollution of veterinary antibiotics and OCPs. By shedding light on the interactions between these compounds and their impact on microbial communities, this study provides a theoretical basis for developing strategies to manage and mitigate their environmental impact, and may give some information regarding the sustainable use of antibiotics and pesticides to ensure the long-term health and productivity of agricultural systems.


Assuntos
Pentaclorofenol , Praguicidas , Animais , Doxiciclina/farmacologia , Pentaclorofenol/toxicidade , Solo/química , Resistência a Tetraciclina/genética , Microbiologia do Solo , Antibacterianos/farmacologia , Tetraciclina/farmacologia , Genes Bacterianos , Praguicidas/farmacologia , Criação de Animais Domésticos
11.
Appl Microbiol Biotechnol ; 108(1): 157, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252171

RESUMO

Nanosilver oxide exhibits strong antibacterial and photocatalytic properties and has shown great application potential in food packaging, biochemical fields, and other fields involving diseases and pest control. In this study, Ag2O nanoparticles were synthesized using Bacillus thuringiensis (Bt-Ag2O NPs). The physicochemical characteristics of the Bt-Ag2O NPs were analyzed by UV‒vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), inductively coupled plasma emission spectrometry (ICP), high-resolution transmission electron microscopy (HR-TEM), and zeta potential. The phis-chemical characterization revealed that the Bt-Ag2O NPs are in spherical shape with the small particle size (18.24 nm), high crystallinity, well dispersity, and stability. The biopesticidal and antifungal effects of Bt-Ag2O NPs were tested against Tribolium castaneum, Aspergillus flavus, and Penicillium chrysogenum. The survival, growth, and reproduction of tested pests and molds were significantly inhibited by Bt-Ag2O NPs in a dose-dependent manner. Bt-Ag2O NPs showed higher pesticidal activities against T. castaneum than Bt and commercial Ag2O NPs. The LC50 values of Bt, Ag2O NPs, and Bt-Ag2O NPs were 0.139%, 0.072%, and 0.06% on day 14, respectively. The Bt-Ag2O NPs also showed well antifungal activities against A. flavus and P. chrysogenum, while it resulted a small inhibition zone than commercial Ag2O NPs did. In addition, A. flavus showed much more sensitive to Bt-Ag2O NP treatments, compared to P. chrysogenum. Our results revealed that Bt-Ag2O NPs synthesized using B. thuringiensis could act as pesticides and antifungal agents in stored-product fields. KEY POINTS: • Bt-Ag2O NPs could be synthesized using Bacillus thuringiensis (Bt). • The NPs showed a high degree of crystallinity, spherical shape, and small particle size. • The NPs also showed excellent insecticidal and antifungal activity.


Assuntos
Bacillus thuringiensis , Inseticidas , Nanopartículas , Praguicidas , Praguicidas/farmacologia , Antifúngicos/farmacologia , Inseticidas/farmacologia
12.
Appl Microbiol Biotechnol ; 108(1): 181, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285209

RESUMO

Bacillus thuringiensis (Bt) produces crystals composed mainly of Cry pesticidal proteins with insecticidal activity against pests but are highly susceptible to degradation by abiotic factors. In this sense, encapsulation techniques are designed to improve their performance and lifetime. However, the effects of polymeric matrix encapsulation such as gum arabic and maltodextrin by spray-dryer in the mechanisms of action of Bt kurstaki and Bt aizawai are unknown. We analyzed crystal solubilization, protoxin activation, and receptor binding after microencapsulation and compared them with commercial non-encapsulated products. Microencapsulation did not alter protein crystal solubilization, providing 130 kDa (Cry1 protoxin) and 70 kDa (Cry2 protoxin). Activation with trypsin, chymotrypsin, and larval midgut juice was analyzed, showing that this step is highly efficient, and the protoxins were cleaved producing similar ~ 55 to 65 kDa activated proteins for both formulations. Binding assays with brush border membrane vesicles of Manduca sexta and Spodoptera frugiperda larvae provided a similar binding for both formulations. LC50 bioassays showed no significant differences between treatments but the microencapsulated treatment provided higher mortality against S. frugiperda when subjected to UV radiation. Microencapsulation did not affect the mechanism of action of Cry pesticidal proteins while enhancing protection against UV radiation. These data will contribute to the development of more efficient Bt biopesticide formulations. KEY POINTS: • Microencapsulation did not affect the mechanisms of action of Cry pesticidal proteins produced by Bt. • Microencapsulation provided protection against UV radiation for Bt-based biopesticides. • The study's findings can contribute to the development of more efficient Bt biopesticide formulations.


Assuntos
Bacillus thuringiensis , Praguicidas , Polissacarídeos , Animais , Praguicidas/farmacologia , Goma Arábica , Agentes de Controle Biológico , Larva , Controle de Pragas
13.
Int J Biol Macromol ; 260(Pt 2): 129522, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246470

RESUMO

Chitosan nanoparticles (CNPs) have emerged as a promising tool in agricultural advancements due to their unique properties including, biocompatability, biodegradability, non-toxicity and remarkable versatility. These inherent properties along with their antimicrobial, antioxidant and eliciting activities enable CNPs to play an important role in increasing agricultural productivity, enhancing nutrient absorption and improving pest management strategies. Furthermore, the nano-formulation of chitosan have the ability to encapsulate various agricultural amendments, enabling the controlled release of pesticides, fertilizers, plant growth promoters and biocontrol agents, thus offering precise and targeted delivery mechanisms for enhanced efficiency. This review provides a comprehensive analysis of the latest research and developments in the use of CNPs for enhancing agricultural practices through smart and effective delivery mechanisms. It discusses the synthesis methods, physicochemical properties, and their role in enhancing seed germination and plant growth, crop protection against biotic and abiotic stresses, improving soil quality and reducing the environmental pollution and delivery of agricultural amendments. Furthermore, the potential environmental benefits and future directions for integrating CNPs into sustainable agricultural systems are explored. This review aims to shed light on the transformative potential of chitosan nanoparticles as nature's gift for revolutionizing agriculture and fostering eco-friendly farming practices.


Assuntos
Quitosana , Nanopartículas , Praguicidas , Quitosana/química , Produtos Agrícolas , Agricultura/métodos , Praguicidas/farmacologia
14.
J Econ Entomol ; 117(2): 494-499, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38266280

RESUMO

Cyclohexanone is a major precursor for nylon production and is also used as a pesticide solvent. In this study, cyclohexanone was evaluated as a fumigant against rice weevil adults, confused flour beetle adults, western flower thrips larvae and adults, spotted wing drosophila adults, and subterranean termite workers. Cyclohexanone fumigation was effective against all 5 insects, and there were considerable variations in susceptibility to cyclohexanone fumigation among the 5 species. At 20 °C, complete control of spotted wing drosophila adults was achieved in 1-h fumigation with 25 µl/l of cyclohexanone and complete control of eastern subterranean termite workers was achieved in 3-h fumigations with 50 µl/l dose of cyclohexanone. Stored-product insects confused flour beetle, and rice weevil adults were more tolerant to cyclohexanone fumigation. Fumigations of 24 h with 75 µl/l dose of cyclohexanone caused 100% mortality of rice weevil adults and 98% mortality of confused flower beetle adults. Even at a 100 µl/l dose, the 24-h fumigations did not achieve 100% mortality of confused flour beetle adults. At 5 °C, complete control of western flower thrips was achieved in 3- and 6-h fumigations with 100 and 50 µl/l doses of cyclohexanone, respectively. Cyclohexanone vapor concentrations were measured using cyclohexanone detector tubes. Vapor concentrations were far below the expected saturation concentration indicating that most cyclohexanone did not exist as vapor in fumigation chambers. The results of effective control of all 5 insect species suggest that cyclohexanone has the potential to be used as a fumigant for postharvest pest control.


Assuntos
Besouros , Inseticidas , Isópteros , Praguicidas , Tisanópteros , Gorgulhos , Animais , Cicloexanonas/toxicidade , Inseticidas/farmacologia , Controle de Insetos/métodos , Praguicidas/farmacologia , Fumigação/métodos , Drosophila
15.
Protoplasma ; 261(3): 581-592, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38191719

RESUMO

Overdoses of pesticides lead to a decrease in the yield and quality of plants, such as beans. The unconscious use of deltamethrin, one of the synthetic insecticides, increases the amount of reactive oxygen species (ROS) by causing oxidative stress in plants. In this case, plants tolerate stress by activating the antioxidant defense mechanism and many genes. 5-Aminolevulinic acid (ALA) improves tolerance to stress by acting exogenously in low doses. There are many gene families that are effective in the regulation of this mechanism. In addition, one of the response mechanisms at the molecular level against environmental stressors in plants is retrotransposon movement. In this study, the expression levels of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), and stress-associated protein (SAP) genes were determined by Q-PCR in deltamethrin (0.5 ppm) and various doses (20, 40, and 80 mg/l) of ALA-treated bean seedlings. In addition, one of the response mechanisms at the molecular level against environmental stressors in plants is retrotransposon movement. It was determined that deltamethrin increased the expression of SOD (1.8-fold), GPX (1.4-fold), CAT (2.7-fold), and SAP (2.5-fold) genes, while 20 and 40 mg/l ALA gradually increased the expression of these genes at levels close to control, but 80 mg/l ALA increased the expression of these genes almost to the same level as deltamethrin (2.1-fold, 1.4-fold, 2.6-fold, and 2.6-fold in SOD, GPX, CAT, and SAP genes, respectively). In addition, retrotransposon-microsatellite amplified polymorphism (REMAP) was performed to determine the polymorphism caused by retrotransposon movements. While deltamethrin treatment has caused a decrease in genomic template stability (GTS) (27%), ALA treatments have prevented this decline. At doses of 20, 40, and 80 mg/L of ALA treatments, the GTS ratios were determined to be 96.8%, 74.6%, and 58.7%, respectively. Collectively, these findings demonstrated that ALA has the utility of alleviating pesticide stress effects on beans.


Assuntos
Ácido Aminolevulínico , Nitrilas , Praguicidas , Piretrinas , Ácido Aminolevulínico/farmacologia , Ácido Aminolevulínico/metabolismo , Plântula/metabolismo , Retroelementos/genética , Praguicidas/metabolismo , Praguicidas/farmacologia , Antioxidantes/metabolismo , Catalase/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Expressão Gênica , Glutationa/metabolismo , Ascorbato Peroxidases/genética , Ascorbato Peroxidases/metabolismo
16.
Pestic Biochem Physiol ; 198: 105714, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225063

RESUMO

The rise in the utilization of pesticides within industrial and agricultural practices has been linked to the occurrence of these substances in aquatic environments. The objective of this work was to evaluate the uptake and adverse impacts of Diuron (Di) and Triclosan (TCS) on the mussel species Mytilus galloprovincialis. To accomplish this, the accumulation and toxicity of these pesticides were gauged following a brief period of exposure spanning 14 days, during which the mussels were subjected to two concentrations (50 and 100 µg/L) of each substance that are ecologically relevant. Chemical analysis of Di and TCS within gills and digestive gland showed that these pesticides could be accumulated in mussel's tissues. In addition, Di and TCS are preferably accumulated in digestive gland. Measured biomarkers included physiological parameters (filtration FC and respiration RC capacity), antioxidant enzyme activities (superoxide dismutase and catalase), oxidative damage indicator (Malondialdheyde concentration) and neurotoxicity level (acetylcholinesterase activity) were evaluated in gills and digestive glands. Both pesticides were capable of altering the physiology of this species by reducing the FC and RC in concentration and chemical dependent manner. Both pesticides induced also an oxidative imbalance causing oxidative stress. The high considered concentration exceeded the antioxidant defense capacity of the mussel and lead to membrane lipid peroxidation that resulted in cell damage. Finally, the two pesticides tested were capable of interacting with the neuromuscular barrier leading to neurotoxicity in mussel's tissues by inhibiting acetylcholinesterase. The ecotoxicological effect depended on the concentration and the chemical nature of the contaminant. Obtained results revealed also that the Di may exert toxic effects on M. galloprovincialis even at relatively low concentrations compared to TCS. In conclusion, this study presents innovative insights into the possible risks posed by Diuron (Di) and Triclosan (TCS) to the marine ecosystem. Moreover, it contributes essential data to the toxicological database necessary for developing proactive environmental protection measures.


Assuntos
Mytilus , Praguicidas , Triclosan , Poluentes Químicos da Água , Animais , Mytilus/metabolismo , Antioxidantes/farmacologia , Triclosan/toxicidade , Acetilcolinesterase/metabolismo , Diurona/toxicidade , Ecossistema , Estresse Oxidativo , Biomarcadores/metabolismo , Praguicidas/farmacologia , Poluentes Químicos da Água/toxicidade
17.
Pestic Biochem Physiol ; 198: 105726, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225081

RESUMO

Chlorpyrifos (Diethoxy-sulfanylidene-(3,5,6-trichloropyridin-2-yl) oxy-λ5-phosphane, CPF) was extensively used organophosphorus pesticide, extensively deteriorating public problem with the enrichment in the water bodies. Eucalyptol (1,3,3-Trimethyl-2-oxabicyclo[2.2.2] octane, EUC), a colorless cyclic monoterpene oxide, has shown anti-inflammatory and anti-oxidation properties. To explore the effect of EUC on CPF-induced necroptosis in the grass carp liver cells (L8824 cells), we treated L8824 cells with 60 mM CPF and 5 µM EUC for 24 h. The results showed that CPF exposed lead to excessive accumulation of reactive oxygen species (ROS) and oxidative stress, activating the NF-κB and RIPK1 pathway, increasing the level of cell necroptosis. However, EUC treatment attenuated the toxic effects of CPF treatment on L8824 cells. In summary, the study demonstrated that CPF induced necroptosis and inflammation, and EUC treatment could decrease CPF-caused cell injury.


Assuntos
Carpas , Clorpirifos , Praguicidas , Animais , Clorpirifos/toxicidade , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Eucaliptol/metabolismo , Eucaliptol/farmacologia , Praguicidas/farmacologia , Carpas/metabolismo , Necroptose , Compostos Organofosforados/metabolismo , Estresse Oxidativo , Fígado/metabolismo
18.
PLoS Pathog ; 20(1): e1011823, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38236820

RESUMO

A variety of coordinated host-cell responses are activated as defense mechanisms against pore-forming toxins (PFTs). Bacillus thuringiensis (Bt) is a worldwide used biopesticide whose efficacy and precise application methods limits its use to replace synthetic pesticides in agricultural settings. Here, we analyzed the intestinal defense mechanisms of two lepidopteran insect pests after intoxication with sublethal dose of Bt PFTs to find out potential functional genes. We show that larval intestinal epithelium was initially damaged by the PFTs and that larval survival was observed after intestinal epithelium regeneration. Further analyses showed that the intestinal regeneration caused by Cry9A protein is regulated through c-Jun NH (2) terminal kinase (JNK) and Janus tyrosine kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathways. JAK/STAT signaling regulates intestinal regeneration through proliferation and differentiation of intestinal stem cells to defend three different Bt proteins including Cry9A, Cry1F or Vip3A in both insect pests, Chilo suppressalis and Spodoptera frugiperda. Consequently, a nano-biopesticide was designed to improve pesticidal efficacy based on the combination of Stat double stranded RNA (dsRNA)-nanoparticles and Bt strain. This formulation controlled insect pests with better effect suggesting its potential use to reduce the use of synthetic pesticides in agricultural settings for pest control.


Assuntos
Bacillus thuringiensis , Praguicidas , Animais , Bacillus thuringiensis/genética , Janus Quinases/genética , Tirosina , Endotoxinas/genética , Insetos , Spodoptera/genética , Larva , Praguicidas/farmacologia , Regeneração , Proteínas de Bactérias/farmacologia , Proteínas de Bactérias/genética , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/genética , Plantas Geneticamente Modificadas , Controle Biológico de Vetores/métodos
19.
Pest Manag Sci ; 80(2): 857-865, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37867443

RESUMO

BACKGROUND: In spite of their importance as arthropod predators, spiders have received little attention in the risk assessment of pesticides. In addition, research has mainly focused on a few species commonly found in agricultural habitats. Spiders living in more natural ecosystems may also be exposed to and affected by pesticides, including insecticides. However, their sensitivity and factors driving possible variations in sensitivity between spider taxa are largely unknown. To fill this gap, we quantified the sensitivity of 28 spider species from a wide range of European ecosystems to lambda-cyhalothrin in an acute exposure scenario. RESULTS: Sensitivity varied among the tested populations by a factor of 30. Strong differences in sensitivity were observed between families, but also between genera within the Lycosidae. Apart from the variation explained by the phylogeny, spiders from boreal and polar climates were more sensitive than spiders from warmer areas. Overall, the median lethal concentration (LC50 ) of 85% of species was below the recommended application rate of lambda-cyhalothrin (75 ng a.i. cm-2 ). CONCLUSION: Our study underlines the high sensitivity of spiders to lambda-cyhalothrin, which can lead to unintended negative effects on pest suppression in areas treated with this insecticide. The strong differences observed between families and genera indicate that the functional composition of spider communities would change in affected areas. Overall, the variation in spider sensitivity suggests that multispecies investigations should be more widely considered in pesticide risk assessment. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Animais Venenosos , Inseticidas , Mariposas , Praguicidas , Piretrinas , Aranhas , Humanos , Animais , Ecossistema , Filogenia , Piretrinas/farmacologia , Inseticidas/farmacologia , Nitrilas/farmacologia , Praguicidas/farmacologia
20.
Pest Manag Sci ; 80(3): 1289-1299, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37899496

RESUMO

BACKGROUND: Root knot nematodes cause great damage to crops worldwide. Due to the negative effects of the application of fumigant and old chemical nematicides, biological nematicides have drawn increasing attention in recent years. Here we tested the fumigant activity of the volatile organic compounds (VOCs) blends emitted from Paenibacillus polymyxa and pure commercial VOCs against M. incognita. RESULTS: In this study, we investigated whether P. polymyxa strain J2-4 could produce VOCs that exhibit nematicidal activity. In vitro assays indicated that J2-4 VOCs were highly toxic to second stage juveniles (J2s) and could inhibit egg hatching. Three-layered pot experiments showed that the number of nematodes that penetrating in cucumber roots was reduced by 69.27% after the application of J2-4 VOCs under greenhouse conditions. We identified 14 volatiles using solid-phase micro-extraction gas chromatography-mass spectrometry. The efficacy of six commercially available VOCs, namely 2-isobutyl-3-methylpyrazine, 2,4-dimethoxybenzaldoxime, 2-dodecanone, 2-tridecanol, 2-tridecanone, and 2-tetradecanol, against M. incognita were examined. Except for 2,4-dimethoxybenzaldoxime, the remaining five VOCs showed strong direct-contact nematicidal activity against J2s of M. incognita, and only 2-isobutyl-3-methylpyrazine showed strong fumigant activity against J2s of M. incognita. In pot experiments, 2-isobutyl-3-methylpyrazine and 2-dodecanone reduced the number of root galls by about 70%, and 2-tridecanone reduced the number of root galls and egg masses by about 63% compared with controls. CONCLUSION: Paenibacillus polymyxa strain J2-4 exhibited high fumigant activity against M. incognita. Our results provide evidence for the use of J2-4 and its VOCs as biocontrol agents in the management of root-knot nematodes. © 2023 Society of Chemical Industry.


Assuntos
Cetonas , Paenibacillus polymyxa , Praguicidas , Solanum lycopersicum , Tylenchoidea , Compostos Orgânicos Voláteis , Animais , Compostos Orgânicos Voláteis/farmacologia , Antinematódeos/farmacologia , Praguicidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...