Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.509
Filtrar
1.
J Mol Model ; 30(9): 319, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39222282

RESUMO

CONTEXT: Drosophila suzukii (Matsumura, 1931) is a widespread agricultural pest responsible for significant damage to various soft-skinned fruit hosts. The revolutionary potential of bioinformatics in agriculture emerges from its ability to provide extensive information on pests, fungi, chemical resistance, implications of non-target species, and other critical aspects. This wealth of information allows researchers to engage in projects and applied research in diverse agricultural domains that face these challenges. In this context, bioinformatics tools play a fundamental role. The negative impact of pests on crops, resulting in substantial economic losses, has highlighted the importance of in silico methods. METHODS: To achieve this, we conducted a systematic search in scientific databases using as keywords "Drosophila suzukii," "biopesticides," "simulations computational," and "in-silico." After applying the filters of relevance and publication date, we organized the articles and prioritized those that directly addressed that matched the keywords and the use of bioinformatics tools. Additionally, we included studies focusing on in silico assays of biopesticides, such as molecular docking. Our review aimed to present a collection of recent literature on biopesticides against Drosophila suzukii, emphasizing bioinformatics methods. Through this work, we strive to contribute to the literature of new perspectives on the development and efficiency of biopesticides, along with to advance research that may improve pest control strategies. RESULTS: In the results of the systematic review, we found 2734 articles related to the selected keywords. Six of these articles directly address Drosophila suzukii and the use of bioinformatics tools in the search for alternatives in pest control. In the selected studies, we observed that two articles tend to focus on phylogenetic approaches, searching for gene sequences, amino acids, and constructing phylogenetic trees. The other three articles used molecular modeling and docking of receptors such as GABA and TRP with plant-derived and synthetic compounds to study intermolecular interactions. However, we identified gaps in these studies that could lead to further research in the biorational development of biopesticides using bioinformatics tools.


Assuntos
Drosophila , Inseticidas , Animais , Biologia Computacional/métodos , Drosophila/efeitos dos fármacos , Inseticidas/química , Inseticidas/farmacologia , Simulação de Acoplamento Molecular , Praguicidas/química , Praguicidas/farmacologia
2.
ACS Nano ; 18(33): 22415-22430, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39126678

RESUMO

Excessive usage of biologically toxic fungicides and their matrix materials poses a serious threat to public health. Leveraging fungicide carriers with inherent pathogen inhibition properties is highly promising for enhancing fungicide efficacy and reducing required dosage. Herein, a series of coacervates have been crafted with lignin and surfactin, both of which are naturally derived and demonstrate substantial antifungal properties. This hierarchically assembled carrier not only effectively loads fungicides with a maximum encapsulation efficiency of 95% but also stably deposits on hydrophobic leaves for high-speed impacting droplets. Intriguingly, these coacervates exhibit broad spectrum fungicidal activity against eight ubiquitous phytopathogens and even act as a standalone biofungicide to replace fungicides. This performance can significantly reduce the fungicide usage and be further strengthened by an encapsulated fungicide. The inhibition rate reaches 87.0% when 0.30 mM pyraclostrobin (Pyr) is encapsulated within this coacervate, comparable to the effectiveness of 0.80 mM Pyr alone. Additionally, the preventive effects against tomato gray mold reached 53%, significantly surpassing those of commercial adjuvants. Thus, it demonstrates that utilizing biosurfactants and biomass with intrinsic antifungal activity to fabricate fully biobased coacervates can synergistically combine the functions of a fungicide carrier and antifungal agent against phytopathogens and guarantee environmental friendliness. This pioneering approach provides deeper insights into synergistically enhancing the effectiveness of agrochemicals from multiple aspects, including fungicide encapsulation, cooperative antifungal action, and droplet deposition.


Assuntos
Antifúngicos , Lignina , Testes de Sensibilidade Microbiana , Lignina/química , Lignina/farmacologia , Antifúngicos/farmacologia , Antifúngicos/química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Lipopeptídeos/química , Lipopeptídeos/farmacologia , Portadores de Fármacos/química , Estrobilurinas/farmacologia , Estrobilurinas/química , Praguicidas/química , Praguicidas/farmacologia , Solanum lycopersicum/microbiologia , Solanum lycopersicum/efeitos dos fármacos , Tamanho da Partícula
3.
Inorg Chem ; 63(33): 15311-15322, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39115455

RESUMO

The widespread use and contamination of natural sources by new-generation drugs and pesticides have enhanced concern about environmental pollution. Understanding the above importance, we developed a superhydrophobic metal-organic framework (MOF) (SHMOF': [Zr6O4(OH)4(BDC-NH-CO-R)2.4(BDC-NH2)0.6(CF3COO)6]·2.5H2O·4DMF) for ecological remediation via adsorption-based separation of hydrophobic drugs (flurbiprofen) and pesticides (fluazinam). The newly developed SHMOF' has a high adsorption capacity toward flurbiprofen and fluazinam, i.e., 435 and 575 mg/g, respectively. The adsorption equilibrium time of the MOF is very short (15 and 10 min for flurbiprofen and fluazinam, respectively). The outstanding superhydrophobic nature of the MOF was employed to separate flurbiprofen and fluazinam from highly alkaline and acidic media and environmental water samples. The SHMOF' has excellent selectivity toward the adsorption-based separation of flurbiprofen and fluazinam in the coexistence of common analytes. Again, we developed a polypropylene (PP) fabric-based composite of SHMOF' (SHMOF'@PP) to separate the hydrophobic targeted analytes by using a zero-energy-consuming filtration-based separation method, which made this separation process cost-efficient and user-friendly. Moreover, Ag nanoparticles were doped to the superhydrophobic composite. The Ag-doped reusable SHMOF'@PP@Ag composite exhibited excellent bacterial antiadhesion and antibacterial properties toward Staphylococcus aureus bacteria.


Assuntos
Antibacterianos , Interações Hidrofóbicas e Hidrofílicas , Estruturas Metalorgânicas , Praguicidas , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Praguicidas/isolamento & purificação , Praguicidas/química , Praguicidas/farmacologia , Adsorção , Staphylococcus aureus/efeitos dos fármacos , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/química , Testes de Sensibilidade Microbiana , Propriedades de Superfície , Flurbiprofeno/química , Flurbiprofeno/farmacologia , Flurbiprofeno/isolamento & purificação , Estrutura Molecular
4.
Int J Biol Macromol ; 278(Pt 3): 134684, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39214830

RESUMO

A new formulation that gradually released encapsulated Thuja plicata essential oil (TPEO) as an active component from a biopolymer matrix within a given period was obtained. Antimicrobial activity was determined in in-vitro tests where pure TPEO successfully inhibited the development of different Phytophthora species. The TPEO essential oil was encapsulated into the biopolymer matrix and an oil-in-water emulsion was formed. FTIR spectra analysis confirmed the formation of electrostatic interaction between these polymers, and hydrogen interactions between active components of TPEO and polymer chains. The stability of the emulsions was confirmed by zeta potential measurements, with a value of about 30 mV, even after 14 days of aging. UV-Vis spectra analysis revealed that >60 % of TPEO remained in the emulsion after 14 days of exposure to ambient conditions, whereas pure TPEO evaporated faster, and around 20 % remained after 6 days. Encapsulated TPEO almost completely inhibited the growth of Phytophthora species during the ten-day day's exposition being statistically significantly improved compared to fungicide treatment. It was demonstrated that the emulsion exhibited a prolonged antimicrobial effect and successfully suppressed the growth of Phytophthora species, and can be considered as a means of protection in forests and crops.


Assuntos
Óleos Voláteis , Phytophthora , Phytophthora/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Biopolímeros/química , Biopolímeros/farmacologia , Praguicidas/química , Praguicidas/farmacologia , Raízes de Plantas/química , Emulsões/química , Testes de Sensibilidade Microbiana
5.
Braz J Biol ; 84: e282436, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39194021

RESUMO

The present study has been conducted to evaluate the effect of two sprays of seven pesticides at recommended dose on citrus brown mite, Eutetranychus orientalis and the side effects on their predatory mites, Euseius scutalis, Amblyseius swirskii, Phytoseiulus persimilis (Acari: Phytoseiidae) under field conditions at 2022 & 2023 seasons. The obtained results show that, all tested pesticides achieved high reduction % of E. orientalis ranged between (82.1-90.0%) and (81.6-87.1%) after the 1st and 2nd sprays of 2022 season, where it ranged between (84.9- 88.7%) and ( 79.7- 88.7%) after 1st and 2nd sprays of 2023 season. Abamectin recorded the highest reduction % against the citrus brown mite, whereas Congest pesticide recorded the lowest reduction % after the two sprays along 2022 & 2023 seasons. As for the side effects of tested pesticides on associated predatory mites, all pesticides were safely for E. scutalis numbers recording decrease % between (18.4-28.6%) and (16.2 -26.1%) after the 1st and 2nd spray at 2022 season , where it ranged between (15.3- 29.1%) and (19.6-32.0%) after the 1st and 2nd sprays of 2023 season. On contrary, imidacloprid was unsafely for E. scutalis numbers recording the highest mean decrease % after 1st and 2nd sprays during the two seasons. Also, all tested pesticides were safely for A. swirskii numbers, after the 1st and 2nd sprays of the two seasons recording decrease (from 10.9 to 28.1%) & (24.4 to 31.4%) for the 2022 season, and (19-38.9%) & (18.7-39.4%) at 2023 season. On contrary, imidacloprid was unsafely for A. swirskii numbers recorded the highest decrease % after 1st and 2nd sprays during the two seasons. As for, Ph. Persimilis numbers, all tested pesticides were safely, where it recorded low decrease % ranged between (17-33.8%) & (20.4-34.8%) after the 1st and 2nd sprays of 2022 season, and (24.3-39%) & (20.2-28.9%) after the 1st and 2nd sprays of 2023 season. On the other side, imidacloprid was unsafely for Ph. persimilis numbers recording the highest decrease % after the 1st and 2nd sprays during the two seasons. The present study proved that all tested pesticides were high effective against E. orientalis and appeared to be safely and selective for associated predatory mites except imidacloprid which was very harmful for all tested predatory mites, and it could be concluded that the tested pesticides, Fenpyroximate, Hexythiazox , Congest , Spirodiclofen, Abamectin, and Chlorfenapyr could be used in the Integrated Pest Management (IPM) programs for E. orientalis at citrus orchards.


Assuntos
Citrus , Neonicotinoides , Comportamento Predatório , Estações do Ano , Tetranychidae , Animais , Comportamento Predatório/efeitos dos fármacos , Tetranychidae/efeitos dos fármacos , Acaricidas , Ácaros/efeitos dos fármacos , Ácaros/classificação , Nitrocompostos , Ivermectina/análogos & derivados , Piretrinas , Praguicidas/farmacologia
6.
Int J Biol Macromol ; 277(Pt 4): 134612, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39127268

RESUMO

In this study, a cellulase-responsive controlled-release formulation (FPR-HMS-HPC) was developed by grafting hydroxypropyl cellulose (HPC) onto fipronil (FPR) loaded hollow mesoporous silica (HMS) nanoparticles via ester linkage. The FPR-HMS-HPC formulation was characterized using scanning and transmission electron microscopies, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The results indicated that FPR-HMS-HPC exhibited a high loading capacity of 10.0 % (w/w) and demonstrated favorable responsiveness to cellulase enzyme. Moreover, its insecticidal efficacy against Reticulitermes flaviceps surpassed that of an equivalent dose of FPR. Toxicology studies showed that the mortality and hatching rates of zebrafish exposed to FPR-HMS-HPC nanoparticles were reduced by >6.5 and 8.0 times, respectively. Thus, HPC-anchored HMS nanoparticles as insecticide delivery systems present a sustainable method for pest control significantly reducing harm to non-target organisms and the environment.


Assuntos
Celulase , Celulose , Portadores de Fármacos , Nanopartículas , Dióxido de Silício , Celulose/análogos & derivados , Celulose/química , Dióxido de Silício/química , Animais , Porosidade , Nanopartículas/química , Celulase/química , Celulase/metabolismo , Portadores de Fármacos/química , Peixe-Zebra , Praguicidas/química , Praguicidas/farmacologia , Inseticidas/química , Inseticidas/farmacologia , Pirazóis/química , Pirazóis/farmacologia
7.
BMC Microbiol ; 24(1): 273, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044145

RESUMO

BACKGROUND: Owing to the widespread use of chemical pesticides to control agricultural pests, pesticide tolerance has become a serious problem. In recent years, it has been found that symbiotic bacteria are related to pesticides tolerance. To investigate the potential role of microorganisms in the pesticide tolerance of Chilo suppressalis, this study was conducted. RESULTS: The insect was fed with tetracycline and cefixime as the treatment group (TET and CFM, respectively), and did not add antibiotics in the control groups (CK). The 16S rDNA sequencing results showed that antibiotics reduced the diversity of C. suppressalis symbiotic microorganisms but did not affect their growth and development. In bioassays of the three C. suppressalis groups (TET, CFM, and CK), a 72 h LC50 fitting curve was calculated to determine whether long-term antibiotic feeding leads to a decrease in pesticide resistance. The CK group of C. suppressalis was used to determine the direct effect of antibiotics on pesticide tolerance using a mixture of antibiotics and pesticides. Indirect evidence suggests that antibiotics themselves did not affect the pesticide tolerance of C. suppressalis. The results confirmed that feeding C. suppressalis cefixime led to a decrease in the expression of potential tolerance genes to chlorantraniliprole. CONCLUSIONS: This study reveals the impact of antibiotic induced changes in symbiotic microorganisms on the pesticide tolerance of C. suppressalis, laying the foundation for studying the interaction between C. suppressalis and microorganisms, and also providing new ideas for the prevention and control of C. suppressalis and the creation of new pesticides.


Assuntos
Antibacterianos , Bactérias , Antibacterianos/farmacologia , Animais , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Praguicidas/farmacologia , Mariposas/microbiologia , Mariposas/efeitos dos fármacos , Simbiose , RNA Ribossômico 16S/genética , Microbiota/efeitos dos fármacos , Tetraciclina/farmacologia
8.
Molecules ; 29(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39064827

RESUMO

The use of chemical pesticides in agriculture contributes to soil, water and air pollution, biodiversity loss, and injury to non-target species. The European Commission has already established a Harmonized Risk Indicator to quantify the progress in reducing the risks linked to pesticides. Therefore, there is an increasing need to promote biopesticides, or so-called low-risk pesticides (LRP). Tea tree oil (TTO) is known for its antiseptic, antimicrobial, antiviral, antifungal, and anti-inflammatory properties. TTO has been extensively studied in pest management as well as in the pharmaceutical and cosmetic industry; there are already products based on its active substances on the market. This review focuses on the overall evaluation of TTO in terms of effectiveness and safety as a biopesticide for the first time. The collected data can be an added value for further evaluation of TTO in terms of the authorization extension as a fungicide in 2026.


Assuntos
Praguicidas , Óleo de Melaleuca , Óleo de Melaleuca/química , Praguicidas/farmacologia , Agentes de Controle Biológico/farmacologia , Humanos
9.
Colloids Surf B Biointerfaces ; 241: 114061, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38941651

RESUMO

Responsive release systems have received extensive attention to enhance pesticide utilization efficiency and reduce environmental pollution. In this study, pH/GSH dual responsive release system based on brush-like silica (bSiO2) carriers was constructed to enhance the utilization of pesticides. The bSiO2 carriers present core-shell structure, length of 550 nm, diameter of 350 nm and shell thickness of 100 nm. The carrier had a high pesticide loading (20.0 %, w/w) for dinotefuran (Din). After loading Din, zein was covalently linked with cysteine-bridge to seal the loaded pesticides (namely Din@bSiO2@Zein). The Din@bSiO2@Zein exhibited superior foliar affinity, retention and photostability, and retention rate still remain above 95 % with 220 min UV irradiation. Din@bSiO2@Zein displayed pH/GSH responsive release and the cumulative release within 92 h was up to 81 % under pH=9/CGSH=6 mM, mimicking the microenvironment of lepidopteran. The Din@bSiO2@Zein possessed good control efficacy against Plutella xylostella. Appreciably, Din@bSiO2@Zein could be transported bi-directionally to various regions of tobacco plants within 24 h, which had potential to promote pesticide efficacy. This work offers a strategy to minimize the pesticide dosage and encourage sustainable agricultural development.


Assuntos
Praguicidas , Dióxido de Silício , Zeína , Zeína/química , Dióxido de Silício/química , Praguicidas/química , Praguicidas/metabolismo , Praguicidas/farmacologia , Animais , Nanopartículas/química , Portadores de Fármacos/química , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Liberação Controlada de Fármacos , Folhas de Planta/química , Folhas de Planta/metabolismo , Propriedades de Superfície
10.
Molecules ; 29(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38792109

RESUMO

This review article is a comprehensive and current overview on chalcones, covering their sources, identification methods, and properties with a particular focus on their applications in the agricultural sector. The widespread use of synthetic pesticides has not only led to increased resistance among weeds and pests, resulting in economic losses, but it has also raised significant health concerns due to the overuse of these chemicals. In line with the European Green Deal 2030 and its Farm to Fork strategy, there is a targeted 50% reduction in the use of chemical pesticides by 2030, emphasizing a shift towards natural alternatives that are more environmentally sustainable and help in the restoration of natural resources. Chalcones and their derivatives, with their herbicidal, fungicidal, bactericidal, and antiviral properties, appear to be ideal candidates. These naturally occurring compounds have been recognized for their beneficial health effects for many years and have applications across multiple areas. This review not only complements the previous literature on the agricultural use of chalcones but also provides updates and introduces methods of detection such as chromatography and MALDI technique.


Assuntos
Agricultura , Chalconas , Chalconas/química , Chalconas/farmacologia , Praguicidas/química , Praguicidas/análise , Praguicidas/farmacologia , Herbicidas/química , Herbicidas/farmacologia
11.
J Agric Food Chem ; 72(21): 12146-12155, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38747516

RESUMO

In this study, an α-amylase-responsive controlled-release formulation was developed by capping polydopamine onto ß-cyclodextrin-modified abamectin-loaded hollow mesoporous silica nanoparticles. The prepared Aba@HMS@CD@PDA were subjected to characterization using various analytical techniques. The findings revealed that Aba@HMS@CD@PDA, featuring a loading rate of 18.8 wt %, displayed noteworthy release behavior of abamectin in the presence of α-amylase. In comparison to abamectin EC, Aba@HMS@CD@PDA displayed a significantly foliar affinity and improved rainfastness on lotus leaves. The results of field trail demonstrated a significantly higher control efficacy against Spodoptera litura Fabricius compared to abamectin EC at all concentrations after 7, 14, and 21 days of spaying, showcasing the remarkable persistence of Aba@HMS@CD@PDA. These results underscore the potential of Aba@HMS@CD@PDA as a novel and persistently effective strategy for sustainable on-demand crop protection. The application of nanopesticides can enhance the effectiveness and efficiency of pesticide utilization, contributing to more sustainable agricultural practices.


Assuntos
Proteção de Cultivos , Inseticidas , Nanopartículas , Spodoptera , alfa-Amilases , Animais , alfa-Amilases/química , alfa-Amilases/metabolismo , alfa-Amilases/antagonistas & inibidores , Nanopartículas/química , Proteção de Cultivos/métodos , Spodoptera/efeitos dos fármacos , Inseticidas/química , Inseticidas/farmacologia , Ivermectina/análogos & derivados , Ivermectina/química , Ivermectina/farmacologia , Polímeros/química , Dióxido de Silício/química , Controle de Insetos , Praguicidas/química , Praguicidas/farmacologia , Indóis/química , Indóis/farmacologia
12.
Proc Natl Acad Sci U S A ; 121(21): e2321565121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739796

RESUMO

With a continuous increase in world population and food production, chemical pesticide use is growing accordingly, yet unsustainably. As chemical pesticides are harmful to the environment and developmental resistance in pests is increasing, a sustainable and effective pesticide alternative is needed. Inspired by nature, we mimic one defense strategy of plants, glandular trichomes, to shift away from using chemical pesticides by moving toward a physical immobilization strategy via adhesive particles. Through controlled oxidation of a biobased starting material, triglyceride oils, an adhesive material is created while monitoring the reactive intermediates. After being milled into particles, nanoindentation shows these particles to be adhesive even at low contact forces. A suspension of particles is then sprayed and found to be effective at immobilizing a target pest, thrips, Frankliniella occidentalis. Small arthropod pests, like thrips, can cause crop damage through virus transfer, which is prevented by their immobilization. We show that through a scalable fabrication process, biosourced materials can be used to create an effective, sustainable physical pesticide.


Assuntos
Adesivos , Adesivos/química , Animais , Tisanópteros/fisiologia , Praguicidas/química , Praguicidas/farmacologia , Tricomas/metabolismo
13.
Microb Pathog ; 192: 106690, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759935

RESUMO

The soil comprising organic matter, nutrients, serve as substrate for plant growth and various organisms. In areas where there are large plantations, there is a huge leaf litter fall. The leaf litter upon decomposition releases nutrients and helps in nutrient recycling, for which the soil engineers such as earthworms, ants and termites are important key players. In this context, the present study was conducted to assess the characteristics of the vermicast obtained by vermicomposting neem leaf litter in terms of microbial flora, plant growth promoting properties and antagonistic activities of the vermicast against phytopathogens. Vermicomposting of neem leaf litter was done using two epigeic earthworm species Eisenia fetida and Eudrilus eugeniae. The vermicast exhibited antagonistic potential against plant pathogens. Out of the four vermiwash infusions studied, the 75 % formulation reduced the disease incidence against mealybug by 82 % in the tree Neolamarkia cadamba. The result of the study suggests that vermicast made from neem leaf litter may be a potent combination of a biofertilizer and a pesticide.


Assuntos
Azadirachta , Fertilizantes , Oligoquetos , Praguicidas , Folhas de Planta , Azadirachta/química , Animais , Oligoquetos/microbiologia , Folhas de Planta/microbiologia , Praguicidas/farmacologia , Compostagem , Microbiologia do Solo , Solo/química , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
14.
J Agric Food Chem ; 72(22): 12373-12386, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38775264

RESUMO

Finding highly active molecular scaffold structures is always the key research content of new pesticide discovery. In the research and development of new pesticides, the discovery of new agricultural molecular scaffold structures and new targets still faces great challenges. In recent years, quinoline derivatives have developed rapidly in the discovery of new agriculturally active molecules, especially in the discovery of fungicides. The unique quinoline scaffold has many advantages in the discovery of new pesticides and can provide innovative and feasible solutions for the discovery of new pesticides. Therefore, we reviewed the use of quinoline derivatives and their analogues as molecular scaffolds in the discovery of new pesticides since 2000. We systematically summarized the agricultural biological activity of quinoline compounds and discussed the structure-activity relationship (SAR), physiological and biochemical properties, and mechanism of action of the active compounds, hoping to provide ideas and inspiration for the discovery of new pesticides.


Assuntos
Praguicidas , Quinolinas , Quinolinas/química , Praguicidas/química , Praguicidas/farmacologia , Relação Estrutura-Atividade , Descoberta de Drogas , Estrutura Molecular , Animais , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Humanos
15.
J Agric Food Chem ; 72(22): 12300-12318, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38800848

RESUMO

Scaffold structures, new mechanisms of action, and targets present enormous challenges in the discovery of novel pesticides. The discovery of new scaffolds is the basis for the continuous development of modern agrochemicals. Identification of a good scaffold such as triazole, carbamate, methoxy acrylate, pyrazolamide, pyrido-pyrimidinone mesoionic, and bisamide often leads to the development of a new series of pesticides. In addition, pesticides with the same target, including the inhibitors of succinate dehydrogenase (SDH), oxysterol-binding-protein, and p-hydroxyphenyl pyruvate dioxygenase (HPPD), may have the same or similar scaffold structure. Recent years have witnessed significant progress in the discovery of new pesticides using natural products as scaffolds or bridges. In recent years, there have been increasing reports on the application of natural benzopyran compounds in the discovery of new pesticides, especially osthole and coumarin. A systematic and comprehensive review of benzopyran active compounds in the discovery of new agricultural chemicals is helpful to promote the discussion and development of benzopyran active compounds. Therefore, this work systematically reviewed the research and application of benzopyran derivatives in the discovery of agricultural chemicals, summarized the antiviral, herbicidal, antibacterial, fungicidal, insecticidal, nematicidal and acaricidal activities of benzopyran active compounds, and discussed the structural-activity relationship and mechanism of action. In addition, some active fragments were recommended to further optimize the chemical structure of benzopyran active compounds based on reference information.


Assuntos
Agroquímicos , Benzopiranos , Descoberta de Drogas , Praguicidas , Benzopiranos/química , Benzopiranos/farmacologia , Praguicidas/química , Praguicidas/farmacologia , Agroquímicos/química , Agroquímicos/farmacologia , Animais , Relação Estrutura-Atividade , Estrutura Molecular
16.
Environ Microbiol Rep ; 16(3): e13274, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38775382

RESUMO

The pathogenic fungus Batrachochytrium dendrobatidis has caused declines of amphibians worldwide. Yet our understanding of how water quality influences fungal pathogenicity is limited. Here, we reviewed experimental studies on the effect of water quality on this pathogen to determine which parameters impacted disease dynamics consistently. The strongest evidence for protective effects is salinity which shows strong antifungal properties in hosts at natural levels. Although many fungicides had detrimental effects on the fungal pathogen in vitro, their impact on the host is variable and they can worsen infection outcomes. However, one fungicide, epoxiconazole, reduced disease effects experimentally and likely in the field. While heavy metals are frequently studied, there is weak evidence that they influence infection outcomes. Nitrogen and phosphorous do not appear to impact pathogen growth or infection in the amphibian host. The effects of other chemicals, like pesticides and disinfectants on infection were mostly unclear with mixed results or lacking an in vivo component. Our study shows that water chemistry does impact disease dynamics, but the effects of specific parameters require more investigation. Improving our understanding of how water chemistry influences disease dynamics will help predict the impact of chytridiomycosis, especially in amphibian populations affected by land use changes.


Assuntos
Anfíbios , Batrachochytrium , Qualidade da Água , Animais , Batrachochytrium/efeitos dos fármacos , Anfíbios/microbiologia , Micoses/microbiologia , Micoses/veterinária , Micoses/prevenção & controle , Salinidade , Fungicidas Industriais/farmacologia , Quitridiomicetos/efeitos dos fármacos , Quitridiomicetos/patogenicidade , Praguicidas/farmacologia , Desinfetantes/farmacologia , Antifúngicos/farmacologia
17.
Angew Chem Int Ed Engl ; 63(27): e202319832, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38652238

RESUMO

Widespread use of plant protection agents in agriculture is a major cause of pollution. Apart from active ingredients, the environmental impact of auxiliary synthetic polymers should be minimized if they are highly persistent. An alternative to synthetic polymers is the use of natural polysaccharides, which are abundant and biodegradable. In this study, we explore pectin microgels functionalized with anchor peptides (P-MAPs) to be used as an alternative biobased pesticide delivery system. Using copper as the active ingredient, P-MAPs effectively prevented infection of grapevine plants with downy mildew under semi-field conditions on par with commercial copper pesticides. By using anchor peptides, the microgels tightly bind to the leaf surface, exhibiting excellent rain fastness and prolonged fungicidal activity. Finally, P-MAPs are shown to be easily degradable by enzymes found in nature, demonstrating their negligible long-term impact on the environment.


Assuntos
Microgéis , Peptídeos , Praguicidas , Microgéis/química , Peptídeos/química , Peptídeos/farmacologia , Praguicidas/química , Praguicidas/farmacologia , Vitis/química , Pectinas/química , Cobre/química
18.
Pest Manag Sci ; 80(8): 3967-3978, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38520371

RESUMO

BACKGROUND: Crop quality, yield and farmer income are reduced by soil-borne diseases, nematodes and weeds, although these can be controlled by allyl isothiocyanate (AITC), a plant-derived soil fumigant. However, its efficacy against soil-borne pathogens varies, mainly because of its chemical instability and uneven distribution in the soil. Formulation modification is an effective way to optimize pesticide application. We encapsulated AITC in modified diatomite granules (GR) and measured the formulation's loading content and stability, environmental fate and efficacy against soil-borne pathogens, and its impact on the growth and yield of tomatoes. RESULTS: We observed that an AITC loading content in the granules of 27.6% resulted in a degradation half-life of GR that was 1.94 times longer than 20% AITC emulsifiable concentrate in water (EW) and shorter than AITC technical (TC) grade. The stable and more even distribution of GR in soil resulted in relatively consistent and acceptable control of soil-borne pathogens. Soil containing AITC residues that remained 10-24 days after GR fumigation were not phytotoxic to cucumber seeds. GR significantly reduced soil-borne pest populations, and tomato growth and yield increased as AITC dosage increased. GR containing an AITC dose of 20 g m-2 effectively controlled pathogens in soil for about 7 months and improved tomato yield by 108%. CONCLUSION: Our research demonstrates the benefits of soil fumigation with loaded AITC over other formulations for effective pest control, and improved tomato plant growth and fruit yield. Fumigant encapsulation appears to be a useful method to improve pest and disease control, environmental performance and fumigant commercial sustainability. © 2024 Society of Chemical Industry.


Assuntos
Fumigação , Isotiocianatos , Doenças das Plantas , Microbiologia do Solo , Solo , Solanum lycopersicum , Solanum lycopersicum/crescimento & desenvolvimento , Isotiocianatos/farmacologia , Doenças das Plantas/prevenção & controle , Solo/química , Fumigação/métodos , Terra de Diatomáceas , Animais , Praguicidas/farmacologia , Cucumis sativus/crescimento & desenvolvimento
19.
ACS Appl Mater Interfaces ; 16(12): 15143-15155, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38481099

RESUMO

Realizing controllable input of botanical pesticides is conducive to improving pesticide utilization, reducing pesticide residues, and avoiding environmental pollution but is extremely challenging. Herein, we constructed a smart pesticide-controlled release platform (namely, SCRP) for enhanced treatment of tobacco black shank based on encapsulating honokiol (HON) with mesoporous hollow structured silica nanospheres covered with pectin and chitosan oligosaccharide (COS). The SCRP has a loading capacity of 12.64% for HON and could effectively protect HON from photolysis. Owing to the pH- and pectinase-sensitive property of the pectin, the SCRP could smartly release HON in response to a low pH or a rich pectinase environment in the black shank-affected area. Consequently, the SCRP effectively inhibits the infection of P. nicotianae on tobacco with a controlled rate for tobacco black shank of up to 87.50%, which is mainly due to the SCRP's capability in accumulating ROS, changing cell membrane permeability, and affecting energy metabolism. In addition, SCRP is biocompatible, and the COS layer enables SCRP to show a significant growth-promoting effect on tobacco. These results indicate that the development of a stimuli-responsive controlled pesticide release system for plant disease control is of great potential and value for practical agriculture production.


Assuntos
Praguicidas , Praguicidas/farmacologia , Preparações de Ação Retardada/farmacologia , Preparações de Ação Retardada/química , Poligalacturonase , Agricultura , Pectinas
20.
Environ Pollut ; 348: 123854, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38527586

RESUMO

Microplastic (MP) pollution is becoming an emerging environmental concern across aquatic and terrestrial ecosystems. Plastic mulching and the use of pesticides in agriculture can lead to microplastics and agrochemicals in soil, which can result in unintended exposure to non-target organisms. The combined toxicity of multiple stressors represents a significant paradigm shift within the field of ecotoxicology, and its exploration within terrestrial ecosystems involving microplastics is still relatively limited. The present study investigated the combined effects of polyethylene MP (PE-MP) and the agrochemical carbendazim (CBZ) on the earthworm Eisenia fetida at different biological levels of organization. While E. fetida survival and reproduction did not exhibit significant effects following PE-MP treatment, there was a reduction in cocoon and hatchling numbers. Notably, prolonged exposure revealed delayed toxicity, leading to substantial growth impairment. Exposure to CBZ led to significant alterations in the endpoints mentioned above. While there was a decrease in cocoon and hatchling numbers, the combined treatment did not yield significant effects on earthworm reproduction except at higher concentrations. However, lower concentrations of PE-MP alongside CBZ induced a noteworthy decline in biomass content, signifying a form of potentiation interaction. In addition, concurrent exposure led to synergistic effects, from oxidative stress to modifications in vital organs such as the body wall, intestines, and reproductive structures (spermathecae, seminal vesicles, and ovarian follicles). The comparison of multiple endpoints revealed that seminal vesicles and ovarian follicles were the primary targets during the combined exposure. The research findings suggest that there are variable and complex responses to microplastic toxicity in terrestrial ecosystems, especially when combined with other chemical stressors like agrochemicals. Despite these difficulties, the study implies that microplastics can alter earthworms' responses to agrochemical exposure, posing potential ecotoxicological risks to soil fauna.


Assuntos
Benzimidazóis , Carbamatos , Oligoquetos , Praguicidas , Poluentes do Solo , Animais , Feminino , Masculino , Microplásticos/toxicidade , Plásticos/toxicidade , Polietileno/toxicidade , Ecotoxicologia , Ecossistema , Poluentes do Solo/análise , Solo/química , Praguicidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA