Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.332
Filtrar
1.
Food Microbiol ; 123: 104584, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39038890

RESUMO

A single strain of Candida anglica, isolated from cider, is available in international yeast collections. We present here seven new strains isolated from French PDO cheeses. For one of the cheese strains, we achieved a high-quality genome assembly of 13.7 Mb with eight near-complete telomere-to-telomere chromosomes. The genomes of two additional cheese strains and of the cider strain were also assembled and annotated, resulting in a core genome of 5966 coding sequences. Phylogenetic analysis showed that the seven cheese strains clustered together, away from the cider strain. Mating-type locus analysis revealed the presence of a MATa locus in the cider strain but a MATalpha locus in all cheese strains. The presence of LINE retrotransposons at identical genome position in the cheese strains, and two different karyotypic profiles resulting from chromosomal rearrangements were observed. Together, these findings are consistent with clonal propagation of the cheese strains. Phenotypic trait variations were observed within the cheese population under stress conditions whereas the cider strain was found to have a much greater capacity for growth in all conditions tested.


Assuntos
Candida , Queijo , Alimentos Fermentados , Genoma Fúngico , Filogenia , Queijo/microbiologia , Candida/genética , Candida/metabolismo , Candida/classificação , Candida/isolamento & purificação , Candida/crescimento & desenvolvimento , Alimentos Fermentados/microbiologia , Adaptação Fisiológica , Microbiologia de Alimentos , Fermentação , Genes Fúngicos Tipo Acasalamento
2.
Food Microbiol ; 123: 104587, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39038900

RESUMO

Accurate identification of the fungal community spontaneously colonizing food products, aged in natural and not controlled environments, provides information about potential mycotoxin risk associated with its consumption. Autochthonous mycobiota colonizing cheese aging in Dossena mines, was investigated and characterized by two approaches: microbial isolations and metabarcoding. Microbial isolations and metabarcoding analysis were conducted on cheese samples, obtained by four batches, produced in four different seasons of the year, aged for 90 and 180 days, by five dairy farms. The two approaches, with different taxonomical resolution power, highlighted Penicillium biforme among filamentous fungi, collected from 58 out of 68 cheeses, and Debaryomyces hansenii among yeasts, as the most abundant species (31 ÷ 65%), none representing a health risk for human cheese consumption. Shannon index showed that the richness of mycobiota increases after 180 days of maturation. Beta diversity analysis highlighted significant differences in composition of mycobiota of cheese produced by different dairy farms and aged for different durations. Weak negative growth interaction between P. biforme and Aspergillus westerdijkiae by in vitro analysis was observed leading to hypothesize that a reciprocal control is possible, also affected by natural environmental conditions, possibly disadvantageous for the last species.


Assuntos
Queijo , Fungos , Queijo/microbiologia , Fungos/classificação , Fungos/isolamento & purificação , Fungos/genética , Microbiologia de Alimentos , Micobioma , Penicillium/isolamento & purificação , Penicillium/classificação , Penicillium/genética , Penicillium/crescimento & desenvolvimento , Aspergillus/isolamento & purificação , Aspergillus/genética , Aspergillus/classificação , Aspergillus/crescimento & desenvolvimento , Aspergillus/metabolismo , Contaminação de Alimentos/análise , Indústria de Laticínios , Debaryomyces/genética , Biodiversidade
3.
PLoS One ; 19(7): e0306552, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38976689

RESUMO

The present study aimed to investigate the influence of ripening on the physicochemical, microbiological aspects, and fatty acid profile of Artisanal Coalho Cheeses and to detect if there are peptides with bioactive potential in their composition. Artisanal Coalho Cheese samples were kindly provided by a dairy farm located in Brazil in the Rio Grande do Norte state. A completely randomized design was adopted, with four maturation periods (0, 30, 45, and 60 days). Physicochemical traits (pH, total solids, moisture, non-fat solids, fat in total solids, protein, ash, fatty acid profile) and microbiological characterization (Salmonella sp, Listeria monocytogenes, total and thermotolerant coliforms, Staphylococcus aureus) were analyzed on cheese samples. Additionally, assays were performed for antioxidant and antihypertensive bioactivity through ACE and antimicrobial inhibition of the peptides extracted from the samples. There was a linear increase in total solids and ash content and a decrease in moisture content with increasing maturation time. The matured cheese samples had a lower pH than fresh Artisanal Coalho Cheese. Twenty-seven fatty acids were identified in the cheeses: 15 saturated, 07 monounsaturated, and 05 polyunsaturated, with a linear reduction of essential fatty acids (n6 and n3) during maturation. The microbiological quality of the cheeses was satisfactory, with an absence of undesirable bacteria in 92% of the cheese samples. Water-soluble peptide fractions from all periods tested showed antioxidant and antihypertensive potential with ACE control, and the maturation process potentiated these capacities, with a decline in these activities observed at 60 days. The antimicrobial activity against Gram-positive and Gram-negative bacteria increased with maturation, reaching better results until 60 days. The maturation process on wooden planks in the periods of 30, 45, and 60 days allows the production of Artisanal Coalho Cheese of an innovative character, safe to consumers from the microbiological point of view, with differentiated physicochemical and functional characteristics and good quality of lipid fraction compared to fresh cheese, enabling the addition of value to the dairy chain.


Assuntos
Queijo , Ácidos Graxos , Queijo/análise , Queijo/microbiologia , Ácidos Graxos/análise , Peptídeos/análise , Antioxidantes/análise , Antioxidantes/farmacologia , Fatores de Tempo , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/crescimento & desenvolvimento
4.
Hig. Aliment. (Online) ; 38(298): e1144, jan.-jun. 2024.
Artigo em Português | LILACS, VETINDEX | ID: biblio-1531444

RESUMO

As falhas na higienização em um estabelecimento de alimentos podem refletir em problemas causando a contaminação ou deterioração do produto produzido. Esta pesquisa foi motivada por reclamações de consumidores informando que os queijos apresentaram fungos, mesmo estando dentro do prazo de validade e por solicitação do Serviço de Inspeção Municipal. O objetivo desta pesquisa foi avaliar a contaminação ambiental em uma agroindústria da agricultura familiar produtora de queijo colonial no Sudoeste Paranaense. Foram realizadas a contagem para aeróbios mesófilos em equipamentos e superfícies que entram em contato com o alimento e análise microbiológica ambiental de bolores e leveduras na sala de secagem dos queijos. A coleta foi realizada com método de esfregaço de suabe estéril para aeróbios mesófilos e semeadas em placas de Petri com Ágar Padrão de Contagem. Para a coleta ambiental foram expostas placas de Petri com ágar Saboraund durante 15 minutos. Os resultados demonstraram ausência de contaminação nas superfícies, mas foram encontrados bolores e leveduras de forma acentuada na sala de secagem dos queijos, o que pode contribuir para a deterioração do produto, diminuindo sua validade. Para minimizar as perdas por contaminação é necessário que o processo de higienização dos ambientes seja realizado de forma eficiente.


Failures in hygiene in a food establishment can result in problems causing contamination or deterioration of the product produced. This research was motivated by complaints from consumers reporting that the cheeses had mold, even though they were within their expiration date and at the request of the Municipal Inspection Service. This research was to evaluate environmental contamination in an agroindustry in the family farm producing colonial cheese in Southwest Paraná. For the microbiological assessment of environmental contamination, counting for mesophilic aerobes was carried out on equipment and surfaces that come into contact with food and, environmental microbiological analysis of molds and yeast in the cheese drying room. The collection was carried out using the sterile swab smear for mesophilic aerobes and seeded in Petri dishes with Counting Standard Agar. For environmental collection, sheets of Petri with Saboraund agar for 15 minutes. The results demonstrated absence of contamination on surfaces. But the presence of molds and yeasts in the drying room cheeses, which can contribute to the deterioration of the product and thus reduce the validity. To minimize losses due to contamination, it is It is necessary that the process of cleaning and disinfecting environments is carried out efficiently.


Assuntos
Higiene dos Alimentos , Queijo/microbiologia , Brasil , Boas Práticas de Fabricação , Doenças Transmitidas por Alimentos/prevenção & controle
5.
Food Res Int ; 189: 114556, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876593

RESUMO

This study aimed to evaluate the microbiome, resistome and virulome of two types of Portuguese cheese using high throughput sequencing (HTS). Culture-dependent chromogenic methods were also used for certain groups/microorganisms. Eight samples of raw ewe's milk cheese were obtained from four producers: two producers with cheeses with a PDO (Protected Designation of Origin) label and the other two producers with cheeses without a PDO label. Agar-based culture methods were used to quantify total mesophiles, Enterobacteriaceae, Escherichia coli, Staphylococcus, Enterococcus and lactic acid bacteria. The presence of Listeria monocytogenes and Salmonella was also investigated. The selected isolates were identified by 16S rRNA gene sequencing and evaluated to determine antibiotic resistance and the presence of virulence genes. The eight cheese samples analyzed broadly complied with EC regulations in terms of the microbiological safety criteria. The HTS results demonstrated that Leuconostoc mesenteroides, Lactococcus lactis, Lactobacillus plantarum, Lacticaseibacillus rhamnosus, Enterococcus durans and Lactobacillus coryniformis were the most prevalent bacterial species in cheeses. The composition of the bacterial community varied, not only between PDO and non-PDO cheeses, but also between producers, particularly between the two non-PDO cheeses. Alpha-diversity analyses showed that PDO cheeses had greater bacterial diversity than non-PDO cheeses, demonstrating that the diversity of spontaneously fermented foods is significantly higher in cheeses produced without the addition of food preservatives and dairy ferments. Despite complying with microbiological regulations, both PDO and non-PDO cheeses harbored potential virulence genes as well as antibiotic resistance genes. However, PDO cheeses exhibited fewer of these virulence and antibiotic resistance genes compared to non-PDO cheeses. Therefore, the combination of conventional microbiological methods and the metagenomic approach could contribute to improving the attribution of the PDO label to this type of cheese.


Assuntos
Queijo , Microbiologia de Alimentos , Microbiota , Queijo/microbiologia , Microbiota/genética , Portugal , Animais , Metagenômica , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação , RNA Ribossômico 16S/genética , Farmacorresistência Bacteriana/genética , Ovinos , Sequenciamento de Nucleotídeos em Larga Escala , Leite/microbiologia , Enterococcus/genética , Enterococcus/isolamento & purificação
6.
Int J Food Microbiol ; 421: 110801, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38924974

RESUMO

Blue cheeses, including renowned mold-ripened varieties such as Roquefort (France), Gorgonzola (Italy), Stilton (UK), Danablue (Denmark), and Cabrales (Spain), owe their distinct blue-green color and unique flavor to the fungal species Penicillium roqueforti. In Turkey, traditional cheeses similar to blue cheeses, namely mold-ripened Tulum and Civil, employ production techniques distinct from their European counterparts. Notably, mold-ripening in Turkish cheeses is spontaneous and does not involve starter cultures. Despite P. roqueforti being recognized for its distinct genetic populations sourced from various blue cheeses and non-cheese origins globally, the characteristics of the P. roqueforti population within Turkish cheeses remain unexplored. This study aimed to unravel the genetic characteristics and population structure of P. roqueforti from Turkish mold-ripened cheeses. Analysis of mold-ripened Civil (n = 22) and Tulum (n = 8) samples revealed 66 P. roqueforti isolates (76.6 % of total fungal isolates). Subsequently, these isolates (n = 66) and those from previous studies (Tulum n = 53, Golot n = 1) were used to assess genetic characteristics and mating genotypes. All 120 isolates harbored horizontal transfer regions (Wallaby and CheesyTer) and predominantly possessed the MAT1-2 mating genotype, similar to global blue cheese populations. However, most lacked the mpaC deletion associated with such populations. Analysis of the population with three polymorphic microsatellite markers revealed 36 haplotypes (HTs). Some cheeses contained isolates with different HTs or opposite mating genotypes, aligning with spontaneous fungal growth. Tulum and Civil isolates exhibited similar population diversity without forming distinct subgroups. Phylogenetic analysis of 20 selected isolates showed 75 % aligning with global blue cheese isolates, while 25 % formed unique clades. Overall, Turkish P. roqueforti isolates share genetic similarities with global populations but exhibit unique characteristics, suggesting potential new clades deserving further investigation. This research illuminates the characteristics of P. roqueforti isolates from Turkish cheeses, contributing to the knowledge of the global intraspecific diversity of the P. roqueforti species.


Assuntos
Queijo , Variação Genética , Penicillium , Queijo/microbiologia , Penicillium/genética , Penicillium/isolamento & purificação , Penicillium/classificação , Turquia , Microbiologia de Alimentos , Genótipo , Filogenia
7.
Food Res Int ; 190: 114610, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945575

RESUMO

Spore-forming bacteria are the most complex group of microbes to eliminate from the dairy production line due to their ability to withstand heat treatment usually used in dairy processing. These ubiquitous microorganisms have ample opportunity for multiple points of entry into the milk chain, creating issues for food quality and safety. Certain spore-formers, namely bacilli and clostridia, are more problematic to the dairy industry due to their possible pathogenicity, growth, and production of metabolites and spoilage enzymes. This research investigated the spore-forming population from raw milk reception at two Norwegian dairy plants through the cheesemaking stages until ripening. Samples were collected over two years and examined by amplicon sequencing in a culture independent manner and after an anaerobic spore-former enrichment step. In addition, a total of 608 isolates from the enriched samples were identified at the genus or species level using MALDI-TOF analysis. Most spore-forming isolates belong to the genera Bacillus or Clostridium, with the latter dominating the enriched MPN tubes of raw milk and bactofugate. Results showed a great variation among the clostridia and bacilli detected in the enriched MPN tubes. However, B. licheniformis and C. tyrobutyricum were identified in all sample types from both plants throughout the 2-year study. In conclusion, our results shed light on the fate of different spore-formers at different processing stages in the cheese production chain, which could facilitate targeted actions to reduce quality problems.


Assuntos
Queijo , Microbiologia de Alimentos , Esporos Bacterianos , Noruega , Queijo/microbiologia , Esporos Bacterianos/isolamento & purificação , Leite/microbiologia , Clostridium/isolamento & purificação , Clostridium/genética , Animais , Bacillus/isolamento & purificação , Bacillus/genética , Bacillus/classificação , Manipulação de Alimentos/métodos , Indústria de Laticínios
8.
Food Res Int ; 190: 114597, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945613

RESUMO

The Minas artisanal cheese from the Serra da Canastra (MAC-CM) microregion is a traditional product due to its production and ripening process. Artisanal chesses manufactured with raw cow's milk and endogenous dairy starters ("also known as pingo") have distinctive flavors and other sensory characteristics because of the unknown microbiota. The aim of this study was to evaluate the microbiota during 30 days of ripening, the physicochemical changes, and their relation in MACs produced in two different microregions located in the Serra da Canastra microregion through culture-dependent and culture-independent methods. The MACs were collected in the cities of Bambuí (MAC-CMB) and Tapiraí (MAC-CMT) in the Canastra microregion (n = 21). Cheeses uniqueness was demonstrated with the multivariate analysis that joined the microbiota and physicochemical characteristics, mainly to the proteolysis process, in which the MAC-CMT showed deeper proteolysis (DI -T0:14.18; T30: 13.95), while the MAC-CMB reached only a primary level (EI -T0:24.23; T30: 31.10). Abiotic factors were responsible for the differences in microbial diversity between the cheese farms. Different microbial groups: the prokaryotes, like Corynebacterium variabile, Lactococcus lactis, and Staphylococcus saprophyticus; and the eukaryotes, like Kluyveromyces lactis and Diutina catenulata dominated ripening over time. The microbial community and proteolysis were responsible for the predominance of volatile groups, with alcohols predominating in MAC-CMB and free fatty acids/acids and esters in MAC-CMT.


Assuntos
Queijo , Microbiologia de Alimentos , Queijo/microbiologia , Queijo/análise , Reação em Cadeia da Polimerase , Microbiota , Eletroforese em Gel de Gradiente Desnaturante , Leite/microbiologia , Leite/química , Animais , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Paladar , Indústria de Laticínios/métodos , Fermentação , Proteólise
9.
Curr Microbiol ; 81(7): 202, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829392

RESUMO

There are massive sources of lactic acid bacteria (LAB) in traditional dairy products. Some of these indigenous strains could be novel probiotics with applications in human health and supply the growing needs of the probiotic industry. In this work, were analyzed the probiotic and technological properties of three Lactobacilli strains isolated from traditional Brazilian cheeses. In vitro tests showed that the three strains are safe and have probiotic features. They presented antimicrobial activity against pathogenic bacteria, auto-aggregation values around 60%, high biofilm formation properties, and a survivor of more than 65% to simulated acid conditions and more than 100% to bile salts. The three strains were used as adjunct cultures separately in a pilot-scale production of Prato cheese. After 45 days of ripening, the lactobacilli counts in the cheeses were close to 8 Log CFU/g, and was observed a reduction in the lactococci counts (around -3 Log CFU/g) in a strain-dependent manner. Cheese primary and secondary proteolysis were unaffected by the probiotic candidates during the ripening, and the strains showed no lipolytic effect, as no changes in the fatty acid profile of cheeses were observed. Thus, our findings suggest that the three strains evaluated have probiotic properties and have potential as adjunct non-starter lactic acid bacteria (NSLAB) to improve the quality and functionality of short-aged cheeses.


Assuntos
Queijo , Probióticos , Queijo/microbiologia , Brasil , Microbiologia de Alimentos , Lactobacillus/metabolismo , Lactobacillus/fisiologia , Lactobacillales/fisiologia , Lactobacillales/isolamento & purificação , Lactobacillales/metabolismo , Lactobacillales/classificação , Biofilmes/crescimento & desenvolvimento , Ácidos Graxos/metabolismo , Fermentação , Ácidos e Sais Biliares/metabolismo
10.
mSystems ; 9(7): e0020124, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38860825

RESUMO

The surface of smear-ripened cheeses constitutes a dynamic microbial ecosystem resulting from the successive development of different microbial groups such as lactic acid bacteria, fungi, and ripening bacteria. Recent studies indicate that a viral community, mainly composed of bacteriophages, also represents a common and substantial part of the cheese microbiome. However, the composition of this community, its temporal variations, and associations between bacteriophages and their hosts remain poorly characterized. Here, we studied a French smear-ripened cheese by both viral metagenomics and 16S metabarcoding approaches to assess both the succession of phages and bacterial communities on the cheese surface during cheese ripening and their temporal variations in ready-to-eat cheeses over the years of production. We observed a clear transition of the phage community structure during ripening with a decreased relative abundance of viral species (vOTUs) associated with Lactococcus phages, which were replaced by vOTUs associated with phages infecting ripening bacteria such as Brevibacterium, Glutamicibacter, Pseudoalteromonas, and Vibrio. The dynamics of the phage community was strongly associated with bacterial successions observed on the cheese surface. Finally, while some variations in the distribution of phages were observed in ready-to-eat cheeses produced at different dates spanning more than 4 years of production, the most abundant phages were detected throughout. This result revealed the long-term persistence of the dominant phages in the cheese production environment. Together, these findings offer novel perspectives on the ecology of bacteriophages in smear-ripened cheese and emphasize the significance of incorporating bacteriophages in the microbial ecology studies of fermented foods.IMPORTANCEThe succession of diverse microbial populations is critical for ensuring the production of high-quality cheese. We observed a temporal succession of phages on the surface of a smear-ripened cheese, with new phage communities showing up when ripening bacteria start covering this surface. Interestingly, the final phage community of this cheese is also consistent over large periods of time, as the same bacteriophages were found in cheese products from the same manufacturer made over 4 years. This research highlights the importance of considering these bacteriophages when studying the microbial life of fermented foods like cheese.


Assuntos
Bacteriófagos , Queijo , Queijo/microbiologia , Queijo/virologia , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bactérias/virologia , Bactérias/genética , Bactérias/isolamento & purificação , Microbiota , Microbiologia de Alimentos , França , Metagenômica , Viroma
11.
Food Res Int ; 188: 114483, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823869

RESUMO

The Monascus-fermented cheese (MC) is a unique cheese product that undergoes multi-strain fermentation, imparting it with distinct flavor qualities. To clarify the role of microorganisms in the formation of flavor in MC, this study employed SPME (arrow)-GC-MS, GC-O integrated with PLS-DA to investigate variations in cheese flavors represented by volatile flavor compounds across 90-day ripening periods. Metagenomic datasets were utilized to identify taxonomic and functional changes in the microorganisms. The results showed a total of 26 characteristic flavor compounds in MC at different ripening periods (VIP>1, p < 0.05), including butanoic acid, hexanoic acid, butanoic acid ethyl ester, hexanoic acid butyl ester, 2-heptanone and 2-octanone. According to NR database annotation, the genera Monascus, Lactococcus, Aspergillus, Lactiplantibacillus, Staphylococcus, Flavobacterium, Bacillus, Clostridium, Meyerozyma, and Enterobacter were closely associated with flavor formation in MC. Ester compounds were linked to Monascus, Meyerozyma, Staphylococcus, Lactiplantibacillus, and Bacillus. Acid compounds were linked to Lactococcus, Lactobacillus, Staphylococcus, and Bacillus. The production of methyl ketones was closely related to the genera Monascus, Staphylococcus, Lactiplantibacillus, Lactococcus, Bacillus, and Flavobacterium. This study offers insights into the microorganisms of MC and its contribution to flavor development, thereby enriching our understanding of this fascinating dairy product.


Assuntos
Queijo , Fermentação , Microbiologia de Alimentos , Metagenômica , Monascus , Paladar , Compostos Orgânicos Voláteis , Queijo/microbiologia , Queijo/análise , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Monascus/metabolismo , Monascus/genética , Monascus/crescimento & desenvolvimento , Metagenômica/métodos , Cromatografia Gasosa-Espectrometria de Massas , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Aromatizantes/metabolismo
12.
Food Microbiol ; 122: 104550, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38839218

RESUMO

Listeria monocytogenes presents significant risk to human health due to its high resistance and capacity to form toxin-producing biofilms that contaminate food. The objective of this study was to assess the inhibitory effect of citronella aldehyde (CIT) on L. monocytogenes and investigate the underlying mechanism of inhibition. The results indicated that the minimum inhibitory concentration (MIC) and Minimum sterilisation concentration (MBC) of CIT against L. monocytogenes was 2 µL/mL. At this concentration, CIT was able to effectively suppress biofilm formation and reduce metabolic activity. Crystalline violet staining and MTT reaction demonstrated that CIT was able to inhibit biofilm formation and reduce bacterial cell activity. Furthermore, the motility assessment assay revealed that CIT inhibited bacterial swarming and swimming. Scanning electron microscopy (SEM) and laser confocal microscopy (LSCM) observations revealed that CIT had a significant detrimental effect on L. monocytogenes cell structure and biofilm integrity. LSCM also observed that nucleic acids of L. monocytogenes were damaged in the CIT-treated group, along with an increase in bacterial extracellular nucleic acid leakage. The proteomic results also confirmed the ability of CIT to affect the expression of proteins related to processes including metabolism, DNA replication and repair, transcription and biofilm formation in L. monocytogenes. Consistent with the proteomics results are ATPase activity and ATP content of L. monocytogenes were significantly reduced following treatment with various concentrations of CIT. Notably, CIT showed good inhibitory activity against L. monocytogenes on cheese via fumigation at 4 °C.This study establishes a foundation for the potential application of CIT in food safety control.


Assuntos
Biofilmes , Queijo , Listeria monocytogenes , Testes de Sensibilidade Microbiana , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/fisiologia , Queijo/microbiologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Antibacterianos/farmacologia , Conservação de Alimentos/métodos , Microbiologia de Alimentos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Aldeídos/farmacologia , Extratos Vegetais/farmacologia , Monoterpenos Acíclicos/farmacologia
13.
Food Microbiol ; 122: 104559, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38839223

RESUMO

Listeria monocytogenes is a concerning foodborne pathogen incriminated in soft cheese and meat-related outbreaks, highlighting the significance of applying alternative techniques to control its growth in food. In the current study, eco-friendly zinc oxide nanoparticles (ZnO-NPs) were synthesized using Rosmarinus officinalis, Punica granatum, and Origanum marjoram extracts individually. The antimicrobial efficacy of the prepared ZnO-NPs against L. monocytogenes was assessed using the agar well diffusion technique. Data indicated that ZnO-NPs prepared using Origanum marjoram were the most effective; therefore, they were used for the preparation of gelatin-based bionanocomposite coatings. Furthermore, the antimicrobial efficacy of the prepared gelatin-based bionanocomposite coatings containing eco-friendly ZnO-NPs was evaluated against L. monocytogenes in Talaga cheese (an Egyptian soft cheese) and camel meat during refrigerated storage at 4 ± 1 oC. Talaga cheese and camel meat were inoculated with L. monocytogenes, then coated with gelatin (G), gelatin with ZnO-NPs 1% (G/ZnO-NPs 1%), and gelatin with ZnO-NPs 2% (G/ZnO-NPs 2%). Microbiological examination showed that the G/ZnO-NPs 2% coating reduced L. monocytogenes count in the coated Talaga cheese and camel meat by 2.76 ± 0.19 and 2.36 ± 0.51 log CFU/g, respectively, by the end of the storage period. Moreover, G/ZnO-NPs coatings controlled pH changes, reduced water losses, and improved the sensory characteristics of Talaga cheese and camel meat, thereby extending their shelf life. The obtained results from this study indicate that the application of gelatin/ZnO-NPs 2% bionanocomposite coating could be used in the food industry to control L. monocytogenes growth, improve quality, and extend the shelf life of Talaga cheese and camel meat.


Assuntos
Camelus , Queijo , Armazenamento de Alimentos , Gelatina , Listeria monocytogenes , Nanocompostos , Óxido de Zinco , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/crescimento & desenvolvimento , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Queijo/microbiologia , Gelatina/química , Gelatina/farmacologia , Animais , Nanocompostos/química , Conservação de Alimentos/métodos , Carne/microbiologia , Microbiologia de Alimentos , Nanopartículas/química , Antibacterianos/farmacologia , Antibacterianos/química , Punica granatum/química , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise , Rosmarinus/química , Refrigeração , Extratos Vegetais/farmacologia , Extratos Vegetais/química
14.
Food Microbiol ; 122: 104552, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38839232

RESUMO

In this study, we investigated the combined effect of 222 nm krypton-chlorine excilamp (EX) and 307 nm ultraviolet-B (UVB) light on the inactivation of Salmonella Typhimurium and Listeria monocytogenes on sliced cheese. The data confirmed that simultaneous exposure to EX and UVB irradiation for 80 s reduced S. Typhimurium and L. monocytogenes population by 3.50 and 3.20 log CFU/g, respectively, on sliced cheese. The synergistic cell count reductions in S. Typhimurium and L. monocytogenes in the combined treatment group were 0.88 and 0.59 log units, respectively. The inactivation mechanism underlying the EX and UVB combination treatment was evaluated using fluorescent staining. The combination of EX and UVB light induced the inactivation of reactive oxygen species (ROS) defense enzymes (superoxide dismutase) and synergistic ROS generation, resulting in synergistic lipid peroxidation and destruction of the cell membrane. There were no significant (P > 0.05) differences in the color, texture, or sensory attributes of sliced cheese between the combination treatment and control groups. These results demonstrate that combined treatment with EX and UVB light is a potential alternative strategy for inactivating foodborne pathogens in dairy products without affecting their quality.


Assuntos
Queijo , Cloro , Listeria monocytogenes , Espécies Reativas de Oxigênio , Salmonella typhimurium , Raios Ultravioleta , Queijo/microbiologia , Queijo/análise , Listeria monocytogenes/efeitos da radiação , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/efeitos dos fármacos , Salmonella typhimurium/efeitos da radiação , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Cloro/farmacologia , Irradiação de Alimentos/métodos , Microbiologia de Alimentos , Viabilidade Microbiana/efeitos da radiação , Contagem de Colônia Microbiana
15.
Food Microbiol ; 122: 104555, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38839234

RESUMO

Fermentation contributes to the taste and odor of plant cheeses. The selection of functional cultures for the fermentation of plant cheeses, however, is in its infancy. This study aimed to select lactic acid bacteria for ripening of soy and lupin cheese analogues. Bacillus velezensis and B. amyloliquefaciens were used for germination of seeds to produce proteolytic enzymes; Lactococcus lactis and Lactiplantibacillus plantarum served as primary acidifying cultures. Levilactobacillus hammesii, Furfurilactobacillus milii, or Lentilactobacillus buchneri were assessed as adjunct cultures for the ripening of plant cheese. Growth of bacilli was inhibited at low pH. Both Lc. lactis and Lp. plantarum were inactived during plant cheese ripening. Cell counts of Lv. hammesii remained stable over 45 d of ripening while Ff. milii and Lt. buchneri grew slowly. Sequencing of full length 16S rRNA genes confirmed that the inocula the plant cheeses accounted for more than 98% of the bacterial communities. HPLC analysis revealed that Lt. buchneri metabolized lactate to acetate and 1,2-propanediol during ripening. Bacilli enhanced proteolysis as measured by quantification of free amino nitrogen, and the release of glutamate. LC-MS/MS analysis quantified kokumi-active dipeptides. The concentrations of γ-Glu-Leu, γ-Glu-Ile, and γ-Glu-Ala, γ-Glu-Cys in unripened cheeses were increased by seed germination but γ-Glu-Phe was degraded. Lt. buchneri but not Lv. hammesii or Ff. milii accumulated γ-Glu-Val, γ-Glu-Ile or γ-Glu-Leu during ripening, indicating strain-specific differences. In conclusion, a consortium of bacilli, acidification cultures and adjunct cultures accumulates taste- and kokumi-active compounds during ripening of plant cheeses.


Assuntos
Queijo , Fermentação , Microbiologia de Alimentos , Queijo/microbiologia , Queijo/análise , Lupinus/microbiologia , Lupinus/crescimento & desenvolvimento , Glycine max/microbiologia , Glycine max/crescimento & desenvolvimento , Paladar , Bacillus/metabolismo , Bacillus/genética , Bacillus/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Lactobacillales/metabolismo , Lactobacillales/genética , Lactobacillales/crescimento & desenvolvimento , Lactococcus lactis/metabolismo , Lactococcus lactis/crescimento & desenvolvimento , Lactococcus lactis/genética , RNA Ribossômico 16S/genética
16.
Biotechnol J ; 19(6): e2300529, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38896375

RESUMO

Industrial production of bacterial cellulose (BC) remains challenging due to significant production costs, including the choice of appropriate growth media. This research focuses on optimization of cheese whey (CW) based media for enhanced production of BC. Two modifications were made for CW medium for BC production with Komagataeibacter rhaeticus MSCL 1463. BC production in a medium of enzymatically hydrolyzed CW (final concentration of monosaccharides: glucose 0.13 g L-1, galactose 1.24 g L-1) was significantly enhanced, achieving a yield of 4.95 ± 0.25 g L-1, which markedly surpasses the yields obtained with the standard Hestrin-Schramm (HS) medium containing 20 g L-1 glucose and acid-hydrolyzed CW (final concentration of monosaccharides: glucose 1.15 g L-1, galactose 2.01 g L-1), which yielded 3.29 ± 0.12 g L-1 and 1.01 ± 0.14 g L-1, respectively. We explored the synergistic effects of combining CW with various agricultural by-products (corn steep liquor (CSL), apple juice, and sugar beet molasses). Notably, the supplementation with 15% corn steep liquor significantly enhanced BC productivity, achieving 6.97 ± 0.17 g L-1. A comprehensive analysis of the BC's physical and mechanical properties indicated significant alterations in fiber diameter (62-167 nm), crystallinity index (71.1-85.9%), and specific strength (35-82 MPa × cm3 g-1), as well as changes in the density (1.1-1.4 g cm-3). Hydrolyzed CW medium supplemented by CSL could be used for effective production of BC.


Assuntos
Acetobacteraceae , Celulose , Queijo , Meios de Cultura , Soro do Leite , Celulose/metabolismo , Soro do Leite/metabolismo , Queijo/microbiologia , Meios de Cultura/química , Hidrólise , Acetobacteraceae/metabolismo , Acetobacteraceae/crescimento & desenvolvimento , Fermentação , Zea mays/metabolismo , Glucose/metabolismo , Sucos de Frutas e Vegetais
17.
Food Res Int ; 186: 114306, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729707

RESUMO

The aim of this research was to find out the effect of different combinations of starter and non-starter cultures on the proteolysis of Castellano cheese during ripening. Four cheese batches were prepared, each containing autochthonous lactobacilli and or Leuconostoc, and were compared with each other and with a control batch, that used only a commercial starter. To achieve this, nitrogen fractions (pH 4.4-soluble nitrogen and 12 % trichloroacetic acid soluble nitrogen, polypeptide nitrogen and casein nitrogen), levels of free amino acids and biogenic amines were assessed. Texture and microstructure of cheeses were also evaluated. Significant differences in nitrogen fractions were observed between batches at different stages of ripening. The free amino acid content increased throughout the cheese ripening process, with a more significant increase occurring after the first 30 days. Cheeses containing non-starter lactic acid bacteria exhibited the highest values at the end of the ripening period. Among the main amino acids, GABA was particularly abundant, especially in three of the cheese batches at the end of ripening. The autochthonous lactic acid bacteria were previously selected as non-producers of biogenic amines and this resulted in the absence of these compounds in the cheeses. Analysis of the microstructure of the cheese reflected the impact of proteolysis. Additionally, the texture profile analysis demonstrated that the cheese's hardness intensified as the ripening period progressed. The inclusion of autochthonous non-starter lactic acid bacteria in Castellano cheese production accelerated the proteolysis process, increasing significantly the free amino acids levels and improving the sensory quality of the cheeses.


Assuntos
Aminoácidos , Aminas Biogênicas , Queijo , Proteólise , Queijo/microbiologia , Queijo/análise , Aminoácidos/análise , Aminoácidos/metabolismo , Aminas Biogênicas/análise , Microbiologia de Alimentos , Manipulação de Alimentos/métodos , Leuconostoc/metabolismo , Leuconostoc/crescimento & desenvolvimento , Lactobacillus/metabolismo , Lactobacillus/crescimento & desenvolvimento , Nitrogênio/análise , Qualidade dos Alimentos , Fermentação
18.
Food Res Int ; 183: 114214, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38760141

RESUMO

Ochratoxin A (OTA) is a toxin produced by several Aspergillus species, mainly those belonging to section Circumdati and section Nigri. The presence of OTA in cheese has been reported recently in cave cheese in Italy. As artisanal cheese production in Brazil has increased, the aim of this study was to investigate the presence of ochratoxin A and related fungi in artisanal cheese consumed in Brazil. A total of 130 samples of artisanal cheeses with natural moldy rind at different periods of maturation were collected. Of this total, 79 samples were collected from 6 producers from Canastra region in the state of Minas Gerais, since this is the largest artisanal cheese producer region; 13 samples from one producer in the Amparo region in the state of São Paulo and 36 samples from markets located in these 2 states. Aspergillus section Circumdati occurred in samples of three producers and some samples from the markets. A. section Circumdati colony counts varied from 102 to 106 CFU/g. Molecular analysis revealed Aspergillus westerdijkiae (67 %) as the most frequent species, followed by Aspergillus ostianus (22 %), and Aspergillus steynii (11 %). All of these isolates of A. section Circumdati were able to produce OTA in Yeast Extract Sucrose Agar (YESA) at 25 °C/7 days. OTA was found in 22 % of the artisanal cheese samples, ranging from 1.0 to above 1000 µg/kg, but only five samples had OTA higher than 1000 µg/kg. These findings emphasize the significance of ongoing monitoring and quality control in the artisanal cheese production process to minimize potential health risks linked to OTA contamination.


Assuntos
Aspergillus , Queijo , Contaminação de Alimentos , Microbiologia de Alimentos , Ocratoxinas , Ocratoxinas/biossíntese , Ocratoxinas/análise , Queijo/microbiologia , Queijo/análise , Brasil , Aspergillus/metabolismo , Contaminação de Alimentos/análise , Contagem de Colônia Microbiana
19.
Antonie Van Leeuwenhoek ; 117(1): 85, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38811466

RESUMO

Kars Kashar cheese is an artisanal pasta-filata type cheese and geographically marked in Eastern Anatolia of Turkey. The aims of this research were to determine for the first time thermophilic lactic acid bacteria (LAB) of Kars Kashar cheese and characterize the technological properties of obtained isolates. In our research, a number of 15 samples of whey were collected from the different villages in Kars. These samples were incubated at 45 °C and used as the source material for isolating thermophilic LAB. A total of 250 colonies were isolated from thermophilic whey, and 217 of them were determined to be presumptive LAB based on their Gram staining and catalase test. A total of 170 isolates were characterized by their phenotypic properties and identified using the MALDI-TOF mass spectrometry method. Phenotypic identification of isolates displayed that Enterococcus and Lactobacillus were the predominant microbiota. According to MALDI-TOF MS identification, 89 isolates were identified as Enterococcus (52.35%), 57 isolates as Lactobacillus (33.53%), 23 isolates as Streptococcus (13.53%), and one isolate as Lactococcus (0.59%). All thermophilic LAB isolates were successfully identified to the species level and it has been observed that MALDI-TOF MS can be successfully used for the identification of selected LAB. The acidification and proteolytic activities of the isolated thermophilic LAB were examined, and the isolates designated for use as starter cultures were also genotypically defined.


Assuntos
Queijo , Lactobacillales , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Queijo/microbiologia , Lactobacillales/isolamento & purificação , Lactobacillales/classificação , Lactobacillales/genética , Lactobacillales/metabolismo , Soro do Leite/microbiologia , Soro do Leite/química , Microbiologia de Alimentos , Turquia , Lactobacillus/isolamento & purificação , Lactobacillus/genética , Lactobacillus/classificação , Lactobacillus/metabolismo , Enterococcus/isolamento & purificação , Enterococcus/classificação , Enterococcus/genética , Enterococcus/metabolismo
20.
Food Funct ; 15(11): 5987-5999, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38742436

RESUMO

The considerable value of whey is evident from its significant potential applications and contributions to the functional food and nutraceutical market. The by-products were individually obtained during functional chhurpi and novel soy chhurpi cheese production using defined lactic acid bacterial strains of Sikkim Himalaya's traditional chhurpi. Hydrolysis of substrate proteins by starter proteinases resulted in a comparable peptide content in whey and soy whey which was associated with antioxidant and ACE inhibition potential. Peptidome analysis of Lactobacillus delbrueckii WS4 whey and soy whey revealed the presence of several bioactive peptides including the multifunctional peptides PVVVPPFLQPE and YQEPVLGPVRGPFPIIV. In silico analyses predicted the antihypertensive potential of whey and soy whey peptides with strong binding affinity for ACE active sites. QSAR models predicted the highest ACE inhibition potential (IC50) for the ß-casein-derived decapeptide PVRGPFPIIV (0.95 µM) and the Kunitz trypsin inhibitor protein-derived nonapeptide KNKPLVVQF (16.64 µM). Chhurpi whey and soy whey can be explored as a valuable source of diverse and novel bioactive peptides for applications in designer functional foods development.


Assuntos
Lactobacillus delbrueckii , Peptídeos , Lactobacillus delbrueckii/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Queijo/microbiologia , Queijo/análise , Soro do Leite/química , Alimento Funcional , Antioxidantes/farmacologia , Antioxidantes/química , Proteínas do Soro do Leite/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA