Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.459
Filtrar
1.
Nat Commun ; 11(1): 4948, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33009415

RESUMO

The tripartite multidrug efflux system MexAB-OprM is a major actor in Pseudomonas aeruginosa antibiotic resistance by exporting a large variety of antimicrobial compounds. Crystal structures of MexB and of its Escherichia coli homolog AcrB had revealed asymmetric trimers depicting a directional drug pathway by a conformational interconversion (from Loose and Tight binding pockets to Open gate (LTO) for drug exit). It remains unclear how MexB acquires its LTO form. Here by performing functional and cryo-EM structural investigations of MexB at various stages of the assembly process, we unveil that MexB inserted in lipid membrane is not set for active transport because it displays an inactive LTC form with a Closed exit gate. In the tripartite complex, OprM and MexA form a corset-like platform that converts MexB into the active form. Our findings shed new light on the resistance nodulation cell division (RND) cognate partners which act as allosteric factors eliciting the functional drug extrusion.


Assuntos
Antibacterianos/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Chaperonas Moleculares/metabolismo , Pseudomonas aeruginosa/metabolismo , Regulação Alostérica , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/ultraestrutura , Transporte Biológico , Modelos Moleculares , Domínios Proteicos
2.
PLoS Pathog ; 16(9): e1008867, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32925969

RESUMO

Surface attachment, an early step in the colonization of multiple host environments, activates the virulence of the human pathogen P. aeruginosa. However, the downstream toxins that mediate surface-dependent P. aeruginosa virulence remain unclear, as do the signaling pathways that lead to their activation. Here, we demonstrate that alkyl-quinolone (AQ) secondary metabolites are rapidly induced upon surface association and act directly on host cells to cause cytotoxicity. Surface-induced AQ cytotoxicity is independent of other AQ functions like quorum sensing or PQS-specific activities like iron sequestration. We further show that packaging of AQs in outer-membrane vesicles (OMVs) increases their cytotoxicity to host cells but not their ability to stimulate downstream quorum sensing pathways in bacteria. OMVs lacking AQs are significantly less cytotoxic, suggesting these molecules play a role in OMV cytotoxicity, in addition to their previously characterized role in OMV biogenesis. AQ reporters also enabled us to dissect the signal transduction pathways downstream of the two known regulators of surface-dependent virulence, the quorum sensing receptor, LasR, and the putative mechanosensor, PilY1. Specifically, we show that PilY1 regulates surface-induced AQ production by repressing the AlgR-AlgZ two-component system. AlgR then induces RhlR, which can induce the AQ biosynthesis operon under specific conditions. These findings collectively suggest that the induction of AQs upon surface association is both necessary and sufficient to explain surface-induced P. aeruginosa virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa , Quinolonas/farmacologia , Percepção de Quorum/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Virulência/metabolismo , Células A549 , Animais , Humanos , Camundongos , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade
3.
Ecotoxicol Environ Saf ; 202: 110919, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800254

RESUMO

In this study, Pseudomonas aeruginosa was applied to degrade tetrabromobisphenol A (TBBPA) with glucose as a co-metabolic substrate. Influencing factors of co-metabolic degradation such as pH, TBBPA and glucose concentration were examined and the degradation efficiency under optimal condition reached about 50% on the 7th day. The study also proved that the extracellular action, rather than intracellular one, played a leading role in TBBPA degradation. Five metabolites including debromination and beta-scission products were identified in this study. The extracellular active substance pyocyanin was considered as the origin of H2O2 and OH·. The variation of concentrations of H2O2 and OH· shared the same trend, they increased in the early days and then declined gradually. On the 1st day, the OD600 of P.aeruginosa in the co-metabolic group was 6.0 times higher than the initial value while total organic carbon (TOC) decreased about 78%, which might lead to the occurrence of pyocyanin auto-poisoning. Flow cytometry was applied to detect the cellular state of P.aeruginosa during degradation. The increasing intracellular ROS showed that cells were suffering from oxidative stress and the change of membrane potential revealed that cellular dysfunction had occurred since the 1st day. This research indicated that the toxic effect on P.aeruginosa was probably not directly correlated with TBBPA, but was caused by pyocyanin auto-poisoning.


Assuntos
Bifenil Polibromatos/metabolismo , Pseudomonas aeruginosa/metabolismo , Biodegradação Ambiental , Peróxido de Hidrogênio
4.
PLoS Biol ; 18(8): e3000805, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32810152

RESUMO

Antibiotics are losing efficacy due to the rapid evolution and spread of resistance. Treatments targeting bacterial virulence factors have been considered as alternatives because they target virulence instead of pathogen viability, and should therefore exert weaker selection for resistance than conventional antibiotics. However, antivirulence treatments rarely clear infections, which compromises their clinical applications. Here, we explore the potential of combining antivirulence drugs with antibiotics against the opportunistic human pathogen Pseudomonas aeruginosa. We combined two antivirulence compounds (gallium, a siderophore quencher, and furanone C-30, a quorum sensing [QS] inhibitor) together with four clinically relevant antibiotics (ciprofloxacin, colistin, meropenem, tobramycin) in 9×9 drug concentration matrices. We found that drug-interaction patterns were concentration dependent, with promising levels of synergies occurring at intermediate drug concentrations for certain drug pairs. We then tested whether antivirulence compounds are potent adjuvants, especially when treating antibiotic resistant (AtbR) clones. We found that the addition of antivirulence compounds to antibiotics could restore growth inhibition for most AtbR clones, and even abrogate or reverse selection for resistance in five drug combination cases. Molecular analyses suggest that selection against resistant clones occurs when resistance mechanisms involve restoration of protein synthesis, but not when efflux pumps are up-regulated. Altogether, our work provides a first systematic analysis of antivirulence-antibiotic combinatorial treatments and suggests that such combinations have the potential to be both effective in treating infections and in limiting the spread of antibiotic resistance.


Assuntos
Antibacterianos/farmacologia , Ciprofloxacino/farmacologia , Colistina/farmacologia , Furanos/farmacologia , Gálio/farmacologia , Meropeném/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Tobramicina/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Combinação de Medicamentos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Testes de Sensibilidade Microbiana , Biossíntese de Proteínas/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo , Percepção de Quorum/efeitos dos fármacos , Virulência
5.
PLoS Genet ; 16(8): e1008783, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32813693

RESUMO

Pseudomonas aeruginosa and Candida albicans are opportunistic pathogens whose interactions involve the secreted products ethanol and phenazines. Here, we describe the role of ethanol in mixed-species co-cultures by dual-seq analyses. P. aeruginosa and C. albicans transcriptomes were assessed after growth in mono-culture or co-culture with either ethanol-producing C. albicans or a C. albicans mutant lacking the primary ethanol dehydrogenase, Adh1. Analysis of the RNA-Seq data using KEGG pathway enrichment and eADAGE methods revealed several P. aeruginosa responses to C. albicans-produced ethanol including the induction of a non-canonical low-phosphate response regulated by PhoB. C. albicans wild type, but not C. albicans adh1Δ/Δ, induces P. aeruginosa production of 5-methyl-phenazine-1-carboxylic acid (5-MPCA), which forms a red derivative within fungal cells and exhibits antifungal activity. Here, we show that C. albicans adh1Δ/Δ no longer activates P. aeruginosa PhoB and PhoB-regulated phosphatase activity, that exogenous ethanol complements this defect, and that ethanol is sufficient to activate PhoB in single-species P. aeruginosa cultures at permissive phosphate levels. The intersection of ethanol and phosphate in co-culture is inversely reflected in C. albicans; C. albicans adh1Δ/Δ had increased expression of genes regulated by Pho4, the C. albicans transcription factor that responds to low phosphate, and Pho4-dependent phosphatase activity. Together, these results show that C. albicans-produced ethanol stimulates P. aeruginosa PhoB activity and 5-MPCA-mediated antagonism, and that both responses are dependent on local phosphate concentrations. Further, our data suggest that phosphate scavenging by one species improves phosphate access for the other, thus highlighting the complex dynamics at play in microbial communities.


Assuntos
Antibiose , Candida albicans/fisiologia , Etanol/metabolismo , Fosfatos/metabolismo , Pseudomonas aeruginosa/fisiologia , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Pseudomonas aeruginosa/metabolismo , Transdução de Sinais , Transcriptoma
6.
PLoS Genet ; 16(8): e1008505, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32776934

RESUMO

Dynamic gene expression in neurons shapes fundamental processes in the nervous systems of animals. However, how neuronal activation by different stimuli can lead to distinct transcriptional responses is not well understood. We have been studying how microbial metabolites modulate gene expression in chemosensory neurons of Caenorhabditis elegans. Considering the diverse environmental stimuli that can activate chemosensory neurons of C. elegans, we sought to understand how specific transcriptional responses can be generated in these neurons in response to distinct cues. We have focused on the mechanism of rapid (<6 min) and selective transcriptional induction of daf-7, a gene encoding a TGF-ß ligand, in the ASJ chemosensory neurons in response to the pathogenic bacterium Pseudomonas aeruginosa. DAF-7 is required for the protective behavioral avoidance of P. aeruginosa by C. elegans. Here, we define the involvement of two distinct cyclic GMP (cGMP)-dependent pathways that are required for daf-7 expression in the ASJ neuron pair in response to P. aeruginosa. We show that a calcium-independent pathway dependent on the cGMP-dependent protein kinase G (PKG) EGL-4, and a canonical calcium-dependent signaling pathway dependent on the activity of a cyclic nucleotide-gated channel subunit CNG-2, function in parallel to activate rapid, selective transcription of daf-7 in response to P. aeruginosa metabolites. Our data suggest that fast, selective early transcription of neuronal genes require PKG in shaping responses to distinct microbial stimuli in a pair of C. elegans chemosensory neurons.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Células Quimiorreceptoras/metabolismo , GMP Cíclico/metabolismo , Pseudomonas aeruginosa/metabolismo , Fator de Crescimento Transformador beta/genética , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Sinalização do Cálcio , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Ativação Transcricional , Fator de Crescimento Transformador beta/metabolismo
7.
Proc Natl Acad Sci U S A ; 117(29): 17211-17220, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32611811

RESUMO

The bacterial second messenger cyclic diguanylate (c-di-GMP) regulates a wide range of cellular functions from biofilm formation to growth and survival. Targeting a second-messenger network is challenging because the system involves a multitude of components with often overlapping functions. Here, we present a strategy to intercept c-di-GMP signaling pathways by directly targeting the second messenger. For this, we developed a c-di-GMP-sequestering peptide (CSP) that was derived from a CheY-like c-di-GMP effector protein. CSP binds c-di-GMP with submicromolar affinity. The elucidation of the CSP⋅c-di-GMP complex structure by NMR identified a linear c-di-GMP-binding motif, in which a self-intercalated c-di-GMP dimer is tightly bound by a network of H bonds and π-stacking interactions involving arginine and aromatic residues. Structure-based mutagenesis yielded a variant with considerably higher, low-nanomolar affinity, which subsequently was shortened to 19 residues with almost uncompromised affinity. We demonstrate that endogenously expressed CSP intercepts c-di-GMP signaling and effectively inhibits biofilm formation in Pseudomonas aeruginosa, the most widely used model for serious biofilm-associated medical implications.


Assuntos
Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Peptídeos/metabolismo , Sistemas do Segundo Mensageiro , Transdução de Sinais , Biofilmes/crescimento & desenvolvimento , Proteínas de Escherichia coli , Modelos Moleculares , Mutagênese , Peptídeos/química , Peptídeos/genética , Mutação Puntual , Conformação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Pseudomonas aeruginosa/metabolismo
8.
Nat Commun ; 11(1): 2600, 2020 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-32451409

RESUMO

Light-dependent or light-stimulated catalysis provides a multitude of perspectives for implementation in technological or biomedical applications. Despite substantial progress made in the field of photobiocatalysis, the number of usable light-responsive enzymes is still very limited. Flavoproteins have exceptional potential for photocatalytic applications because the name-giving cofactor intrinsically features light-dependent reactivity, undergoing photoreduction with a variety of organic electron donors. However, in the vast majority of these enzymes, photoreactivity of the enzyme-bound flavin is limited or even suppressed. Here, we present a flavoprotein monooxygenase in which catalytic activity is controllable by blue light illumination. The reaction depends on the presence of nicotinamide nucleotide-type electron donors, which do not support the reaction in the absence of light. Employing various experimental approaches, we demonstrate that catalysis depends on a protein-mediated photoreduction of the flavin cofactor, which proceeds via a radical mechanism and a transient semiquinone intermediate.


Assuntos
Proteínas de Bactérias/metabolismo , Transporte de Elétrons , Flavina-Adenina Dinucleotídeo/metabolismo , Oxigenases de Função Mista/metabolismo , NAD/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Cristalografia por Raios X , Flavoproteínas Transferidoras de Elétrons/química , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Luz , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Modelos Moleculares , NADP/metabolismo , Oxirredução , Processos Fotoquímicos , Pseudomonas aeruginosa/genética
9.
Biofouling ; 36(3): 351-367, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32401555

RESUMO

Pseudomonas aeruginosa and Serratia marcescens are prominent members belonging to the group of ESKAPE pathogens responsible for Urinary Tract Infections (UTI) and nosocomial infections. Both the pathogens regulate several virulence factors, including biofilm formation through quorum sensing (QS), an intercellular communication mechanism. The present study describes the anti-biofilm and QS quenching effect of thiazolinyl-picolinamide based palladium(II) complexes against P. aeruginosa and S. marcescens. Palladium(II) complexes showed quorum sensing inhibitory potential in inhibiting swarming motility behaviour, pyocyanin production and other QS mediated virulence factors in both P. aeruginosa and S. marcescens. In addition, the establishment of biofilms was prevented on palladium (II) coated catheters. Overall, the present study demonstrates that thiazolinyl-picolinamide based palladium (II) complexes will be a promising strategy to combat device-mediated UTI infections.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Paládio/farmacologia , Ácidos Picolínicos/química , Tiazóis/química , Cateteres Urinários/microbiologia , Antibacterianos/química , Antibacterianos/toxicidade , Biofilmes/crescimento & desenvolvimento , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/toxicidade , Infecção Hospitalar/prevenção & controle , Humanos , Células MCF-7 , Paládio/química , Paládio/toxicidade , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Piocianina/metabolismo , Percepção de Quorum/efeitos dos fármacos , Serratia marcescens/efeitos dos fármacos , Serratia marcescens/metabolismo , Infecções Urinárias/microbiologia , Infecções Urinárias/prevenção & controle , Virulência , Fatores de Virulência/metabolismo
10.
Nucleic Acids Res ; 48(11): 5967-5985, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32406921

RESUMO

During infection of a host, Pseudomonas aeruginosa orchestrates global gene expression to adapt to the host environment and counter the immune attacks. P. aeruginosa harbours hundreds of regulatory genes that play essential roles in controlling gene expression. However, their contributions to the bacterial pathogenesis remain largely unknown. In this study, we analysed the transcriptomic profile of P. aeruginosa cells isolated from lungs of infected mice and examined the roles of upregulated regulatory genes in bacterial virulence. Mutation of a novel regulatory gene pvrA (PA2957) attenuated the bacterial virulence in an acute pneumonia model. Chromatin immunoprecipitation (ChIP)-Seq and genetic analyses revealed that PvrA directly regulates genes involved in phosphatidylcholine utilization and fatty acid catabolism. Mutation of the pvrA resulted in defective bacterial growth when phosphatidylcholine or palmitic acid was used as the sole carbon source. We further demonstrated that palmitoyl coenzyme A is a ligand for the PvrA, enhancing the binding affinity of PvrA to its target promoters. An arginine residue at position 136 was found to be essential for PvrA to bind palmitoyl coenzyme A. Overall, our results revealed a novel regulatory pathway that controls genes involved in phosphatidylcholine and fatty acid utilization and contributes to the bacterial virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Genes Bacterianos/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Animais , Arginina/metabolismo , Sequência de Bases , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Ligantes , Camundongos , Modelos Moleculares , Mutação , Ácido Palmítico/metabolismo , Palmitoil Coenzima A/metabolismo , Fosfatidilcolinas/metabolismo , Pneumonia Bacteriana/microbiologia , Regiões Promotoras Genéticas , Pseudomonas aeruginosa/genética , Transcriptoma , Virulência/genética
11.
Chemosphere ; 252: 126349, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32443257

RESUMO

Biosurfactants have potential applications in the remediation of petroleum-contaminated sites. Several strategies can be used to reduce the production costs of these surfactants and make the process more environmentally friendly. In this study, we combined some of these strategies to produce the rhamnolipid-type biosurfactant, including the use of the genetically modified strain Pseudomonas aeruginosa-estA, an industrial coproduct as a carbon source, a simple and low-cost medium, and a simple downstream process. The process resulted in a high yield (17.6 g L-1), even using crude glycerin as the carbon source, with substrate in product conversion factor (YRML/s) of 0.444. The cell-free supernatant (CFS) was not toxic to Artemia salina and selected mammalian cell lineages, suggesting that it can be used directly in the environment without further purification steps. Qualitative analysis showed that CFS has excellent dispersion in the oil-displacement test, emulsifying (IE24 = 65.5%), and tensoactive properties. When salinity, temperature and pressure were set to seawater conditions, the values for interfacial tension between crude oil and water were below 1.0 mN m-1. Taken together, these results demonstrate that it is possible to obtain a nontoxic crude rhamnolipid product, with high productivity, to replace petroleum-based surfactants in oil spill cleanups and other environmental applications.


Assuntos
Biodegradação Ambiental , Glicolipídeos/metabolismo , Petróleo/metabolismo , Animais , Artemia , Carbono , Emulsões , Petróleo/análise , Poluição por Petróleo/análise , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Tensão Superficial , Tensoativos/química , Temperatura
12.
Nat Commun ; 11(1): 2211, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32371860

RESUMO

Microbial biofilm formation on indwelling medical devices causes persistent infections that cannot be cured with conventional antibiotics. To address this unmet challenge, we engineer tunable active surface topographies with micron-sized pillars that can beat at a programmable frequency and force level in an electromagnetic field. Compared to the flat and static controls, active topographies with the optimized design prevent biofilm formation and remove established biofilms of uropathogenic Escherichia coli (UPEC), Pseudomonas aeruginosa, and Staphylococcus aureus, with up to 3.7 logs of biomass reduction. In addition, the detached biofilm cells are found sensitized to bactericidal antibiotics to the level comparable to exponential-phase planktonic cells. Based on these findings, a prototype catheter is engineered and found to remain clean for at least 30 days under the flow of artificial urine medium, while the control catheters are blocked by UPEC biofilms within 5 days.


Assuntos
Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/fisiologia , Escherichia coli Uropatogênica/fisiologia , Infecções Bacterianas/microbiologia , Infecções Bacterianas/prevenção & controle , Biofilmes/efeitos dos fármacos , Biomassa , Campos Eletromagnéticos , Testes de Sensibilidade Microbiana/métodos , Infecções Relacionadas à Prótese/microbiologia , Infecções Relacionadas à Prótese/prevenção & controle , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo , Fatores de Tempo , Escherichia coli Uropatogênica/efeitos dos fármacos , Escherichia coli Uropatogênica/metabolismo
13.
PLoS One ; 15(4): e0231965, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32324772

RESUMO

Pseudomonas aeruginosa is a Gram-negative γ-proteobacterium that forms part of the normal human microbiota and it is also an opportunistic pathogen, responsible for 30% of all nosocomial urinary tract infections. P. aeruginosa carries a highly branched respiratory chain that allows the colonization of many environments, such as the urinary tract, catheters and other medical devices. P. aeruginosa respiratory chain contains three different NADH dehydrogenases (complex I, NQR and NDH-2), whose physiologic roles have not been elucidated, and up to five terminal oxidases: three cytochrome c oxidases (COx), a cytochrome bo3 oxidase (CYO) and a cyanide-insensitive cytochrome bd-like oxidase (CIO). In this work, we studied the composition of the respiratory chain of P. aeruginosa cells cultured in Luria Broth (LB) and modified artificial urine media (mAUM), to understand the metabolic adaptations of this microorganism to the growth in urine. Our results show that the COx oxidases play major roles in mAUM, while P. aeruginosa relies on CYO when growing in LB medium. Moreover, our data demonstrate that the proton-pumping NQR complex is the main NADH dehydrogenase in both LB and mAUM. This enzyme is resistant to HQNO, an inhibitory molecule produced by P. aeruginosa, and may provide an advantage against the natural antibacterial agents produced by this organism. This work offers a clear picture of the composition of this pathogen's aerobic respiratory chain and the main roles that NQR and terminal oxidases play in urine, which is essential to understand its physiology and could be used to develop new antibiotics against this notorious multidrug-resistant microorganism.


Assuntos
Materiais Biomiméticos , Meios de Cultura , Oxirredutases/metabolismo , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo , Urina , Aerobiose , Transporte de Elétrons , NADH Desidrogenase/metabolismo , Quinonas/metabolismo
14.
Proc Natl Acad Sci U S A ; 117(19): 10520-10529, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32332166

RESUMO

In the opportunistic pathogen Pseudomonas aeruginosa, RsmA is an RNA-binding protein that plays critical roles in the control of virulence, interbacterial interactions, and biofilm formation. Although RsmA is thought to exert its regulatory effects by binding full-length transcripts, the extent to which RsmA binds nascent transcripts has not been addressed. Moreover, which transcripts are direct targets of this key posttranscriptional regulator is largely unknown. Using chromatin immunoprecipitation coupled with high-throughput DNA sequencing, with cells grown in the presence and absence of the RNA polymerase inhibitor rifampicin, we identify hundreds of nascent transcripts that RsmA associates with in P. aeruginosa We also find that the RNA chaperone Hfq targets a subset of those nascent transcripts that RsmA associates with and that the two RNA-binding proteins can exert regulatory effects on common targets. Our findings establish that RsmA associates with many transcripts as they are being synthesized in P. aeruginosa, identify the transcripts targeted by RsmA, and suggest that RsmA and Hfq may act in a combinatorial fashion on certain transcripts. The binding of posttranscriptional regulators to nascent transcripts may be commonplace in bacteria where distinct regulators can function alone or in concert to achieve control over the translation of transcripts as soon as they emerge from RNA polymerase.


Assuntos
Pseudomonas aeruginosa/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , Pseudomonas aeruginosa/metabolismo , Processamento Pós-Transcricional do RNA/genética , RNA Bacteriano/genética , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Virulência
15.
Nat Commun ; 11(1): 1865, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313027

RESUMO

Bacterial Rhs proteins containing toxic domains are often secreted by type VI secretion systems (T6SSs) through unclear mechanisms. Here, we show that the T6SS Rhs-family effector TseI of Aeromonas dhakensis is subject to self-cleavage at both the N- and the C-terminus, releasing the middle Rhs core and two VgrG-interacting domains (which we name VIRN and VIRC). VIRC is an endonuclease, and the immunity protein TsiI protects against VIRC toxicity through direct interaction. Proteolytic release of VIRC and VIRN is mediated, respectively, by an internal aspartic protease activity and by two conserved glutamic residues in the Rhs core. Mutations abolishing self-cleavage do not block secretion, but reduce TseI toxicity. Deletion of VIRN or the Rhs core abolishes secretion. TseI homologs from Pseudomonas syringae, P. aeruginosa, and Vibrio parahaemolyticus are also self-cleaved. VIRN and VIRC interact with protein VgrG1, while the Rhs core interacts with protein TecI. We propose that VIRN and the Rhs core act as T6SS intramolecular chaperones to facilitate toxin secretion and function.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Toxinas Bacterianas/metabolismo , Chaperonas Moleculares/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Aeromonas/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Genes Bacterianos , Mutação , Óperon , Peptídeo Hidrolases , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
16.
Am J Respir Cell Mol Biol ; 63(2): 234-243, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32243761

RESUMO

Pseudomonas aeruginosa is a lethal pathogen that causes high mortality and morbidity in immunocompromised and critically ill patients. The type III secretion system (T3SS) of P. aeruginosa mediates many of the adverse effects of infection with this pathogen, including increased lung permeability in a Toll-like receptor 4/RhoA/PAI-1 (plasminogen activator inhibitor-1)-dependent manner. α-Tocopherol has antiinflammatory properties that may make it a useful adjunct in treatment of this moribund infection. We measured transendothelial and transepithelial resistance, RhoA and PAI-1 activation, stress fiber formation, P. aeruginosa T3SS exoenzyme (ExoY) intoxication into host cells, and survival in a murine model of pneumonia in the presence of P. aeruginosa and pretreatment with α-tocopherol. We found that α-tocopherol alleviated P. aeruginosa-mediated alveolar endothelial and epithelial paracellular permeability by inhibiting RhoA, in part, via PAI-1 activation, and increased survival in a mouse model of P. aeruginosa pneumonia. Furthermore, we found that α-tocopherol decreased the activation of RhoA and PAI-1 by blocking the injection of T3SS exoenzymes into alveolar epithelial cells. P. aeruginosa is becoming increasingly antibiotic resistant. We provide evidence that α-tocopherol could be a useful therapeutic agent for individuals who are susceptible to infection with P. aeruginosa, such as those who are immunocompromised or critically ill.


Assuntos
Pneumonia/tratamento farmacológico , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , alfa-Tocoferol/farmacologia , Animais , Proteínas de Bactérias/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Endotélio/efeitos dos fármacos , Endotélio/metabolismo , Humanos , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Pseudomonas aeruginosa/metabolismo , Ratos , Sistemas de Secreção Tipo III/efeitos dos fármacos , Proteína rhoA de Ligação ao GTP/metabolismo
17.
Arch Microbiol ; 202(6): 1407-1417, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32173773

RESUMO

Pseudomonas spp. are the main producers of rhamnolipids. These products have applications in pharmaceuticals, cosmetics, food industry and bioremediation. The biosynthesis of rhamnolipids is influenced by nutrient composition, pH and temperature. In this study, the impact of nutrients on the expression levels of rhamnolipid synthesis genes was evaluated in P. aeruginosa ATCC 15442. Glucose and glycerol were used as carbon sources; while, NaNO3, NH4NO3 and yeast extract/peptone were employed as nitrogen sources. The effect of different concentrations of Fe2+ and Fe3+ on rhamnolipid synthesis genes was also evaluated. Highest biosurfactant production was obtained in minimal medium supplemented with glucose, NaNO3 and Fe2+. Two rhamnolipid synthesis genes, rhlA and rhlB, were amplified with PCR. CapLC ESI-Ion trap-MS/MS detected only mono-rhamnolipid Rha-C10-C10 in the extract. Although similar induction levels were recorded in the presence of 0.05 g/L iron ions, the presence of Fe2+ resulted in higher expression levels than Fe3+ at concentrations equivalent to 0.025 and 0.075 g/L.


Assuntos
Carbono/metabolismo , Glicolipídeos/biossíntese , Ferro/metabolismo , Nitrogênio/metabolismo , Pseudomonas aeruginosa/metabolismo , Glucose/metabolismo , Glicerol/metabolismo , Íons/metabolismo , Nitratos/metabolismo , Peptonas/metabolismo , Pseudomonas aeruginosa/genética , Tensoativos/química , Tensoativos/metabolismo , Espectrometria de Massas em Tandem
18.
PLoS Genet ; 16(3): e1008617, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32130226

RESUMO

The oligosaccharyl transferase (OST) protein complex mediates the N-linked glycosylation of substrate proteins in the endoplasmic reticulum (ER), which regulates stability, activity, and localization of its substrates. Although many OST substrate proteins have been identified, the physiological role of the OST complex remains incompletely understood. Here we show that the OST complex in C. elegans is crucial for ER protein homeostasis and defense against infection with pathogenic bacteria Pseudomonas aeruginosa (PA14), via immune-regulatory PMK-1/p38 MAP kinase. We found that genetic inhibition of the OST complex impaired protein processing in the ER, which in turn up-regulated ER unfolded protein response (UPRER). We identified vitellogenin VIT-6 as an OST-dependent glycosylated protein, critical for maintaining survival on PA14. We also showed that the OST complex was required for up-regulation of PMK-1 signaling upon infection with PA14. Our study demonstrates that an evolutionarily conserved OST complex, crucial for ER homeostasis, regulates host defense mechanisms against pathogenic bacteria.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Retículo Endoplasmático/metabolismo , Proteostase/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Hexosiltransferases/metabolismo , Imunidade Inata/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas de Membrana/metabolismo , Pseudomonas aeruginosa/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Regulação para Cima/fisiologia , Vitelogeninas/metabolismo
19.
J Med Microbiol ; 69(4): 640-652, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32125966

RESUMO

Introduction. The use of silver as an antimicrobial therapeutic is limited by its toxicity to host cells compared with that required to kill bacterial pathogens.Aim. To use aptamer targeting of DNA scaffolded silver nanoclusters as an antimicrobial agent for treating Pseudomonas aeruginosa infections.Methodology. Antimicrobial activity was assessed in planktonic cultures and in vivo using an invertebrate model of infection.Results. The aptamer conjugates that we call aptabiotics have potent antimicrobial activity. Targeted silver nanoclusters were more effective at killing P. aeruginosa than the equivalent quantity of untargeted silver nanoclusters. The aptabiotics have an IC50 of 1.3-2.6 µM against planktonically grown bacteria. Propidium iodide staining showed that they rapidly depolarize bacterial cells to kill approximately 50 % of the population within 10 min following treatment. In vivo testing in the Galleria mellonella model of infection prolonged survival from an otherwise lethal infection.Conclusion. Using P. aeruginosa as a model, we show that targeting of DNA-scaffolded silver nanoclusters with an aptamer has effective fast-acting antimicrobial activity in vitro and in an in vivo animal model.


Assuntos
Antibacterianos/farmacologia , Aptâmeros de Nucleotídeos/química , Nanoestruturas/química , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Prata/farmacologia , Animais , Antibacterianos/química , Aptâmeros de Nucleotídeos/genética , Humanos , Testes de Sensibilidade Microbiana , Mariposas , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Prata/química
20.
Arch Microbiol ; 202(6): 1507-1515, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32222778

RESUMO

Pyocyanin produced by Pseudomonas aeruginosa is a key virulence factor that often causes heavy damages to airway and lung in patients. Conversion of phenazine-1-carboxylic acid to pyocyanin involves an extrametabolic pathway that contains two enzymes encoded, respectively, by phzM and phzS. In this study, with construction of the rpoS-deficient mutant, we first found that although phenazine production increased, pyocyanin produced in the mutant YTΔrpoS was fourfold much higher than that in the wild-type strain YT. To investigate this issue, we constructed phzM-lacZ fusion on a vector and on the chromosome. By quantifying ß-galactosidase activities, we confirmed that expression of the phzM was up-regulated when the rpoS gene was inactivated. However, no changes occurred in the expression of phzS and phzH when the rpoS was knocked out. Taken together, overproduction of the SAM-dependent methyltransferase (PhzM) might contribute to the increased pyocyanin in the absence of RpoS in P. aeruginosa.


Assuntos
Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Metiltransferases/biossíntese , Oxigenases de Função Mista/biossíntese , Pseudomonas aeruginosa/metabolismo , Piocianina/biossíntese , Fator sigma/genética , Humanos , Metiltransferases/genética , Oxigenases de Função Mista/genética , Fenazinas/metabolismo , Pseudomonas aeruginosa/genética , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA