Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199.671
Filtrar
1.
Anticancer Res ; 39(10): 5297-5310, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31570424

RESUMO

BACKGROUND/AIM: Low-molecular weight heparins (LMWHs) may possess putative antitumoral properties; however, the underlying mechanism(s) remains elusive. We evaluated the antiproliferative and antimigratory effects of enoxaparin (a LMWH) in lung adenocarcinoma A549 cells, and assessed the possible mechanism involved, and the effect on doxorubicin's efficacy. MATERIALS AND METHODS: Proliferation and migration were evaluated using BrdU and transwell assays, respectively. Immunoblotting was used to measure PAR-1, PAR-2, MMP-2, ERK1/2 and Akt proteins. Apoptosis and cell cycle studies examined the combined effect of enoxaparin and doxorubicin. RESULTS: Enoxaparin inhibited A549 cell proliferation and migration. Following PAR-1 gene knock down, enoxaparin's effect on A549 cell proliferation was diminished compared to scrambled siRNA. Our experiments verified that enoxaparin-mediated down-regulation of MAPK and PI3K, reduced MMP-2 expression and inhibited A549 cell migration. Additionally, enoxaparin increased doxorubicin's efficacy by enhancing apoptosis, while no effect on cell-cycle progression was observed. CONCLUSION: Results suggest that the anticancer activity of enoxaparin in A549 cells was mediated by the interference of two major PAR-1 downstream signaling pathways, MAPK/ERK and PI3K/Akt, which in turn inhibit proliferation and migration. Therefore, enoxaparin may be promising as an adjunct to traditional chemotherapy for lung cancer and warrants further investigation.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Enoxaparina/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Receptor PAR-1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células A549 , Adenocarcinoma de Pulmão/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Heparina de Baixo Peso Molecular/farmacologia , Humanos , Neoplasias Pulmonares/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/metabolismo
2.
Anticancer Res ; 39(10): 5311-5327, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31570425

RESUMO

BACKGROUND/AIM: MiR-221, often described both as an oncogenic microRNA and as a tumour suppressor, targets mRNAs involved in carcinogenesis. While other oncogenic microRNAs showed correlations with prostate cancer cell lines' aggressiveness, miR-221 showed an unusual overexpression in PC3. MATERIALS AND METHODS: CRISPR was used to delete miR-221 from PC3 cells. Analysing the characteristics of PC3miR-221del cells, a reduced growth rate and expression of cell-cycle genes was observed. In global gene expression/ontology analysis of PC3miR-221del cells, cell-cell and cell-substrate adhesion pathways were found to be greatly affected. In addition, reduced levels of adhesion, invasion and motility for PC3miR-221del cells, a change in F-actin localisation and a reduction of EMT markers were observed. RESULTS: The tumour suppressor gene, DIRAS3, was a predicted target of miR-221. In PC3miR-221del cells DIRAS3 was up-regulated at the gene and protein level. Ectopic expression of DIRAS3 in PC3wt cells recapitulated the cellular morphology changes seen in PC3miR-221del cells. DIRAS3 3'UTR was more stable in PC3miR-221del cells, as measured by semi-quantitative PCR and luciferase fusion reporter assays. CONCLUSION: MiR-221 promotes aggressiveness of PC3 cells by down-regulating DIRAS3, and promoting epithelial-to-mesenchymal transition.


Assuntos
Adesão Celular/genética , Movimento Celular/genética , Proliferação de Células/genética , MicroRNAs/genética , Deleção de Sequência/genética , Regiões 3' não Traduzidas/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Oncogenes/genética , Células PC-3 , Neoplasias da Próstata/genética , Regulação para Cima/genética , Proteínas rho de Ligação ao GTP/genética
3.
Anticancer Res ; 39(10): 5339-5344, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31570427

RESUMO

BACKGROUND/AIM: Gemcitabine is standard first-line treatment for patients with advanced pancreatic cancer, however the efficacy is limited. Although acquired drug resistance and side-effects are known to limit efficacy, opposite effects of a drug, which enhance the malignancy of treated cancer, have been observed but are not well understood. The aim of the present study was to determine whether gemcitabine has such opposite effects on the BxPC-3 human pancreatic cancer cell line expressing green fluorescent protein (BxPC-3-GFP) in an orthotopic mouse model. MATERIALS AND METHODS: BxPC-3-GFP tumors grown subcutaneously in nude mice were harvested. Tumor fragments were orthotopically implanted in the tail of the pancreas of nude mice using the technique of surgical orthotopic implantation. The BxPC-3-GFP orthotopic models were divided randomly into three groups: Group 1: untreated control; Group 2: low-dose gemcitabine (weekly intraperitoneal injection at 25 mg/kg for 6 weeks); Group 3: high-dose gemcitabine (weekly intraperitoneal injection at 125 mg/kg for 6 weeks). Each group comprised eight mice. Tumor size, fluorescent area of metastases, and body weight were measured. RESULTS: Low- and high-dose gemcitabine inhibited primary tumor growth in a dose-dependent manner, and to the greatest extent by high-dose gemcitabine compared to the untreated control (p=0.0134). In contrast, the extent of metastasis on the peritoneum was significantly increased by low-dose gemcitabine compared to the untreated control (p=0.0112). The extent of metastasis showed no significant difference between the untreated control and mice treated with high-dose gemcitabine. Body weight of the treated mice was not significantly different from that of the untreated mice. CONCLUSION: The use of very bright GFP expressing of BxPC-3 cells and the orthotopic model demonstrated an unexpected increase in metastasis by low-dose gemcitabine. Future experiments will investigate the mechanism of this phenomenon.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Desoxicitidina/análogos & derivados , Metástase Neoplásica/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/administração & dosagem , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Camundongos Nus , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Neoplasias Pancreáticas/metabolismo
4.
Anticancer Res ; 39(10): 5381-5391, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31570433

RESUMO

BACKGROUND/AIM: Long noncoding RNAs (lncRNAs) are noncoding transcripts that are >200 nucleotides in length. However, the biological functions and regulation mechanisms of lncRNAs in gastric carcinogenesis remain unknown. MATERIALS AND METHODS: The expression levels of Linc00472 were analyzed by real-time PCR. The DNA methylation status was assessed using Combined Bisulfite Restriction Analysis (COBRA). The biological role of Linc00472 was assessed in AGS cells with Linc00472 overexpression. RESULTS: Using the next-generation sequencing approach, we identified DNA methylation-associated lncRNAs in gastric cancer cells. Among them, the expression level of Linc00472 significantly decreased in gastric cancer tissues compared to adjacent normal tissues. Furthermore, we observed a more frequent hypermethylation of CpG islands upstream of Linc00472 in gastric cancer tissues. Ectopic Linc00472 expression could significantly inhibit gastric cancer cell growth and migration. CONCLUSION: Epigenetically regulated Linc00472 expression plays a crucial role in modulating gastric cancer cell growth and motility.


Assuntos
Metilação de DNA/genética , RNA Longo não Codificante/genética , Neoplasias Gástricas/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Ilhas de CpG/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos
5.
Anticancer Res ; 39(10): 5403-5415, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31570435

RESUMO

BACKGROUND/AIM: Tubugi-1 is a more stable and accessible synthetic counterpart of natural tubulysins. This study aimed to evaluate its cytotoxic potential against anaplastic human melanoma cells. MATERIALS AND METHODS: The viability of A-375 cells was determined by 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and crystal violet assay. The type of cell death and proliferative rate were investigated using flow cytometry and fluorescent microscopy, while the molecular background was evaluated by western blot. RESULTS: Tubugi-1 reduced the viability of A-375 cells, inducing massive micronucleation, followed by augmented expression of inhibitor of nuclear factor-κB and caspase-2, typical of a mitotic catastrophe. Disturbed proliferation and G2M block with prominent caspase activity, weakened the expression of B-cell lymphoma 2 and B-cell lymphoma 2-associated X transient up-regulation, coexisted with intensive autophagy. Specific inhibition of autophagy by chloroquine resulted in conversion from mitotic catastrophe to rapid apoptosis. CONCLUSION: Multilevel anticancer action of tubugi-1 is extended by co-application of an autophagy inhibitor, giving a new dimension in further preclinical advancement of this potential agent.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Citotoxinas/farmacologia , Melanoma/tratamento farmacológico , Caspase 2/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Melanoma/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo
6.
Anticancer Res ; 39(10): 5417-5425, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31570436

RESUMO

BACKGROUND/AIM: Chemotherapy with docetaxel (DTX) is used for castration-resistant prostate cancer (CRPC), but it is inadequate. MATERIALS AND METHODS: We evaluated the effect of the combination treatment DTX and the mTOR inhibitor temsirolimus (TEM) in the PC3 prostate cancer cell line, by focusing on the induction of autophagy and apoptosis. RESULTS: TEM induced autophagy but not apoptosis even at a high dose, whereas DTX induced apoptosis. The combination of low-dose DTX and TEM caused a 34% suppression in cell proliferation compared to monotherapy with a higher dose of DTX. The induction of apoptosis was increased by their combination. The combination with DTX overcame the induction of autophagy by TEM. The combination treatment suppressed tumor growth 72% less than the control group after 14 days of treatment in vivo. CONCLUSION: The combination of TEM and DTX induced apoptosis by overcoming autophagy and enhanced the anticancer effect compared to monotherapy.


Assuntos
Antineoplásicos/administração & dosagem , Autofagia/efeitos dos fármacos , Docetaxel/administração & dosagem , Próstata/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Sirolimo/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Terapia Combinada/métodos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células PC-3 , Inibidores de Proteínas Quinases/administração & dosagem , Sirolimo/administração & dosagem
7.
Anticancer Res ; 39(10): 5427-5436, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31570437

RESUMO

BACKGROUND/AIM: Renal cell carcinoma (RCC) is one of the most common tumor diseases in adults, and new specific biomarkers are urgently needed to define diagnosis and prognosis of patients with RCC as well as monitor the outcome of therapeutic interventions. The enzyme nicotinamide N-methyltransferase (NNMT) is believed to represent such a marker molecule in RCC therapy. MATERIALS AND METHODS: NNMT expression was examined by western blotting in samples from patients with RCC and in RCC cell lines. Effects of NNMT on cell growth and metabolism were assessed using the Hoechst 33342 reagent assay and Vita-Orange cell viability assay. Incubation experiments were performed to study the influence of methionine and interleukin-6 (IL6) on expression of NNMT. RESULTS: In patient samples, NNMT was up-regulated depending on the stage of progression. Investigations in an RCC cell culture model showed that after modulation of NNMT expression, cellular metabolism, but not cell growth was affected. This regulatory function was also dependent on the presence of the NNMT precursor substrate methionine and IL6. CONCLUSION: The metabolism-regulatory activity of NNMT depends on the precursor substrate methionine and the presence of IL6. The function of methionine appears to be dependent on the stage of progression, since in individual RCC cell lines, opposing effects on metabolism were demonstrated. This, in turn, reflects the thoroughly complex situation in the clinic.


Assuntos
Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , Metionina/metabolismo , Nicotinamida N-Metiltransferase/metabolismo , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Progressão da Doença , Células HEK293 , Humanos , Interleucina-6/metabolismo , Prognóstico , Regulação para Cima/fisiologia
8.
Anticancer Res ; 39(10): 5473-5481, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31570441

RESUMO

BACKGROUND/AIM: Aerial parts and seeds of the neem tree (Azadirachta indica) have long been used in traditional medicine such as Ayurveda for health-related purposes. Our interest in neem bioactives lies in their potential use as standalone anticancer agents, or as adjuvants to standard therapy. The aim of the present study was to explore a supercritical CO2 extract (SCNE) of neem leaf and a prominent liminoid in neem leaf, nimbolide, for epigenetic activity. MATERIALS AND METHODS: Human colorectal cancer cell lines (HCT116 and HT29) were cultured for 48 h in the presence of neem extract or nimbolide and evaluated for growth inhibition and evidence of suppression of histone deacetylation and DNA methylation. RESULTS: Both SCNE and nimbolide suppressed the proliferation of colon cancer cells by inducing epigenetic modifications. CONCLUSION: Neem leaf contains bioactive constituents which modify epigenetic activity.


Assuntos
Azadirachta/química , Neoplasias Colorretais/tratamento farmacológico , Epigênese Genética/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Dióxido de Carbono/química , Dióxido de Carbono/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Células HCT116 , Células HT29 , Humanos , Limoninas/farmacologia
9.
Anticancer Res ; 39(10): 5483-5494, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31570442

RESUMO

BACKGROUND/AIM: Canine mammary gland tumors (CMGTs) are the most common tumors in female dogs. Rivoceranib (also known as apatinib) is a novel anti-angiogenic tyrosine kinase inhibitor that selectively binds to vascular endothelial growth factor receptor-2 (VEGFR2). The aim of this study was to disclose the antitumor effects of rivoceranib on CMGT cell lines. MATERIALS AND METHODS: The direct effects of rivoceranib on CMGT cells in vitro were analyzed by cell proliferation and migration assays. Cell-cycle distribution and apoptotic ratio were analyzed by flow cytometry. Expression levels of phosphorylated VEGFR2 were evaluated by western blot analysis. RESULTS: Rivoceranib treatment significantly reduced the proliferation and migration of CMGT cells in a dose-dependent manner. Flow cytometry results revealed significant increases in G0/G1 phase arrest and apoptosis proportional to the drug concentration used. Rivoceranib reduced the level of phosphorylated VEGFR2. CONCLUSION: We confirm that rivoceranib exerts antitumor effects on CMGT cells by inhibiting biological functions.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Mamárias Animais/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cães , Feminino , Fase G1/efeitos dos fármacos , Neoplasias Mamárias Animais/metabolismo , Fosforilação/efeitos dos fármacos , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Adv Exp Med Biol ; 1167: 65-85, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31520349

RESUMO

Apoptosis has long been regarded as a tumor suppressor mechanism and evasion from apoptosis is considered to be one hallmark of cancer. However, this principle is not always consistent with clinical data which often illustrate a correlation between apoptosis and poor prognosis. Work in the last 15 years has provided an explanation for this apparent paradox. Apoptotic cells communicate with their environment and can produce signals which promote compensatory proliferation of surviving cells. This behavior of apoptotic cells is important for tissue regeneration in several model organisms, ranging from hydra to mammals. However, it may also play an important feature for tumorigenesis and tumor relapse. Several distinct forms of apoptosis-induced compensatory proliferation (AiP) have been identified, many of which involve reactive oxygen species (ROS) and immune cells. One type of AiP, "undead" AiP, in which apoptotic cells are kept in an immortalized state and continuously divide, may have particular relevance for tumorigenesis. Furthermore, given that chemo- and radiotherapy often aim to kill tumor cells, an improved understanding of the effects of apoptotic cells on the tumor and the tumor environment is of critical importance for the well-being of the patient. In this review, we summarize the current knowledge of AiP and focus our attention on recent findings obtained in Drosophila and other model organisms, and relate them to tumorigenesis.


Assuntos
Apoptose , Carcinogênese , Proliferação de Células , Neoplasias/patologia , Animais , Humanos , Espécies Reativas de Oxigênio , Regeneração
11.
Nihon Yakurigaku Zasshi ; 154(3): 108-113, 2019.
Artigo em Japonês | MEDLINE | ID: mdl-31527359

RESUMO

Similar to calcium (Ca2+) and chloride (Cl-) ion channels/transporters, potassium (K+) channels have been recognized as a crucial cancer treatment target. Recent studies have provided convincing evidences of positive correlation between elevated expression levels of Ca2+-activated K+ (KCa) channels and cancer proliferation, metastasis, and poor patient prognosis. In cancer cells, KCa1.1 and KCa3.1 KCa channels are co-localized with Ca2+-permeable Orai/TRP channels to provide a positive-feedback loop for Ca2+ entry. They are responsible for the promotion of cell growth and metastasis in the different types of cancer, and are therefore potential therapeutic targets and biomarkers for cancer. We determined the epigenetic and post-transcriptional dysregulation of KCa3.1 by class I histone deacetylase inhibitors in breast and prostate cancer cells. We further determined the transcriptional repression and protein degradation of KCa1.1 by vitamin D receptor agonists and androgen receptor antagonists, which are expected as potential therapeutic drugs for triple-negative breast cancer. The anti-inflammatory cytokine, interleukin-10 (IL-10) is an immunosuppressive factor involved in tumorigenesis, and plays a crucial role in escape from tumor immune surveillance. We determined KCa3.1 activators are a possible therapeutic option to suppress the tumor-promoting activities of IL-10. These results may provide new insights into cancer treatment focused on Ca2+-activated K+ channels.


Assuntos
Neoplasias da Mama/patologia , Inibidores de Histona Desacetilases/farmacologia , Canais de Potássio Cálcio-Ativados/metabolismo , Neoplasias da Próstata/patologia , Antagonistas de Receptores de Andrógenos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Epigênese Genética , Feminino , Humanos , Vigilância Imunológica , Interleucina-10/metabolismo , Masculino , Proteólise , Processamento Pós-Transcricional do RNA , Receptores de Calcitriol/agonistas
12.
Nihon Yakurigaku Zasshi ; 154(3): 97-102, 2019.
Artigo em Japonês | MEDLINE | ID: mdl-31527367

RESUMO

Among voltage-gated Ca2+ channels, T-type Ca2+ channels, which are activated by low voltages, regulate neuronal excitability, spontaneous neurotransmitter release, hormone secretion, etc. and also participate in proliferation of distinct cancer cells. Among three isoforms of T-type Ca2+ channels, Cav3.2 is detectable in 100% of biopsy samples from prostate cancer patients. In general, prostate cancer cells are highly sensitive to androgen deprivation therapy, but often acquire hormone-therapy resistance. The androgen deprivation may trigger neuroendocrine (NE)-like differentiation of some prostate cancer cells. We have analyzed the expression and function of Cav3.2 in human prostate cancer LNCaP cells during NE-like differentiation. NE-like LNCaP cells overexpress Cav3.2 through the CREB/Egr-1 pathway and also cystathionine-γ-lyase (CSE), which generates H2S that enhances the channel activity of Cav3.2. H2S generated by upregulated CSE appears to enhance the activity of upregulated Cav3.2 after the differentiation. The enhanced Cav3.2 activity in NE-like cells may contribute to increased secretion of mitogenic factors essential for androgen-independent proliferation of surrounding prostate cancer cells. It is known that increased extracellular glucose levels enhance Cav3.2 activity through asparagine (N)-linked glycosylation of Cav3.2, which might contribute to diabetic neuropathy. We then found that high glucose accelerates the enhanced channel function and overexpression of Cav3.2 in NE-like LNCaP cells, which might be associated with clinical evidence for diabetes-related poor prognosis of prostate cancer and development of hormone therapy resistance. Thus, Cav3.2 is considered to play a role in the pathophysiology of prostate cancer, and may serve as a therapeutic target.


Assuntos
Canais de Cálcio Tipo T/fisiologia , Sistemas Neurossecretores/citologia , Neoplasias da Próstata/patologia , Antagonistas de Androgênios/farmacologia , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Cistationina gama-Liase/fisiologia , Humanos , Sulfeto de Hidrogênio , Masculino
13.
Bol. latinoam. Caribe plantas med. aromát ; 18(5): 480-491, sept. 2019. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1008273

RESUMO

In the present study, we investigated the antiproliferative activity of essential oil from leaves of Melissa officinalis L. grown in Southern Bosnia and Herzegovina. In vitro evaluation of antiproliferative activity of the M. officinalis essential oil was carried out on three human tumor cell lines: MCF-7, NCI-H460 and MOLT-4 by MTT assay. M. officinalis essential oil was characterized by high percentage of monoterpenes (77,5%), followed by the sesquiterpene fraction (14,5%) and aliphatic compounds (2,2%). The main constituents of the essential oil of M. officinalis are citral (47,2%), caryophyllene oxide (10,2%), citronellal (5,4%), geraniol (6,6%), geranyl acetate (4,1%) and ß- caryophyllene (3,8%). The essential oil showed significant antiproliferative activity against three cancer cell lines, MOLT-4, MCF-7, and NCI-H460 cells, with GI50 values of <5, 6±2 and 31±17 µg/mL, respectively. The results revealed that M. officinalis L. essential oil has a potential as anticancer therapeutic agent.


En el presente estudio, investigamos la actividad antiproliferativa del aceite esencial de las hojas de Melissa officinalis L. cultivadas en el sur de Bosnia y Herzegovina. La evaluación in vitro de la actividad antiproliferativa del aceite esencial de M. officinalis se llevó a cabo en tres líneas celulares de tumores humanos: MCF-7, NCI-H460 y MOLT-4 utilizando el ensayo de MTT. El aceite esencial de M. officinalis se caracterizó por un alto porcentaje de monoterpenos (77,5%), seguido de la fracción sesquiterpénica (14,5%) y compuestos alifáticos (2,2%). Los principales constituyentes del aceite esencial de M. officinalis fueron citral (47,2%), óxido de cariofileno (10,2%), citronelal (5,4%), geraniol (6,6%), acetato de geranilo (4, 1%), y ß-cariofileno (3,8%). El aceite esencial mostró una actividad antiproliferativa significativa contra las líneas celulares de cáncer MOLT-4, MCF-7 y NCI-H460, con valores GI50 de <5, 6±2 y 31±17 µg/mL, respectivamente. Los resultados revelaron que el aceite esencial de M. officinalis L. tiene potencial como agente terapéutico contra el cáncer.


Assuntos
Óleos Voláteis/farmacologia , Melissa , Antineoplásicos/farmacologia , Sesquiterpenos/análise , Técnicas In Vitro , Óleos Voláteis/química , Células Tumorais Cultivadas , Folhas de Planta , Monoterpenos/análise , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Antineoplásicos/química
14.
Biol Res ; 52(1): 52, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31540582

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) have been reported to be associated with dermis process during burn wound healing. This study aimed to investigate the role of lncRNA X-inactive specific transcript (XIST) in human skin fibroblasts (HSF) and extracellular matrix (ECM) as well as the regulatory network of XIST/microRNA-29b-3p (miR-29b-3p)/collagen 1 alpha 1 (COL1A1). METHODS: The wound samples were collected from 25 patients with deep partial thickness burn at day 5 after burn. The thermal injured model was established using HSF cells. The expressions of XIST, miR-29b-3p and COL1A1 were measured by quantitative real-time polymerase chain reaction and western blot. ECM synthesis, cell proliferation and migration were detected by western blot, cell counting kit-8 and trans-well assays, respectively. The interaction between miR-29b-3p and XIST or COL1A1 was explored by bioinformatics analysis and luciferase reporter assay. RESULTS: The expressions of XIST and COL1A1 were enhanced but miR-29b-3p expression was decreased after thermal injury. XIST overexpression promoted ECM synthesis, cell proliferation and migration in thermal injured HSF cells. However, XIST knockdown played an opposite effect. miR-29b-3p overexpression inhibited ECM synthesis, cell proliferation and migration, which was reversed by XIST. COL1A1 silence suppressed ECM synthesis, cell proliferation and migration by miR-29b-3p targeting. Moreover, COL1A1 up-regulation weakened the effect of XIST silence on ECM synthesis and HSF cell function. CONCLUSION: XIST promoted ECM synthesis, cell proliferation and migration by sponging miR-29b-3p and targeting COL1A1 in HSF cells after thermal injury, indicating the promoting role of XIST in wound healing.


Assuntos
Queimaduras/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , RNA Longo não Codificante/metabolismo , Western Blotting , Queimaduras/genética , Movimento Celular , Proliferação de Células , Matriz Extracelular/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Reação em Cadeia da Polimerase em Tempo Real
15.
Braz J Med Biol Res ; 52(9): e8551, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31482977

RESUMO

Fibroblasts are a highly heterogeneous population of cells, being found in a large number of different tissues. These cells produce the extracellular matrix, which is essential to preserve structural integrity of connective tissues. Fibroblasts are frequently engaged in migration and remodeling, exerting traction forces in the extracellular matrix, which is crucial for matrix deposition and wound healing. In addition, previous studies performed on primary myoblasts suggest that the E3 ligase MuRF2 might function as a cytoskeleton adaptor. Here, we hypothesized that MuRF2 also plays a functional role in skeletal muscle fibroblasts. We found that skeletal muscle fibroblasts express MuRF2 and its siRNA knock-down promoted decreased fibroblast migration, cell border accumulation of polymerized actin, and down-regulation of the phospho-Akt expression. Our results indicated that MuRF2 was necessary to maintain the actin cytoskeleton functionality in skeletal muscle fibroblasts via Akt activity and exerted an important role in extracellular matrix remodeling in the skeletal muscle tissue.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Fibroblastos/fisiologia , Proteínas Musculares/fisiologia , Músculo Esquelético/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Animais , Western Blotting , Fibroblastos/metabolismo , Imunofluorescência , Camundongos , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
16.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 35(7): 613-618, 2019 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-31537246

RESUMO

Objective To investigate the effect of baicalein (BAI) on autophagy in gastric cancer cell line MGC-803. Methods MGC-803 cells were treated with 0, 5, 15, 25, 50 µmol/L BAI for 24, 48, 72 hours. The proliferation activity of MGC-803 cells was detected by MTT assay. Acridine orange (AO) staining combined with immunofluorescence cytochemical staining was performed to observe the expression of microtubule-associated protein 1 light chain 3 (LC3) and P62 to determine autophagy in MGC-803 cells. The protein levels of LC3, P62, phosphatidylinositol 3-kinase (PI3K), phosphorylated PI3K (p-PI3K), AKT, and p-AKT were detected by Western blot analysis. Results Compared with the control group, BAI significantly inhibited the proliferation of MGC-803 cells in a time- and dose-dependent manner. BAI-treated MGC-803 cells showed a significant increase in acid lysosomes and increased LC3 expression. BAI treatment significantly decreased phosphorylation of PI3K and AKT proteins, increased the ratio of LC3-II/LC3-I and up-regulated the expression of P62 protein. Conclusion Baicalein could inhibit PI3K/AKT signaling pathway and induce autophagy in MGC-803 cells.


Assuntos
Autofagia , Flavanonas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Ligação a RNA/metabolismo
17.
Chem Biol Interact ; 312: 108813, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31494105

RESUMO

Rhabdomyosarcoma (RMS) is a pediatric tumor, which arises from muscle precursor cells. Recently, it has been demonstrated that Hippo Pathway (Hpo), a pathway that regulates several physiological and biological features, is involved in RMS tumorigenesis. For instance, an upregulation of the Hpo downstream effector Yes-Associated Protein 1 (YAP) leads to the development of embryonal rhabdomyosarcoma (eRMS) in murine activated muscle satellite cells. On the other hand, the YAP paralog transcriptional co-activator with PDZ-binding motif (TAZ) is overexpressed in alveolar rhabdomyosarcoma (aRMS) patients with poor survival. YAP and TAZ exhibit both cytoplasmic and nuclear functions. In the nucleus, YAP binds TEADs (TEA domain family members) factors and together they constitute a complex that is able either to activate the transcription of several genes such as MYC, Tbx5 and PAX8 or to maintain the stability of others like p73. Due to the key role of YAP and TAZ in cancer, the identification and/or development of new compounds able to block their activity might be an effective antineoplastic strategy. Verteporfin (VP) is a molecule able to stop the formation of YAP/TEAD complex in the nucleus. The aim of this study is to evaluate the action of VP on RMS cell lines. This work shows that VP has an anti-proliferative activity on all RMS cell lines analyzed. Depending on RMS cell lines, VP affects cell cycle differently. Moreover, VP is able to decrease YAP protein levels, and to induce the activation of apoptosis mechanism through the cleavage of PARP-1. In addition, Annexin V assay showed the activation of apoptosis and necrosis after VP treatment. In summary, the ability of VP to disrupt RMS cell proliferation could be a novel and valuable strategy to improve the therapeutic approaches in treating rhabdomyosarcoma.


Assuntos
Proliferação de Células/efeitos dos fármacos , Verteporfina/farmacologia , Linhagem Celular Tumoral , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Proteínas Nucleares/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Rabdomiossarcoma Alveolar/metabolismo , Rabdomiossarcoma Alveolar/patologia , Rabdomiossarcoma Embrionário/metabolismo , Rabdomiossarcoma Embrionário/patologia , Fatores de Transcrição/metabolismo
18.
An Acad Bras Cienc ; 91(3): e20180462, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31553365

RESUMO

This study aimed to evaluate the in vitro antiproliferative and inhibition of oxidative DNA-damage activities of n-butanol (n-BuOH) extract of Centaurea sphaerocephala. The in vitro antioxidant activity of the ethyl acetate (EtOAc) and the n-BuOH extracts of this plant were also assayed. To investigate the antioxidant potential, extracts were tested for their capacity to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH·) and to inhibit lipid peroxidation using the TBARs method. The contents of total phenolics and flavonoids were measured. Additionally, antiproliferative activity and DNA-damage inhibition of the n-BuOH extract was determined using XCELLigence RTCA instrument and photolyzing 46966 plasmid, respectively. The results exhibited that the scavenging abilities of the EtOAc extract were better than the n-BuOH extract with an IC50= 11.59 µg/mL and 16.67 µg/mL for both extracts, respectively. The phenolic and flavonoid contents were found higher in the n-BuOH and EtOAc extracts. Furthermore, our results showed that n-BuOH extract exhibited a remarkable inhibition of lipid peroxidation with an IC50 of 340.94±7.49 µg/mL and had an antiproliferative effect against Hela cells. Extracts of C. sphaerocephala showed antioxidant activity on scavenging DPPH·. In addition, the n-BuOH extract inhibited the lipid peroxidation and exhibited an antiproliferative effect against HeLa cells line (human cervix carcinoma).


Assuntos
1-Butanol/farmacologia , Acetatos/farmacologia , Antioxidantes/farmacologia , Proliferação de Células/efeitos dos fármacos , Centaurea/química , Dano ao DNA/efeitos dos fármacos , Extratos Vegetais/farmacologia , 1-Butanol/isolamento & purificação , Acetatos/isolamento & purificação , Antioxidantes/isolamento & purificação , Linhagem Celular Tumoral , Humanos , Espectrometria de Massas
19.
Bioresour Technol ; 293: 122029, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31473378

RESUMO

Nanosecond pulsed electric field treatment (nsPEF) is an innovative, technology-driven, and resource-efficient approach to foster the upstream performance of microalgae-based biorefinery concepts to transform microalgae into economic more viable raw materials for the biobased industry. A processing window applying three treatments of 100 ns, 5 Hz, and 10 kV cm-1 to industrially relevant phototrophic Chlorella vulgaris in the early exponential growth phase significantly increased biomass yields by up to 17.53 ±â€¯10.46% (p = 3.18 × 10-5). Treatments had limited effects on the carbon and pigment contents, but the protein content was decreased. The longest possible pulse width (100 ns) resulted in the highest biomass yield indicating underlying working mechanisms of enhanced cell proliferation based on intracellular and plasma membrane-related effects. The applicability to eukaryotes and prokaryotes, such as C. vulgaris and cyanobacteria highlights the possible impacts of nsPEF across multiple domains of the biobased industry relying on single-cell-based value-chains.


Assuntos
Chlorella vulgaris , Microalgas , Biomassa , Proliferação de Células , Eletricidade
20.
Medicine (Baltimore) ; 98(36): e17009, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31490383

RESUMO

Erythrina corallodendron L., a kind of landscape tree, has long been used as a traditional medicine. In this study, the composition of essential oil extracted from the leaves was analysed by GC-MS (gas chromatograph-mass spectrometer), with linalool identified as the main compound. Its cytotoxicity against MDA-MB-231, MCF-7 and HMLE cells was examined by MTT and cloning assays. Transwell and wound-healing assays were used to examine the inhibition of migration and invasion. Western blot, qRT-PCR and immunofluorescence staining were used to measure the mRNA and protein expression of factors related to EMT (snail, slug, E-cadherin, N-cadherin and vimentin). The essential oil of Erythrina corallodendron leaves was found to inhibit the proliferation, migration and invasion of breast cancer cells in a dose-dependent manner. The findings of this study suggest that the essential oil of E. corallodendron leaves may merit further investigation as a potential clinical or adjuvant drug for treating breast cancer migration and invasion.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos Fitogênicos/análise , Neoplasias da Mama/tratamento farmacológico , Erythrina/química , Óleos Voláteis/uso terapêutico , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Células MCF-7 , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Óleos Voláteis/farmacologia , Fitoterapia , Folhas de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA