Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.548
Filtrar
1.
Science ; 384(6691): eadl0635, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574145

RESUMO

The retractile type IV pilus (T4P) is important for virulence of the opportunistic human pathogen Pseudomonas aeruginosa. The single-stranded RNA (ssRNA) phage PP7 binds to T4P and is brought to the cell surface through pilus retraction. Using fluorescence microscopy, we discovered that PP7 detaches T4P, which impairs cell motility and restricts the pathogen's virulence. Using cryo-electron microscopy, mutagenesis, optical trapping, and Langevin dynamics simulation, we resolved the structure of PP7, T4P, and the PP7/T4P complex and showed that T4P detachment is driven by the affinity between the phage maturation protein and its bound pilin, plus the pilus retraction force and speed, and pilus bending. Pilus detachment may be widespread among other ssRNA phages and their retractile pilus systems and offers new prospects for antibacterial prophylaxis and therapeutics.


Assuntos
Pseudomonas , Vírus de RNA , Humanos , Pseudomonas/metabolismo , Microscopia Crioeletrônica , Fímbrias Bacterianas/metabolismo , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(15): e2313004121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38564631

RESUMO

Polyphosphate (polyP) synthesis is a ubiquitous stress and starvation response in bacteria. In diverse species, mutants unable to make polyP have a wide variety of physiological defects, but the mechanisms by which this simple polyanion exerts its effects remain unclear. One possibility is that polyP's many functions stem from global effects on the biophysical properties of the cell. We characterize the effect of polyphosphate on cytoplasmic mobility under nitrogen-starvation conditions in the opportunistic pathogen Pseudomonas aeruginosa. Using fluorescence microscopy and particle tracking, we quantify the motion of chromosomal loci and cytoplasmic tracer particles. In the absence of polyP and upon starvation, we observe a 2- to 10-fold increase in mean cytoplasmic diffusivity. Tracer particles reveal that polyP also modulates the partitioning between a "more mobile" and a "less mobile" population: Small particles in cells unable to make polyP are more likely to be "mobile" and explore more of the cytoplasm, particularly during starvation. Concomitant with this larger freedom of motion in polyP-deficient cells, we observe decompaction of the nucleoid and an increase in the steady-state concentration of ATP. The dramatic polyP-dependent effects we observe on cytoplasmic transport properties occur under nitrogen starvation, but not carbon starvation, suggesting that polyP may have distinct functions under different types of starvation.


Assuntos
Polifosfatos , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Polifosfatos/metabolismo , Citoplasma/metabolismo , Citosol/metabolismo
3.
PLoS Genet ; 20(3): e1011178, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38547071

RESUMO

C. elegans can learn to avoid pathogenic bacteria through several mechanisms, including bacterial small RNA-induced learned avoidance behavior, which can be inherited transgenerationally. Previously, we discovered that a small RNA from a clinical isolate of Pseudomonas aeruginosa, PA14, induces learned avoidance and transgenerational inheritance of that avoidance in C. elegans. Pseudomonas aeruginosa is an important human pathogen, and there are other Pseudomonads in C. elegans' natural habitat, but it is unclear whether C. elegans ever encounters PA14-like bacteria in the wild. Thus, it is not known if small RNAs from bacteria found in C. elegans' natural habitat can also regulate host behavior and produce heritable behavioral effects. Here we screened a set of wild habitat bacteria, and found that a pathogenic Pseudomonas vranovensis strain isolated from the C. elegans microbiota, GRb0427, regulates worm behavior: worms learn to avoid this pathogenic bacterium following exposure, and this learned avoidance is inherited for four generations. The learned response is entirely mediated by bacterially-produced small RNAs, which induce avoidance and transgenerational inheritance, providing further support that such mechanisms of learning and inheritance exist in the wild. We identified Pv1, a small RNA expressed in P. vranovensis, that has a 16-nucleotide match to an exon of the C. elegans gene maco-1. Pv1 is both necessary and sufficient to induce learned avoidance of Grb0427. However, Pv1 also results in avoidance of a beneficial microbiome strain, P. mendocina. Our findings suggest that bacterial small RNA-mediated regulation of host behavior and its transgenerational inheritance may be functional in C. elegans' natural environment, and that this potentially maladaptive response may favor reversal of the transgenerational memory after a few generations. Our data also suggest that different bacterial small RNA-mediated regulation systems evolved independently, but define shared molecular features of bacterial small RNAs that produce transgenerationally-inherited effects.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Humanos , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , RNA Interferente Pequeno/genética , Interferência de RNA , RNA Bacteriano/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Bactérias/genética , Bactérias/metabolismo
4.
Nat Commun ; 15(1): 2584, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519499

RESUMO

Mutations in mexZ, encoding a negative regulator of the expression of the mexXY efflux pump genes, are frequently acquired by Pseudomonas aeruginosa at early stages of lung infection. Although traditionally related to resistance to the first-line drug tobramycin, mexZ mutations are associated with low-level aminoglycoside resistance when determined in the laboratory, suggesting that their selection during infection may not be necessarily, or only, related to tobramycin therapy. Here, we show that mexZ-mutated bacteria tend to accumulate inside the epithelial barrier of a human airway infection model, thus colonising the epithelium while being protected against diverse antibiotics. This phenotype is mediated by overexpression of lecA, a quorum sensing-controlled gene, encoding a lectin involved in P. aeruginosa tissue invasiveness. We find that lecA overexpression is caused by a disrupted equilibrium between the overproduced MexXY and another efflux pump, MexAB, which extrudes quorum sensing signals. Our results indicate that mexZ mutations affect the expression of quorum sensing-regulated pathways, thus promoting tissue invasiveness and protecting bacteria from the action of antibiotics within patients, something unnoticeable using standard laboratory tests.


Assuntos
Antibacterianos , Infecções por Pseudomonas , Humanos , Antibacterianos/uso terapêutico , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Tobramicina/farmacologia , Tobramicina/metabolismo , Mutação , Proteínas de Bactérias/metabolismo , Testes de Sensibilidade Microbiana
5.
J Bacteriol ; 206(3): e0036523, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38436566

RESUMO

Pseudomonas aeruginosa is a Gram-negative, opportunistic pathogen causing chronic infections that are associated with the sessile/biofilm mode of growth rather than the free-living/planktonic mode of growth. The transcriptional regulator FleQ contributes to both modes of growth by functioning both as an activator and repressor and inversely regulating flagella genes associated with the planktonic mode of growth and genes contributing to the biofilm mode of growth. Here, we review findings that enhance our understanding of the molecular mechanism by which FleQ enables the transition between the two modes of growth. We also explore recent advances in the mechanism of action of FleQ to both activate and repress gene expression from a single promoter. Emphasis will be on the role of sigma factors, cyclic di-GMP, and the transcriptional regulator AmrZ in inversely regulating flagella and biofilm-associated genes and converting FleQ from a repressor to an activator.


Assuntos
Pseudomonas aeruginosa , Transativadores , Transativadores/genética , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , GMP Cíclico/metabolismo , Biofilmes
6.
Microbiol Res ; 282: 127609, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38428337

RESUMO

In this study, we have investigated innate immune activation capacity and metabolic features of a population of P. aeruginosa PAO1 phage-resistant mutants with diverse genetic modification (large genomic deletions and point mutations) arising after exposure to phages targetting lipopolysaccharide (LPS) or Type-4 pili (T4P). Deletions led to the loss of genes involved in LPS synthesis, cell envelope permeability, efflux systems, biofilm production, oxidative stress tolerance, and DNA repair. Loss of LPS O antigen resulted in bacterial sensitivity to serum complement and stimulation of inflammatory cascades but did not cause increased phagocytosis, while T4P phage-resistant mutants were more effectively phagocytized than LPS-defective mutants. Changes in the utilization of different carbon, nitrogen, sulphur, and phosphorus sources were identified, especially in mutants where the two phage DNA persisted in the bacterial population (pseudolysogeny). However, the metabolic changes did not directly correlate with single-gene mutations or the large gene deletions, suggesting they reflect adaptive changes to the gene modifications that arise during the selection of resistant mutants. In contrast, phage-resistant mutants were susceptible to humoral innate immune responses, suggesting that phage resistance may be a beneficial outcome of phage therapy.


Assuntos
Bacteriófagos , Pseudomonas aeruginosa/metabolismo , Lipopolissacarídeos , Bactérias/metabolismo , Imunidade Inata , Metaboloma
7.
Microbiology (Reading) ; 170(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38426877

RESUMO

When cultured together under standard laboratory conditions Pseudomonas aeruginosa has been shown to be an effective inhibitor of Staphylococcus aureus. However, P. aeruginosa and S. aureus are commonly observed in coinfections of individuals with cystic fibrosis (CF) and in chronic wounds. Previous work from our group revealed that S. aureus isolates from CF infections are able to persist in the presence of P. aeruginosa strain PAO1 with a range of tolerances with some isolates being eliminated entirely and others maintaining large populations. In this study, we designed a serial transfer, evolution experiment to identify mutations that allow S. aureus to survive in the presence of P. aeruginosa. Using S. aureus USA300 JE2 as our ancestral strain, populations of S. aureus were repeatedly cocultured with fresh P. aeruginosa PAO1. After eight coculture periods, S. aureus populations that survived better in the presence of PAO1 were observed. We found two independent mutations in the highly conserved S. aureus aspartate transporter, gltT, that were unique to evolved P. aeruginosa-tolerant isolates. Subsequent phenotypic testing demonstrated that gltT mutants have reduced uptake of glutamate and outcompeted wild-type S. aureus when glutamate was absent from chemically defined media. These findings together demonstrate that the presence of P. aeruginosa exerts selective pressure on S. aureus to alter its uptake and metabolism of key amino acids when the two are cultured together.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Infecções Estafilocócicas , Humanos , Pseudomonas aeruginosa/metabolismo , Staphylococcus aureus , Fibrose Cística/complicações , Mutação , Sistemas de Transporte de Aminoácidos/genética , Glutamatos/genética , Glutamatos/metabolismo , Glutamatos/farmacologia , Biofilmes
8.
J Hazard Mater ; 469: 133876, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38428299

RESUMO

Pyoverdine (PVD) plays an important role in reducing cadmium (Cd) accumulation in plants. Some Pseudomonas aeruginosa (P. aeruginosa) species can produce PVD under Cd(Π) stress. However, the function of Cd(Π)-induced PVD remains unclear. In this study, we isolated a highly effective Cd(Π)-resistant P. aeruginosa which can secrete PVD under Cd(Π) stress and found that PVD secretion has a dose-dependent relationship with Cd(Π) concentration. PVD can form a PVD-Cd complex with Cd(Π), though the PVD-Cd complex is unable to be adsorbed by the cell or enter the cell, so the complexation of PVD and Cd(Π) impedes Cd(Π) adsorption on the cell surface and alleviates the oxidative stress, lipid peroxidation, and morphological destruction of the cell caused by Cd(Π) and effectively improves the resistance of P. aeruginosa to Cd(Π). In summary, our research results indicate that the Cd(Π) resistance mechanism of P. aeruginosa screened is the complexation of PVD for Cd(Π) and the adsorption of bacteria for Cd(Π); furthermore, PVD plays an important role in improving the Cd(Π)-resistant ability of bacteria. This study provides a deeper understanding of the highly effective Cd(Π) resistance mechanism of P. aeruginosa and the function of Cd(Π)-induced PVD in bacteria.


Assuntos
Cádmio , Pseudomonas aeruginosa , Cádmio/metabolismo , Pseudomonas aeruginosa/metabolismo , Oligopeptídeos/metabolismo
9.
Int J Biol Macromol ; 264(Pt 1): 130545, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431000

RESUMO

Polyphenolic compounds have natural antioxidant properties, and their antioxidant activity is usually related to the number and position of hydroxyls. Here, we successfully applied the engineered 4-hydroxyphenylacetate 3-hydroxylases (4HPA3Hs) derived from Pseudomonas aeruginosa to catalyze ferulic acid (FA) synthesis of ortho-hydroxyferulic acid (5-hydroxyferulic acid, 5-OHFA). Through optimization of co-expression, the oxygenase component (PaHpaB) and the reductase component (PaHpaC) in E. coli, and optimization of whole-cell catalytic conditions, the engineered strain BC catalyzed ortho-hydroxylation of 2 g/L of FA with a yield of 75 % from 39 %. Through tunnel engineering of PaHpaB, the obtained mutants F301A and Q376A almost completely transformed 2 g/L of FA. Further, a multiple mutant L214A/F301A/Q376A converted 4 g/L FA into 5-OHFA within 12 h, and the yield reached 99.9 %, which was approximately 2.39-fold of the wild type. The kcat/Km value of L214A/F301A/Q376A was about 307 times greater than that of the wide type. Analysis of three-dimensional structural models showed that L214, F301, and Q376 mutated into Ala, which greatly shortened the side chain and broadened the tunnel size, thereby significantly improving the catalytic efficiency of L214A/F301A/Q376A. This biosynthesis of 5-OHFA is simple, efficient, and green, suggesting that it is useful for efficient biosynthesis of polyphenolic compounds.


Assuntos
Ácidos Cumáricos , Oxigenases de Função Mista , Fenilacetatos , Pseudomonas aeruginosa , Oxigenases de Função Mista/química , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Hidroxilação , Escherichia coli/metabolismo
10.
Sci Rep ; 14(1): 6297, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491095

RESUMO

Pseudomonas aeruginosa often colonizes immunocompromised patients, causing acute and chronic infections. This bacterium can reside transiently inside cultured macrophages, but the contribution of the intramacrophic stage during infection remains unclear. MgtC and OprF have been identified as important bacterial factors when P. aeruginosa resides inside cultured macrophages. In this study, we showed that P. aeruginosa mgtC and oprF mutants, particular the latter one, had attenuated virulence in both mouse and zebrafish animal models of acute infection. To further investigate P. aeruginosa pathogenesis in zebrafish at a stage different from acute infection, we monitored bacterial load and visualized fluorescent bacteria in live larvae up to 4 days after infection. Whereas the attenuated phenotype of the oprF mutant was associated with a rapid elimination of bacteria, the mgtC mutant was able to persist at low level, a feature also observed with the wild-type strain in surviving larvae. Interestingly, these persistent bacteria can be visualized in macrophages of zebrafish. In a short-time infection model using a macrophage cell line, electron microscopy revealed that internalized P. aeruginosa wild-type bacteria were either released after macrophage lysis or remained intracellularly, where they were localized in vacuoles or in the cytoplasm. The mgtC mutant could also be detected inside macrophages, but without causing cell damage, whereas the oprF mutant was almost completely eliminated after phagocytosis, or localized in phagolysosomes. Taken together, our results show that the main role of OprF for intramacrophage survival impacts both acute and persistent infection by this bacterium. On the other hand, MgtC plays a clear role in acute infection but is not essential for bacterial persistence, in relation with the finding that the mgtC mutant is not completely eliminated by macrophages.


Assuntos
Proteínas de Bactérias , Infecções por Pseudomonas , Humanos , Animais , Camundongos , Proteínas de Bactérias/metabolismo , Peixe-Zebra/metabolismo , Infecções por Pseudomonas/genética , Fagocitose , Fagossomos/metabolismo , Pseudomonas aeruginosa/metabolismo
11.
Commun Biol ; 7(1): 295, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461208

RESUMO

Pseudomonas aeruginosa, a common nosocomial pathogen, relies on siderophores to acquire iron, crucial for its survival in various environments and during host infections. However, understanding the molecular mechanisms of siderophore regulation remains incomplete. In this study, we found that the BfmRS two-component system, previously associated with biofilm formation and quorum sensing, is essential for siderophore regulation under high osmolality stress. Activated BfmR directly bound to the promoter regions of pvd, fpv, and femARI gene clusters, thereby activating their transcription and promoting siderophore production. Subsequent proteomic and phenotypic analyses confirmed that deletion of BfmRS reduces siderophore-related proteins and impairs bacterial survival in iron-deficient conditions. Furthermore, phylogenetic analysis demonstrated the high conservation of the BfmRS system across Pseudomonas species, functional evidences also indicated that BfmR homologues from Pseudomonas putida KT2440 and Pseudomonas sp. MRSN12121 could bind to the promoter regions of key siderophore genes and osmolality-mediated increases in siderophore production were observed. This work illuminates a novel signaling pathway for siderophore regulation and enhances our understanding of siderophore-mediated bacterial interactions and community establishment.


Assuntos
Infecções por Pseudomonas , Sideróforos , Humanos , Sideróforos/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pressão Osmótica , Filogenia , Proteômica , Ferro/metabolismo , Pseudomonas/metabolismo
12.
Arch Microbiol ; 206(4): 183, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502272

RESUMO

This study aimed to reveal that the effect of biosurfactant on the dispersion and degradation of crude oil. Whole genome analysis showed that Pseudomonas aeruginosa GB-3 contained abundant genes involved in biosurfactant synthesis and metabolic processes and had the potential to degrade oil. The biosurfactant produced by strain GB-3 was screened by various methods. The results showed that the surface tension reduction activity was 28.6 mN·m-1 and emulsification stability was exhibited at different pH, salinity and temperature. The biosurfactant was identified as rhamnolipid by LC-MS and FTIR. The fermentation conditions of strain GB-3 were optimized by response surface methodology, finally the optimal system (carbon source: glucose, nitrogen source: ammonium sulfate, C/N ratio:16:1, pH: 7, temperature: 30-35 °C) was determined. Compared with the initial fermentation, the yield of biosurfactant increased by 4.4 times after optimization. In addition, rhamnolipid biosurfactant as a dispersant could make the dispersion of crude oil reach 38% within seven days, which enhanced the bioavailability of crude oil. As a biostimulant, it could also improve the activity of indigenous microorganism and increase the degradation rate of crude oil by 10-15%. This study suggested that rhamnolipid biosurfactant had application prospect in bioremediation of marine oil-spill.


Assuntos
Petróleo , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Tensoativos/química , Glicolipídeos/química , Petróleo/metabolismo
13.
Proc Natl Acad Sci U S A ; 121(11): e2312874121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38451943

RESUMO

The success of bacterial pathogens depends on the coordinated expression of virulence determinants. Regulatory circuits that drive pathogenesis are complex, multilayered, and incompletely understood. Here, we reveal that alterations in tRNA modifications define pathogenic phenotypes in the opportunistic pathogen Pseudomonas aeruginosa. We demonstrate that the enzymatic activity of GidA leads to the introduction of a carboxymethylaminomethyl modification in selected tRNAs. Modifications at the wobble uridine base (cmnm5U34) of the anticodon drives translation of transcripts containing rare codons. Specifically, in P. aeruginosa the presence of GidA-dependent tRNA modifications modulates expression of genes encoding virulence regulators, leading to a cellular proteomic shift toward pathogenic and well-adapted physiological states. Our approach of profiling the consequences of chemical tRNA modifications is general in concept. It provides a paradigm of how environmentally driven tRNA modifications govern gene expression programs and regulate phenotypic outcomes responsible for bacterial adaption to challenging habitats prevailing in the host niche.


Assuntos
Proteômica , Pseudomonas aeruginosa , Virulência/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Anticódon , Bactérias/metabolismo
14.
Front Cell Infect Microbiol ; 14: 1328185, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510967

RESUMO

Pseudomonas aeruginosa is an important human opportunistic pathogen responsible for a wide range of infections. The complement system is the main early host defense mechanism to control these infections. P. aeruginosa counteracts complement attack by binding Factor H (FH), a complement regulator that inactivates C3b, preventing the formation of the C3-convertase and complement amplification on the bacterial surface. Factor H-related proteins (FHRs) are a group of plasma proteins evolutionarily related to FH that have been postulated to interfere in this bacterial mechanism of resisting complement. Here, we show that FHR-1 binds to P. aeruginosa via the outer membrane protein OprG in a lipopolysaccharide (LPS) O antigen-dependent manner. Binding assays with purified components or with FHR-1-deficient serum supplemented with FHR-1 show that FHR-1 competes with FH for binding to P. aeruginosa. Blockage of FH binding to C3b deposited on the bacteria reduces FH-mediated cofactor activity of C3b degradation, increasing the opsonization of the bacteria and the formation of the potent chemoattractant C5a. Overall, our findings indicate that FHR-1 is a host factor that promotes complement activation, facilitating clearance of P. aeruginosa by opsonophagocytosis.


Assuntos
Proteínas Sanguíneas , Fator H do Complemento , Pseudomonas aeruginosa , Humanos , Fator H do Complemento/metabolismo , Pseudomonas aeruginosa/metabolismo , Opsonização , Ligação Proteica , Proteínas do Sistema Complemento/metabolismo , Bactérias/metabolismo
15.
PLoS Pathog ; 20(3): e1012078, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38484003

RESUMO

XRE-cupin family proteins containing an DNA-binding domain and a cupin signal-sensing domain are widely distributed in bacteria. In Pseudomonas aeruginosa, XRE-cupin transcription factors have long been recognized as regulators exclusively controlling cellular metabolism pathways. However, their potential functional roles beyond metabolism regulation remain unknown. PsdR, a typical XRE-cupin transcriptional regulator, was previously characterized as a local repressor involved solely in dipeptide metabolism. Here, by measuring quorum-sensing (QS) activities and QS-controlled metabolites, we uncover that PsdR is a new QS regulator in P. aeruginosa. Our RNA-seq analysis showed that rather than a local regulator, PsdR controls a large regulon, including genes associated with both the QS circuit and non-QS pathways. To unveil the underlying mechanism of PsdR in modulating QS, we developed a comparative transcriptome approach named "transcriptome profile similarity analysis" (TPSA). Using this TPSA method, we revealed that PsdR expression causes a QS-null-like transcriptome profile, resulting in QS-inactive phenotypes. Based on the results of TPSA, we further demonstrate that PsdR directly binds to the promoter for the gene encoding the QS master transcription factor LasR, thereby negatively regulating its expression and influencing QS activation. Moreover, our results showed that PsdR functions as a negative virulence regulator, as inactivation of PsdR enhanced bacterial cytotoxicity on host cells. In conclusion, we report on a new QS regulation role for PsdR, providing insights into its role in manipulating QS-controlled virulence. Most importantly, our findings open the door for a further discovery of untapped functions for other XRE-Cupin family proteins.


Assuntos
Proteínas de Bactérias , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Percepção de Quorum/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência , Regulação Bacteriana da Expressão Gênica , Fatores de Virulência/metabolismo
16.
Structure ; 32(4): 411-423.e6, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38325368

RESUMO

Pathogenic bacteria, such as Pseudomonas aeruginosa, depend on scavenging heme for the acquisition of iron, an essential nutrient. The TonB-dependent transporter (TBDT) PhuR is the major heme uptake protein in P. aeruginosa clinical isolates. However, a comprehensive understanding of heme recognition and TBDT transport mechanisms, especially PhuR, remains limited. In this study, we employed single-particle cryogenic electron microscopy (cryo-EM) and a phage display-generated synthetic antibody (sAB) as a fiducial marker to enable the determination of a high-resolution (2.5 Å) structure of PhuR with a bound heme. Notably, the structure reveals iron coordination by Y529 on a conserved extracellular loop, shedding light on the role of tyrosine in heme binding. Biochemical assays and negative-stain EM demonstrated that the sAB specifically targets the heme-bound state of PhuR. These findings provide insights into PhuR's heme binding and offer a template for developing conformation-specific sABs against outer membrane proteins (OMPs) for structure-function investigations.


Assuntos
Heme , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Microscopia Crioeletrônica , Heme/química , Proteínas de Membrana/química , Ferro/metabolismo , Chaperonas Moleculares/metabolismo , Anticorpos/metabolismo , Proteínas de Bactérias/química
17.
Microbiol Spectr ; 12(4): e0315723, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38385740

RESUMO

Chronic Pseudomonas aeruginosa lung infections are a feature of cystic fibrosis (CF) that many patients experience even with the advent of highly effective modulator therapies. Identifying factors that impact P. aeruginosa in the CF lung could yield novel strategies to eradicate infection or otherwise improve outcomes. To complement published P. aeruginosa studies using laboratory models or RNA isolated from sputum, we analyzed transcripts of strain PAO1 after incubation in sputum from different CF donors prior to RNA extraction. We compared PAO1 gene expression in this "spike-in" sputum model to that for P. aeruginosa grown in synthetic cystic fibrosis sputum medium to determine key genes, which are among the most differentially expressed or most highly expressed. Using the key genes, gene sets with correlated expression were determined using the gene expression analysis tool eADAGE. Gene sets were used to analyze the activity of specific pathways in P. aeruginosa grown in sputum from different individuals. Gene sets that we found to be more active in sputum showed similar activation in published data that included P. aeruginosa RNA isolated from sputum relative to corresponding in vitro reference cultures. In the ex vivo samples, P. aeruginosa had increased levels of genes related to zinc and iron acquisition which were suppressed by metal amendment of sputum. We also found a significant correlation between expression of the H1-type VI secretion system and CFTR corrector use by the sputum donor. An ex vivo sputum model or synthetic sputum medium formulation that imposes metal restriction may enhance future CF-related studies.IMPORTANCEIdentifying the gene expression programs used by Pseudomonas aeruginosa to colonize the lungs of people with cystic fibrosis (CF) will illuminate new therapeutic strategies. To capture these transcriptional programs, we cultured the common P. aeruginosa laboratory strain PAO1 in expectorated sputum from CF patient donors. Through bioinformatic analysis, we defined sets of genes that are more transcriptionally active in real CF sputum compared to a synthetic cystic fibrosis sputum medium. Many of the most differentially active gene sets contained genes related to metal acquisition, suggesting that these gene sets play an active role in scavenging for metals in the CF lung environment which may be inadequately represented in some models. Future studies of P. aeruginosa transcript abundance in CF may benefit from the use of an expectorated sputum model or media supplemented with factors that induce metal restriction.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Humanos , Pseudomonas aeruginosa/metabolismo , Escarro , Perfilação da Expressão Gênica , Metais , Meios de Cultura/metabolismo , RNA/metabolismo
18.
Nat Commun ; 15(1): 1860, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424057

RESUMO

Cyclic dimeric guanosine monophosphate (c-di-GMP) serves as a bacterial second messenger that modulates various processes including biofilm formation, motility, and host-microbe symbiosis. Numerous studies have conducted comprehensive analysis of c-di-GMP. However, the mechanisms by which certain environmental signals such as iron control intracellular c-di-GMP levels are unclear. Here, we show that iron regulates c-di-GMP levels in Pseudomonas aeruginosa by modulating the interaction between an iron-sensing protein, IsmP, and a diguanylate cyclase, ImcA. Binding of iron to the CHASE4 domain of IsmP inhibits the IsmP-ImcA interaction, which leads to increased c-di-GMP synthesis by ImcA, thus promoting biofilm formation and reducing bacterial motility. Structural characterization of the apo-CHASE4 domain and its binding to iron allows us to pinpoint residues defining its specificity. In addition, the cryo-electron microscopy structure of ImcA in complex with a c-di-GMP analog (GMPCPP) suggests a unique conformation in which the compound binds to the catalytic pockets and to the membrane-proximal side located at the cytoplasm. Thus, our results indicate that a CHASE4 domain directly senses iron and modulates the crosstalk between c-di-GMP metabolic enzymes.


Assuntos
Proteínas de Bactérias , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli , Inosina Monofosfato/análogos & derivados , Tionucleotídeos , Proteínas de Bactérias/metabolismo , Pseudomonas aeruginosa/metabolismo , Microscopia Crioeletrônica , Proteínas de Escherichia coli/metabolismo , GMP Cíclico/metabolismo , Biofilmes , Regulação Bacteriana da Expressão Gênica
19.
PLoS Biol ; 22(2): e3002488, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38349934

RESUMO

Bacteria live in social communities, where the ability to sense and respond to interspecies and environmental signals is critical for survival. We previously showed the pathogen Pseudomonas aeruginosa detects secreted peptides from bacterial competitors and navigates through interspecies signal gradients using pilus-based motility. Yet, it was unknown whether P. aeruginosa utilizes a designated chemosensory system for this behavior. Here, we performed a systematic genetic analysis of a putative pilus chemosensory system, followed by high-speed live-imaging and single-cell tracking, to reveal behaviors of mutants that retain motility but are blind to interspecies signals. The enzymes predicted to methylate (PilK) and demethylate (ChpB) the putative pilus chemoreceptor, PilJ, are necessary for cells to control the direction of migration. While these findings implicate PilJ as a bona fide chemoreceptor, such function had yet to be experimentally defined, as full-length PilJ is essential for motility. Thus, we constructed systematic genetic modifications of PilJ and found that without the predicted ligand binding domains or predicted methylation sites, cells lose the ability to detect competitor gradients, despite retaining pilus-mediated motility. Chemotaxis trajectory analysis revealed that increased probability and size of P. aeruginosa pilus-mediated steps towards S. aureus peptides, versus steps away, determines motility bias in wild type cells. However, PilJ mutants blind to interspecies signals take less frequent steps towards S. aureus or steps of equal size towards and away. Collectively, this work uncovers the chemosensory nature of PilJ, provides insight into how cell movements are biased during pilus-based chemotaxis, and identifies chemotactic interactions necessary for bacterial survival in polymicrobial communities, revealing putative pathways where therapeutic intervention might disrupt bacterial communication.


Assuntos
Quimiotaxia , Staphylococcus aureus , Quimiotaxia/genética , Staphylococcus aureus/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Movimento Celular , Peptídeos/metabolismo , Proteínas de Bactérias/metabolismo , Pseudomonas aeruginosa/metabolismo
20.
mSphere ; 9(2): e0067723, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38305166

RESUMO

The outer membrane (OM) is an essential structure of Gram-negative bacteria that provides mechanical strength and protection from large and/or hydrophobic toxic molecules, including many antibiotics. The OM is composed of glycerophospholipids (GPLs) and lipopolysaccharide (LPS) in the inner and outer leaflets, respectively, and hosts integral ß-barrel proteins and lipoproteins. While the systems responsible for translocation and insertion of LPS and OM proteins have been elucidated, the mechanism(s) mediating transport of GPLs from the inner membrane to the OM has remained elusive for decades. Very recently, studies performed in Escherichia coli proposed a role in this process for AsmA-like proteins that are predicted to share structural features with eukaryotic lipid transporters. In this study, we provide the first systematic investigation of AsmA-like proteins in a bacterium other than E. coli, the opportunistic human pathogen Pseudomonas aeruginosa. Bioinformatic analyses revealed that P. aeruginosa possesses seven AsmA-like proteins. Deletion of asmA-like genes in many different combinations, coupled with conditional mutagenesis, revealed that four AsmA-like proteins are redundantly essential for growth and OM integrity in P. aeruginosa, including a novel AsmA-like protein (PA4735) that is not present in E. coli. Cells depleted of AsmA-like proteins showed severe defects in the OM permeability barrier that were partially rescued by lowering the synthesis or transport of LPS. Since fine balancing of GPL and LPS levels is crucial for OM integrity, this evidence supports the role of AsmA-like proteins in GPL transport toward the OM. IMPORTANCE: Given the importance of the outer membrane (OM) for viability and antibiotic resistance in Gram-negative bacteria, in the last decades, several studies have focused on the characterization of the systems involved in OM biogenesis, which have also been explored as targets for antibacterial drug development. However, the mechanism mediating translocation of glycerophospholipids (GPLs) to the OM remained unknown until recent studies provided evidence that AsmA-like proteins could be responsible for this process. Here, we demonstrate for the first time that AsmA-like proteins are essential and redundant for growth and OM integrity in a Gram-negative bacterium other than the model organism Escherichia coli and demonstrate that the human pathogen Pseudomonas aeruginosa has an additional essential AsmA-like protein that is not present in E. coli, thus expanding the range of AsmA-like proteins that play key functions in Gram-negative bacteria.


Assuntos
Escherichia coli , Pseudomonas aeruginosa , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Lipopolissacarídeos/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Antibacterianos/metabolismo , Glicerofosfolipídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...