RESUMO
The problem of food contamination is a matter of concern, which cancausehealthcomplications in consumers.Severalinternational organizations have created standard permissible limits for heavy metals in meat products. Livestock such as sheep, cattle, camels, and goats are the most important sources of protein meat in the Middle East (ME) countries. Contamination of meat products with heavy metals (HMs) may be a threat to human health. Various scattered studies have been conducted in the Middle East on the contamination of red meat and meat products with HMs however, a comprehensive review on this subject has not yet been published. This study aimed to investigate the status of HMs in both raw andprocessedtypes of meatin the ME. Theresultsof thisnarrativereviewrevealed that in many ME countries, contamination of red meat with HMs was excessive. Therefore, more monitoringoflivestockconditionsandred meat products consumed in some Middle East countries seems necessary.
Assuntos
Produtos da Carne , Metais Pesados , Carne Vermelha , Bovinos , Animais , Humanos , Ovinos , Metais Pesados/análise , Carne/análise , Oriente Médio , Cabras , Medição de RiscoRESUMO
This study assessed the growth of Listeria monocytogenes in ready-to-eat (RTE) ham during storage under conditions simulating domestic practices with the intention to offer support in the elaboration of food safety policies that should better protect consumers against food poisoning at home. RTE ham, artificially contaminated at either medium (102-103 CFU/g) or high (104-105 CFU/g) concentration, was stored at both isothermal (4â in a refrigerator able to maintain a relatively constant temperature and 5â and 7â in a refrigerator with fluctuating temperature) and dynamic (5â and 7â with intermittent exposure to ambient temperature, e.g. 25â) conditions. Under isothermal conditions, the increasing storage temperature determined a significantly increased (p < 0.05) capacity of L. monocytogenes to grow. The kinetic growth parameters were derived by fitting the Baranyi and Roberts model to the experimental data and, based on the maximum specific growth rates, it was estimated the temperature dependence of L. monocytogenes growth in RTE ham. At medium contamination level, sanitary risk time calculation revealed that, unlike storage at 5â and 7â, storage at 4â of the RTE ham extends the time period during which the product is safe for consumption by â¼40 and 52%, respectively. However, the real temperature fluctuations included in the Monte Carlo simulations at low L. monocytogenes counts (1, 5 and 10 CFU/g) have shortened the safety margins. Stochastic models also proved to be useful tools for describing the pathogen's behavior when refrigeration of the RTE ham alternates with periods of ham being kept at room temperature, considered dynamic conditions of growth.
Assuntos
Listeria monocytogenes , Produtos da Carne , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Método de Monte Carlo , Temperatura , Contagem de Colônia Microbiana , Qualidade de Produtos para o ConsumidorRESUMO
Viability of cells of Listeria monocytogenes or Salmonella spp. was quantified on slices of a German-style bologna manufactured by a local butcher to contain no added antimicrobials or to include 0.9% or 1.3% of a blend of potassium acetate and sodium diacetate (K-Ace) or 2.5% of a blend of potassium lactate and sodium diacetate (K-Lac) as ingredients. After slicing (ca. 7.1 cm L by 6.7 cm W, ca. 0.5 cm thick, ca. 22.4 g each), a single slice of bologna was placed into a nylon-polyethylene bag and surface inoculated with 250 µL per side of a five-strain mixture of either cells of L. monocytogenes or Salmonella spp. to achieve an initial level of ca. 3.5-4.0 log CFU/slice. The packages were vacuum-sealed and then stored at 4 or 12°C for 90 and 30 days, respectively. Without antimicrobials added to the formulation, L. monocytogenes numbers increased by ca. 5.4 and 6.0 log CFU/slice at both 4 and 12°C during the entire 90- and 30-day storage period, respectively. Likewise, levels of Salmonella also increased by ca. 6.0 log CFU/slice at 12°C in the absence of added antimicrobials; however, levels of this pathogen decreased by ca. 1.7 log CFU/slice after 90 days at 4°C. With the inclusion of 0.9% or 1.3% K-Ace or 2.5% K-Lac in the bologna formulation, levels of L. monocytogenes decreased by ca. ≤0.7 log CFU/slice after 90 days at 4°C, whereas levels of Salmonella decreased by ca. 1.6-2.3 log CFU/slice. After 30 days at 12°C, levels of L. monocytogenes increased by ca. ≤3.4 log CFU/slice on product containing 0.9% K-Ace or 2.5% K-Lac but remained relatively unchanged on slices formulated with 1.3% K-Ace. For Salmonella, in the presence of 0.9% or 1.3% K-Ace or 2.5% K-Lac, pathogen levels decreased by ca. ≤0.7 log CFU/slice at 12°C after 30 days. Our data validate that the inclusion of K-Ace (0.9% or 1.3%) or K-Lac (2.5%) as ingredients is effective for controlling L. monocytogenes and Salmonella on slices of bologna during refrigerated storage.
Assuntos
Anti-Infecciosos , Listeria monocytogenes , Produtos da Carne , Conservação de Alimentos , Conservantes de Alimentos , Sais , Contagem de Colônia Microbiana , Microbiologia de Alimentos , TemperaturaRESUMO
Escherichia coli O157:H7 is a foodborne pathogen, which causes various health conditions in humans, including fatigue, nausea, bloody diarrhoea and in some cases, even death. In 2017, 15.71% of the total imported food products in Saudi Arabia (SA) were meat-based. India and Brazil are two of the top five countries from where SA imports meat. According to the Saudi Food and Drug Authority, in 2017, at least 562, 280, and 50 samples of imported beef, chicken and sheep meat, respectively, were tested for the presence of E. coli O157:H7. Amongst these, E. coli O157:H7 was detected in respectively 6.80% and 2.20% of the tested beef meat samples imported from India and Brazil as well as in respectively 6.96% and 3.57% of the tested chicken samples imported from Brazil and Ukraine. Moreover, the pathogen was detected in 2.13% of the tested sheep meat samples imported from India. The present report provides evidence that imported meat can serve as the carrier of E. coli O157:H7, which may lead to epidemics within the Kingdom of Saudi Arabia.
Assuntos
Infecções por Escherichia coli , Escherichia coli O157 , Produtos da Carne , Bovinos , Ovinos , Humanos , Animais , Arábia Saudita , Carne , Infecções por Escherichia coli/epidemiologia , Microbiologia de Alimentos , Contagem de Colônia MicrobianaRESUMO
Staphylococcus aureus is a common foodborne pathogen and spoilage bacterium in meat products. To develop a natural preservative for meat products, this study revealed the antibacterial activity and mechanism of Rosa roxburghii Tratt pomace crude extract (RRPCE) against S. aureus, and applied RRPCE to the preservation of cooked beef. The diameter of inhibition zone, minimum inhibitory concentration (MIC), and minimum bactericide concentration of RRPCE against S. aureus were 15.85 ± 0.35 to 16.21 ± 0.29 mm, 1.5 mg/mL, and 3 mg/mL, respectively. The growth curve of S. aureus was completely stalled by treatment with RRPCE at 2 MIC. RRPCE results in the decrease of intracellular adenosine 5'-triphosphate (ATP) content, depolarization of cell membrane, leakage of cell fluid including nucleic acid and protein, and destruction of cell membrane integrity and cell morphology. During storage, RRPCE significantly reduced S. aureus viable counts, pH, and total volatile basic nitrogen of cooked beef compared with untreated samples (p < 0.05). In addition, RRPCE could significantly increase the redness (a*) value, decrease lightness (L*) and yellowness (b*) values, and slow down the color change of cooked beef (p < 0.05). These findings suggest that RRPCE can effectively inhibit S. aureus, and has the potential as a natural preservative for the preservation of cooked beef.
Assuntos
Produtos da Carne , Carne Vermelha , Rosa , Animais , Bovinos , Staphylococcus aureus , Rosa/química , Carne Vermelha/microbiologia , Antibacterianos/farmacologiaRESUMO
Meat and meat products provide high levels of nutrition and many health benefits to consumers, yet a controversy exists regarding the use of non-meat additives, such as the inorganic phosphates that are commonly used in meat processing, and particularly their relationship to cardiovascular health and kidney complications. Inorganic phosphates are salts of phosphoric acid (e.g., sodium phosphate, potassium phosphate, or calcium phosphate), whereas organic phosphates are ester compounds (e.g., the phospholipids found in cell membranes). In this sense, the meat industry remains active in its efforts to improve formulations for processed meat products with the use of natural ingredients. Despite efforts to improve formulations, many processed meat products still contain inorganic phosphates, which are used for their technological contributions to meat chemistry including improvements in water-holding capacity and protein solubilization. This review provides a thorough evaluation of phosphate substitutes in meat formulations and other processing technologies that can help eliminate phosphates from the formulations of processed meat products. In general, several ingredients have been evaluated as replacements for inorganic phosphates with varying degrees of success such as plant-based ingredients (e.g., starches, fibers, or seeds), fungi ingredients (e.g., mushrooms and mushroom extracts), algae ingredients, animal-based ingredients (e.g., meat/seafood, dairy, or egg materials), and inorganic compounds (i.e., minerals). Although these ingredients have shown some favorable effects in certain meat products, none have exactly matched the many functions of inorganic phosphates, so the support of extrinsic technologies, such as tumbling, ultrasound, high-pressure processing (HPP), and pulsed electric field (PEF), may be necessary to achieve similar physiochemical properties as conventional products. The meat industry should continue to investigate ways to scientifically innovate the formulations of, and the technologies used in, processed meat products while also listening to (and acting upon) the feedback from consumers.
Assuntos
Produtos da Carne , Carne , Animais , Carne/análise , Fosfatos , Produtos da Carne/análise , Água , RimRESUMO
The quality of hams obtained from different pig breeds can vary depending on endogenous antioxidant peptides in the hams. The aims of this study were (i) to investigate the specific peptides in Chinese Dahe black pig ham (DWH) and hybrid pig ham (Yorkshire × Landrace × Dahe black ham, YLDWH) and their antioxidant activity, and (ii) to elucidate the relationship between ham quality and antioxidant peptides. iTRAQ quantitative peptidomic method was used to discover specific peptides of DWH and YLDWH. In addition, in vitro assays were performed to evaluate their antioxidant activity. A total of 73 specific peptides were identified from DWH and YLDWH by LC-MS/MS. Forty-four specific peptides in DWH were primarily hydrolysed from myosin and myoglobin by endopeptidases, while 29 specific peptides in YLDWH were primarily hydrolysed from myosin and troponin-T. Six specific peptides that were statistically significantly different based on their fold changes and P-values were selected for the identification of DWH and YLDWH. DWH-derived specific peptide AGAPDERGPGPAAR (AR14), which had high stability and was non-toxic, had the highest DPPH⢠and ABTSâ¢+ scavenging activity (IC50 = 1.657 mg/mL and 0.173 mg/mL, respectively) and cellular antioxidant capacity. Molecular docking showed that AR14 interacted with Val369, and Val420 of Keap1 via hydrogen bonds. Furthermore, AR14 bound to DPPH and ABTS through hydrogen bonding and hydrophobic interactions. Together, our results demonstrate that the DWH-derived antioxidant peptide AR14 exhibits the free radical scavenging and cellular antioxidant activity and can be used to preserve ham quality and promote human health.
Assuntos
Produtos da Carne , Carne de Porco , Animais , Antioxidantes/química , Cromatografia Líquida , Proteína 1 Associada a ECH Semelhante a Kelch , Produtos da Carne/análise , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2 , Peptídeos/química , Suínos , Espectrometria de Massas em TandemRESUMO
Coppa Piacentina is considered a peculiar dry cured salami, since it is manufactured by the entire neck muscles stuffed and matured in natural casings, the same as dry cured ham and fermented dry cured sausages. In this work the proteolysis of external and internal portions was investigated by a proteomic approach and by amino acids analysis. Samples of "Coppa Piacentina" were analyzed at 0 days and after 5 and 8 months of ripening through mono- and two-dimensional gel electrophoresis. Image analysis of 2D electrophoretic maps indicated a more intense enzyme activity on the external part, mainly due to endogenous enzymes. They favored, respectively, myofibrillar or sarcoplasmic proteins at 5 or 8 months of ripening. Free amino acids determination proved that lysine and glutamic acid were the most represented ones, followed by a free amino acids sequence like that of dry cured ham. The peculiarities of "Coppa Piacentina" were characterized by a slow proteolysis, due to sacking and binding of the whole cut of the pork neck.
Assuntos
Produtos da Carne , Proteômica , Proteólise , Proteínas , AminoácidosRESUMO
Consumers' pursuit for safe meat products is challenging to develop smart food packaging with proper mechanical properties and multifunctional properties. Therefore, this work attempted to introduce carboxylated cellulose nanocrystal (C-CNC) and beetroot extract (BTE) into sodium alginate (SA) matrix films to enhance their mechanical properties and endow them with antioxidant properties and pH-responsive capacity. The rheological results showed the C-CNC and BTE were consistently dispersed in the SA matrix. The incorporation of C-CNC made the surface and cross-section of the films rough but still dense, thus significantly improving the mechanical properties of the films. The integration of BTE provided antioxidant properties and pH responsiveness without significantly changing the thermal stability of the film. The highest tensile strength (55.74 ± 4.52 MPa) and strongest antioxidant capacities were achieved for the SA-based film with BTE and 10 wt% C-CNC. Additionally, the films possessed higher UV-light barrier properties after incorporating BTE and C-CNC. More notably, the pH-responsive films discolored when TVB-N value exceeded 18.0 mg/100 g during storage of pork at 4 °C and 20 °C, respectively. Therefore, the SA-based film with enhanced mechanical and functional properties has a high potential for quality detection in smart food packaging applications.
Assuntos
Celulose , Embalagem de Alimentos , Celulose/química , Embalagem de Alimentos/métodos , Nanopartículas , Produtos da Carne , Ácidos Carboxílicos/química , Antioxidantes/química , Alginatos/química , Sódio/químicaRESUMO
Background: Every year, the food business produces a sizeable amount of waste, including the portions of fruits and vegetables that are inedible, and those that have reached a stage where they are no longer suitable for human consumption. These by-products comprise of components such as natural antioxidants (polyphenols, carotenoid etc.), dietary fiber, and other trace elements, which can provide functionality to food. Due to changing lifestyles, there is an increased demand for ready-to-eat products like sausages, salami, and meat patties. In this line, meat products like buffalo meat sausages and patties are also gaining the interest of consumers because of their rich taste. Meat, however, has a high percentage of fat and is totally deprived of dietary fiber, which poses severe health problems like cardiovascular (CV) and gastrointestinal diseases. The health-conscious consumer is becoming increasingly aware of the importance of balancing flavor and nutrition. Therefore, to overcome this problem, several fruit and vegetable wastes from their respective industries can be successfully incorporated into meat products that provide dietary fiber and play the role of natural antioxidants; this will slow down lipid oxidation and increase the shelf-life of meat products. Methodology: Extensive literature searches have been performed using various scientific search engines. We collected relevant and informative data from subject-specific and recent literature on sustainable food processing of wasted food products. We also looked into the various applications of waste fruit and vegetable products, including cereals, when they are incorporated into meat and meat products. All relevant searches meeting the criteria were included in this review, and exclusion criteria were also set. Results: The pomace and peels of fruits like grapes, pomegranates, cauliflower, sweet lime, and other citrus are some of the most commonly used fruit and vegetable by-products. These vegetable by-products help inhibit oxidation (of both lipids and proteins) and the growth of pathogenic and spoilage bacteria, all without altering the consumer's acceptability of the product on a sensory level. When included in meat products, these by-products have the potential to improve the overall product quality and lengthen its shelf-life under certain circumstances. Conclusion: Cost-effective and easily accessible by-products from the fruit and vegetable processing industries can be used in meat products to enhance their quality features (physicochemical, microbial, sensory, and textural aspects) and health benefits. Additionally, this will provides environmental food sustainability by lowering waste disposal and improving the food's functional efficacy.
Assuntos
Produtos da Carne , Verduras , Humanos , Frutas/química , Carne/análise , Antioxidantes/análise , Fibras na DietaRESUMO
Thermal processing is the most frequently used method to destruct bacteria in food processing. However, insufficient thermal processing may lead to the outbreak of foodborne illness. This study combined thermal processing with thermostable phage to prevent food contamination. The thermostable phages were screened which can retain activity at 70 °C for 1 h. Among them, the polyvalent phage LPEK22 was obtained to lyse Escherichia coli and Salmonella enterica, especially several multi-drug resistant bacteria. In milk (liquid food matrix), LPEK22 significantly reduced the E. coli by 5.00 ± 0.18 log10 CFU/mL and S. enterica by 4.20 ± 0.23 log10 CFU/mL after thermal processing at 63 °C for 30 min. For beef sausage (solid food matrix), LPEK22 significantly reduced the E. coli by 2.34 ± 0.17 log10 CFU/cm2 and S. enterica by 1.54 ± 0.13 log10 CFU/cm2 after thermal processing at 66 °C for 90 s. Genome analysis revealed that LPEK22 was a novel phage with a unique tail spike protein belonging to the family of Ackermannviridae. LPEK22 did not contain lysogenic, drug-resistant, and virulent genes that may compromise the safety of food application. These results determined that LPEK22, a novel polyvalent Ackermannviridae phage, could combine with thermal processing to prevent drug-resistant E. coli and S. enterica both in vitro and in foods.
Assuntos
Bacteriófagos , Produtos da Carne , Salmonella enterica , Bovinos , Animais , Escherichia coli , Surtos de DoençasRESUMO
Ripening time is known to drive the chemical and sensory profiles of dry meat products, thus potentially affecting the final quality of the product. Starting from these background conditions, the aim of this work was to shed light, for the first time, on the chemical modifications of a typical Italian PDO meat product-namely, Coppa Piacentina-during ripening, to find correlations between its sensory quality and the biomarker compounds related to the progress of ripening. The ripening time (from 60 to 240 days) was found to deeply modify the chemical composition of this typical meat product, providing potential biomarkers of both oxidative reactions and sensory attributes. The chemical analyses revealed that there is typically a significant decrease in the moisture content during ripening, likely due to increased dehydration. In addition, the fatty acid profile showed that the distribution of polyunsaturated fatty acids significantly (p < 0.05) decreased during ripening, because of their high susceptibility to oxidation and conversion to intermediate and secondary molecules. An untargeted metabolomics approach, coupled with unsupervised and supervised multivariate statistics, highlighted a significant impact (prediction scores > 1) of lipid oxidation during ripening time, with some metabolites (such as γ -glutamyl-peptides, hydroperoxy-fatty acids, and glutathione) being particularly discriminant in predicting the changes observed. The discriminant metabolites were coherent with the progressive increase of peroxide values determined during the entire ripening period. Finally, the sensory analysis outlined that the highest degree of ripening provided greater color intensity of the lean part, slice firmness, and chewing consistency, with glutathione and γ-glutamyl-glutamic acid establishing the highest number of significant correlations with the sensory attributes evaluated. Taken together, this work highlights the importance and validity of untargeted metabolomics coupled with sensory analysis to investigate the comprehensive chemical and sensory changes to dry meat during ripening.
Assuntos
Produtos da Carne , Oxirredução , Produtos da Carne/análise , Carne/análise , Ácidos Graxos , Glutationa , MetabolômicaRESUMO
Using food additives (e.g., preservatives, antioxidants) is one of the main methods for preserving meat and meat product quality (edible, sensory, and technological) during processing and storage. Conversely, they show negative health implications, so meat technology scientists are focusing on finding alternatives for these compounds. Terpenoid-rich extracts, including essential oils (EOs), are remarkable since they are generally marked as GRAS (generally recognized as safe) and have a wide ranging acceptance from consumers. EOs obtained by conventional or non-conventional methods possess different preservative potentials. Hence, the first goal of this review is to summarize the technical-technology characteristics of different procedures for terpenoid-rich extract recovery and their effects on the environment in order to obtain safe, highly valuable extracts for further application in the meat industry. Isolation and purification of terpenoids, as the main constituents of EOs, are essential due to their wide range of bioactivity and potential for utilization as natural food additives. Therefore, the second goal of this review is to summarize the antioxidant and antimicrobial potential of EOs and terpenoid-rich extracts obtained from different plant materials in meat and various meat products. The results of these investigations suggest that terpenoid-rich extracts, including EOs obtained from several spices and medicinal herbs (black pepper, caraway, Coreopsis tinctoria Nutt., coriander, garlic, oregano, sage, sweet basil, thyme, and winter savory) can be successfully used as natural antioxidants and antimicrobials in order to prolong the shelf-life of meat and processed meat products. These results could be encouraged for higher exploitation of EOs and terpenoid-rich extracts in the meat industry.
Assuntos
Anti-Infecciosos , Produtos da Carne , Óleos Voláteis , Antioxidantes , Terpenos , Carne/análise , Aditivos Alimentares , Extratos VegetaisRESUMO
Sliced cooked ham stored in modified atmosphere packaging (MAP) can be spoiled by lactic acid bacteria (LAB) which are dominating under psychrotrophic conditions. Depending on the strains, the colonization can result in a premature spoilage characterized by off-flavors, gas and slime production, discoloration, and acidification. The purpose of this study was the isolation, identification and characterization of potential food culture with protective properties, able to prevent or delay spoilage in cooked-ham. The first step was to identify by means of microbiological analysis, the microbial consortia both in unspoiled and in spoiled lots of sliced cooked ham by the use of media for the detection lactic acid bacteria and total viable count. Counts ranged from values lower than 1 Log CFU/g to 9 Log CFU/g in spoiled and unflawed samples. The interaction between consortia was then studied in order to screen for strains able to inhibit spoilage consortia. Strains showing antimicrobial activity were identified and characterized by molecular methods and tested for their physiological features. Among a total of 140 strains isolated, nine were selected for their ability to inhibit a large number of spoilage consortia, to grow and ferment at 4 °C and to produce bacteriocins. The effectiveness of the fermentation made by food culture was evaluated, through challenge tests in situ, analysing the microbial profiles of artificially inoculated cooked-ham slices during storage by high throughput 16 S rRNA gene sequencing. The native population in situ resulted competitive against the inoculated strains and only one strain was able to significantly reduce the native populations reaching about 46.7% of the relative abundance. The results obtained in this study provide information about the selection of autochthonous LAB on the base of their action against spoilage consortia, in order to select protective potential cultures able to improve the microbial quality of sliced cooked ham.
Assuntos
Lactobacillales , Produtos da Carne , Embalagem de Alimentos/métodos , Microbiologia de Alimentos , Contagem de Colônia Microbiana , Culinária , Conservação de Alimentos/métodos , Produtos da Carne/microbiologiaRESUMO
The effects of Limosilactobacillus fermentum 332 on quality characteristics in fermented sausage were explored in terms of physicochemical characteristics, volatile flavor components, and Quorum sensing (QS). The results showed that the pH of fermented sausage decreased from 5.20 to 4.54 within 24 h with the inoculation of L. fermentum 332. Lightness and redness were significantly improved, and hardness and chewiness were significantly increased after the addition of L. fermentum 332. With the inoculation of L. fermentum 332, the thiobarbituric acid reactive substance content decreased from 0.26 to 0.19 mg/100 g and total volatile basic nitrogen content decreased from 2.16 to 1.61 mg/100 g. In total, 95 and 104 types of volatile flavor components were detected in the control and fermented sausage inoculated with starter culture, respectively. The AI-2 activity of fermented sausage inoculated with L. fermentum 332 was significantly higher than that of the control and positively correlated with viable count and quality characteristics. These results provide support for further research on the effect of microorganisms on the quality of fermented food.
Assuntos
Limosilactobacillus fermentum , Produtos da Carne , Microbiologia de Alimentos , Percepção de Quorum , Fermentação , Produtos da Carne/análiseRESUMO
Salt intake above 5 g/day correlates with prevalence of hypertension and cardiovascular diseases (CVD). CVD, the leading cause of mortality and morbidity in Europe, account for 45% of all deaths, while, in Serbia in 2021, CVD accounted for 47.3%. The objective was to investigate salt content labelled on meat products from the Serbian market and estimate dietary exposure to salt from meat products in the Serbian population using consumption data. Data on salt content were collected from 339 meat products and classified in eight groups. Consumption data were collected using the EFSA EU Menu methodology (2017-2021) from 576 children and 3018 adults (145 pregnant women) in four geographical regions of Serbia. The highest salt content was in dry fermented sausages and dry meat, average 3.78 ± 0.37 g/100 g and 4.40 ± 1.21 g/100 g, respectively. The average intake of meat products is 45.21 ± 39.0 g/day and estimated daily salt intake from meat products per person is 1.192 g, which is 24% of the daily recommended amount. The actual meat product consumption and content of salt in meat products in Serbia present a risk factor for development of CVD and related comorbidities. A targeted strategy, policy and legislation for salt reduction are needed.
Assuntos
Doenças Cardiovasculares , Produtos da Carne , Gravidez , Adulto , Criança , Humanos , Feminino , Cloreto de Sódio na Dieta , Sérvia , Carne , Ingestão de AlimentosRESUMO
To better understand the microbial quality and safety of plant-based meat analogues, this study investigated the changes of native microflora present in soy- and pea-based meat analogues (SBM and PBM) and compared them with ground beef (GB). SBM, PBM, and GB were also artificially inoculated with meat spoilage microorganisms, Pseudomonas fluorescens and Brochothrix thermosphacta, and pathogenic microorganisms, Escherichia coli O157:H7, Salmonella spp., and Listeria monocytogenes; the fitness of these bacteria was evaluated during storage at refrigerated and/or abused temperatures. Results showed that the initial total aerobic plate count (APC), coliform, lactic acid bacteria (LAB), and mold/yeast (M/Y) counts for GB could be as high as 5.44, 2.90, 4.61, and 3.45 log CFU/g, while the highest initial APC, coliform, LAB, and M/Y counts found in SBM were 3.10, 2.00, 2.04, and 1.95 log CFU/g, and were 3.82, 2.51, 3.61, and 1.44 log CFU/g for PBM. The batch-to-batch differences in microbial counts were more significant in GB than in SBM and PBM. Despite the different initial concentrations, there was no difference among APC and LAB counts between the three meat types by the end of the 10-day 4 °C storage period, all approaching ca. 7.00 log CFU/g. Artificially-inoculated B. thermosphacta increased by 0.76, 1.58, and 0.96 log CFU/g in GB, PBM, and SBM respectively by the end of the refrigeration storage; P. fluorescens increased by 4.92, 3.00, and 0.40 log CFU/g in GB, PBM, and SBM respectively. Under refrigerated storage conditions, pathogenic bacteria did not change in GB and SBM. L. monocytogenes increased by 0.74 log in PBM during the 7-day storage at 4 °C. All three pathogens grew at abused storage temperatures, regardless of the meat type. Results indicated that plant-based meat could support the survival and even growth of spoilage and pathogenic microorganisms. Preventive controls are needed for ensuring the microbial quality and safety of plant-based meat analogues.
Assuntos
Produtos da Carne , Pseudomonas fluorescens , Animais , Bovinos , Produtos da Carne/microbiologia , Microbiologia de Alimentos , Carne/microbiologia , SalmonellaRESUMO
BACKGROUND: According to the International Agency for Research on Cancer (IARC), there is sufficient evidence for the carcinogenicity of processed meat consumption in humans, specifically regarding colorectal cancer (CRC) risk. Evidence for the carcinogenicity of red meat consumption is more limited but points in the same direction. METHODS: A macro-simulation approach was used to calculate age- and sex-specific potential impact fractions in a 30-year period (2020-2050). AIMS: We estimated numbers and proportions of future CRC cases preventable under different scenarios of reducing the intake of processed and red meat in the German population. RESULTS: Eliminating processed meat intake could reduce the burden of CRC by approximately 205,000 cases in Germany (9.6%) in 2020-2050, 2/3 among males (145,000) and 1/3 among females (60,000). Without red meat intake, approximately 63,000 CRC cases could be avoided (2.9%), 39,000 among males and 24,000 among females. Reductions in the mean consumption of both processed and red meat by one or two servings (each 11 or 22 g) per day would be expected to reduce CRC case numbers by 68,000 (3.1%) and 140,000 (6.5%), respectively. CONCLUSION: A reduction in red and processed meat intake might substantially reduce the incidence of CRC in Germany. The means of achieving such a reduction might include price and taxation policies, food labeling, and clearer risk communication aiming to reduce individual intake.
Assuntos
Neoplasias Colorretais , Produtos da Carne , Carne Vermelha , Masculino , Feminino , Humanos , Incidência , Fatores de Risco , Neoplasias Colorretais/epidemiologia , Carne , Alemanha/epidemiologiaRESUMO
Over the years, significant technological discoveries have facilitated the improvement of meat-related research. Recent studies of complex and interactive factors contributing to variations in meat safety are increasingly focused on data-driven omics approaches such as proteomics. This review highlighted omics advances in elucidating the biochemical and biological actions on meat safety. Also, the impacts of the nutritional characteristics of meat and meat products on human health are emphasized. Future perspectives should explore multi-omics and in situ investigations to elucidate the implications in microbiological studies, including nutritional and health-related assessments. Also, creating meat safety assessment and prediction models based on biomarkers of meat safety traits will help to mitigate application constraints, thereby evaluating meat quality more accurately. This could provide a scientific basis for increasing the meat industry's profitability and producing high-quality meat and meat products for consumers. SIGNIFICANCE OF THE REVIEW: This review highlighted omics advances in elucidating underlying mechanisms of biochemical and biological factors associated with meat safety. Also, the impacts of meat proteins on human health are emphasized. Future perspectives should explore multi-omics and in situ investigations to elucidate the implications in microbiological studies, including nutritional and health-related assessments. Also, creating meat safety assessment and prediction models based on biomarkers of meat safety traits will help to mitigate application constraints, thereby evaluating meat quality more accurately. This could provide a scientific basis for increasing the meat industry's profitability and producing high-quality meat and meat products for consumers.