RESUMO
Chitinase is a kind of glycoside hydrolase which is widely distributed in nature and encoded by multiple genes to catalyze the decomposition of chitin, which plays an important role in the molting and pathogen defense of crustaceans. However, the research on chitinase in crustaceans is mainly focused on a few species with economic value. In this study, full-length cDNA sequences of the HtCHT1, HtCHT3 and HtCHT4 genes were cloned from the mudflat crab Helice tientsinensis by RACE, and the sequences were analyzed. The results showed that the full-length 2,229 bp of HtCHT1 gene encoded 627 amino acids, while the full-length 2,191 bp of HtCHT3 gene produced 489 amino acids, and the full-length 3,312 bp of HtCHT4 gene encoded 664 amino acids. Bioinformatics analysis showed that all the obtained chitinase proteins had the glycosyl hydrolase family 18 (GH18) catalytic domain and chitin-binding domain (ChtBD2), furthermore, HtCHT1 and HtCHT4 proteins had signal peptide domains at N-terminal. Phylogenetic analysis showed that different types of chitinase were clustered, and HtCHTs were closely related to chitinases in the Eriocheir sinensis. Expression profile analysis showed that the HtCHT1, HtCHT3 and HtCHT4 were significantly expressed in hepatopancreas. Furthermore, the expression of three genes was significantly up-regulated in hepatopancreas after the Vibrio parahaemolyticus challenge. These results suggested that HtCHT1, HtCHT3 and HtCHT4 were belonged to the CHITINASE gene family in H. tientsinensis and were potentially involved in the antibacterial immune response. This study provides essential information for further research of chitinase in H. tientsinensis and even crustaceans.
Assuntos
Braquiúros , Quitinases , Animais , Braquiúros/genética , Quitinases/genética , Filogenia , Clonagem Molecular , Quitina/metabolismoRESUMO
In response to microbiota colonization, the intestinal epithelia of many animals exhibit increased rates of cell proliferation. We used gnotobiotic larval zebrafish to identify a secreted factor from the mutualist Aeromonas veronii that is sufficient to promote intestinal epithelial cell proliferation. This secreted A. veronii protein is a homologue of the Vibrio cholerae GlcNAc binding protein GbpA, which was identified as a chitin-binding colonization factor in mice. GbpA was subsequently shown to be a lytic polysaccharide monooxygenase (LPMO) that can degrade recalcitrant chitin. Our phenotypic characterization of gbpA deficient A. veronii found no alterations in these cells' biogeography in the zebrafish intestine and only a modest competitive disadvantage in chitin-binding and colonization fitness when competed against the wild-type strain. These results argue against the model of GbpA being a secreted adhesin that binds simultaneously to bacterial cells and GlcNAc, and instead suggests that GbpA is part of a bacterial GlcNAc utilization program. We show that the host proliferative response to GbpA occurs in the absence of bacteria upon exposure of germ-free zebrafish to preparations of native GbpA secreted from either A. veronii or V. cholerae or recombinant A. veronii GbpA. Furthermore, domain 1 of A. veronii GbpA, containing the predicted LPMO activity, is sufficient to stimulate intestinal epithelial proliferation. We propose that intestinal epithelial tissues upregulate their rates of renewal in response to secreted bacterial GbpA proteins as an adaptive strategy for coexisting with bacteria that can degrade glycan constituents of the protective intestinal lining.
Assuntos
Aeromonas , Microbioma Gastrointestinal , Animais , Camundongos , Proteínas de Transporte , Peixe-Zebra , Intestinos , Proliferação de Células , Proteínas de Bactérias , QuitinaRESUMO
Chitosanase could degrade chitosan efficiently under mild conditions to prepare chitosan oligosaccharides (COSs). COS possesses versatile physiological activities and has wide application prospects in food, pharmaceutical and cosmetic fields. Herein, a new glycoside hydrolase (GH) family 46 chitosanase (CscB) was cloned from Kitasatospora setae KM-6054 and heterologously expressed in Escherichia coli. The recombinant chitosanase CscB was purified by Ni-charged magnetic beads and showed a relative molecular weight of 29.19 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). CscB showed the maximal activity (1094.21 U/mg) at pH 6.0 and 30 °C. It was revealed that CscB is a cold-adapted enzyme. CscB was determined to be an endo-type chitosanase with a polymerization degree of the final product mainly in the range of 2-4. This new cold-adapted chitosanase provides an efficient enzyme tool for clean production of COSs.
Assuntos
Quitosana , Quitosana/metabolismo , Quitina/metabolismo , Oligossacarídeos/metabolismo , Glicosídeo Hidrolases/metabolismo , HidróliseRESUMO
Using environmentally friendly biomaterials in different aspects of human life has been considered extensively. In this respect, different biomaterials have been identified and different applications have been found for them. Currently, chitosan, the well-known derivative of the second most abundant polysaccharide in the nature (i.e., chitin), has been receiving a lot of attention. This unique biomaterial can be defined as a renewable, high cationic charge density, antibacterial, biodegradable, biocompatible, non-toxic biomaterial with high compatibility with cellulose structure, where it can be used in different applications. This review takes a deep and comprehensive look at chitosan and its derivative applications in different aspects of papermaking.
Assuntos
Quitosana , Humanos , Quitosana/química , Materiais Biocompatíveis/química , Quitina/química , Celulose/química , AntibacterianosRESUMO
Chitin, a polysaccharide, is ubiquitously found in nature and has been known to be an active immunogen in mammals, and interacts with Toll-like, mannose and glucan receptors, to induce cytokine and chemokine secretions. FIBCD1 is a tetrameric type II transmembrane endocytic vertebrate receptor that binds chitin, is found in human lung epithelium and modulates lung epithelial inflammatory responses to A. fumigatus cell wall polysaccharides. We previously reported the detrimental role of FIBCD1 in a murine model of pulmonary invasive aspergillosis. However, the effect that chitin and chitin-containing A. fumigatus conidia exerts on lung epithelium following exposure through FIBCD1 is not yet fully explored. Using both in vitro and in vivo strategies, we examined how lung and lung epithelial gene expression are modified after exposure to fungal conidia or chitin fragments in the presence or absence of FIBCD1. FIBCD1 expression was associated with a decrease in inflammatory cytokines with increasing size of chitin (dimer-oligomer). Thus, our results demonstrate that FIBCD1 expression modulates cytokine and chemokine expression in response to A. fumigatus conidia that is modified by the presence of chitin particles.
Assuntos
Aspergillus fumigatus , Pulmão , Humanos , Animais , Camundongos , Aspergillus fumigatus/genética , Pulmão/metabolismo , Citocinas/metabolismo , Células Epiteliais/metabolismo , Quimiocinas/metabolismo , Quitina/metabolismo , Mamíferos/metabolismo , Receptores de Superfície Celular/metabolismoRESUMO
Chitin is the most abundant natural amino polysaccharide, showing various practical applications owing to its functional properties. However, there are barriers in the development due to the difficulty of chitin extraction and purification, regarding its high crystallinity and low solubility. In recent years, some novel technologies such as microbial fermentation, ionic liquid, electrochemical extraction have emerged for the green extraction of chitin from new sources. Furthermore, nanotechnology, dissolution systems and chemical modification were applied to develop a variety of chitin-based biomaterials. Remarkably, chitin was used in delivering active ingredients and developing functional foods for weight loss, lipid reduction, gastrointestinal health, and anti-aging. Moreover, the application of chitin-based materials was expanded into medicine, energy and the environment. This review outlined the emerging extraction methods and processing routes of different chitin sources and advances in applying chitin-based materials. We aimed to provide some direction for the multi-disciplinary production and application of chitin.
Assuntos
Quitina , Alimento Funcional , Materiais Biocompatíveis , FermentaçãoRESUMO
Chitooligosaccharides (COS) have many bioactive functions and favorable prospects in the fields of biomedicine and functional foods. In this study, COS was found to significantly improve the survival rate of neonatal necrotizing enterocolitis (NEC) model rats, alter the composition of the intestinal microbiota, inhibit the expression of inflammatory cytokines, and alleviate intestinal pathological injury. In addition, COS also increased the abundance of Akkermansia, Bacteroides, and Clostridium sensu stricto 1 in the intestines of normal rats (the normal rat model is more universal). The in vitro fermentation results found that COS was degraded by the human gut microbiota to promote the abundance of Clostridium sensu stricto 1 and produced numerous short-chain fatty acids (SCFAs). In vitro metabolomic analysis revealed that COS catabolism was associated with significant increases in 3-hydroxybutyrate acid and γ-aminobutyric acid. This study provides evidence for the potential of COS as a prebiotic in food products and to ameliorate NEC development in neonatal rats.
Assuntos
Enterocolite Necrosante , Humanos , Animais , Ratos , Animais Recém-Nascidos , Ácido 3-Hidroxibutírico , Akkermansia , QuitinaRESUMO
Tunable structure-properties were achieved for chitosan-epoxy-glycerol-silicate (CHTGP) biohybrids, eco-designed via integrated amine-epoxy and waterborne sol-gel crosslinking reactions. Medium molecular weight chitosan (CHT), with 83 % degree of deacetylation was prepared by microwave-assisted alkaline deacetylation of chitin. The amine group of chitosan was covalently bonded to the epoxide of 3-glycidoxypropyltrimethoxysilane (G) for further crosslinking with a sol-gel derived glycerol-silicate precursor (P) from 0.5 % to 5 %. The impact of crosslinking density on the structural morphology, thermal, mechanical, moisture-retention and antimicrobial properties of the biohybrids were characterized by FTIR, NMR, SEM, swelling and bacterial inhibition studies and contrasted with a corresponding series (CHTP) without epoxy silane. Water uptake was significantly reduced in all biohybrids with a 12 % window of variation between the two series. Properties observed in biohybrids with only epoxy-amine (CHTG) or sol-gel crosslinking reactions (CHTP), were reversed in the integrated biohybrids (CHTGP) to impart improved thermal and mechanical stability and antibacterial activity.
Assuntos
Quitosana , Glicerol , Quitina , Aminas , Resinas Epóxi , SilicatosRESUMO
Chitinous materials (chitin and its derivatives) are obtained from renewable sources, mainly shellfish waste, having a great potential for the development of bioproducts as alternatives to synthetic agrochemicals. Recent studies have provided evidence that the use of these biopolymers can help control postharvest diseases, increase the content of nutrients available to plants, and elicit positive metabolic changes that lead to higher plant resistance against pathogens. However, agrochemicals are still widely and intensively used in agriculture. This perspective addresses the gap in knowledge and innovation to make bioproducts based on chitinous materials more competitive in the market. It also provides the readers with background to understand why these products are scarcely used and the aspects that need to be considered to increase their use. Finally, information on the development and commercialization of agricultural bioproducts containing chitin or its derivatives in the Chilean market is also provided.
Assuntos
Agricultura , Quitina , Biopolímeros , Agroquímicos , NutrientesRESUMO
The tympanic membrane (TM), is a thin tissue lying at the intersection of the outer and the middle ear. TM perforations caused by traumas and infections often result in a conductive hearing loss. Tissue engineering has emerged as a promising approach for reconstructing the damaged TM by replicating the native material characteristics. In this regard, chitin nanofibrils (CN), a polysaccharide-derived nanomaterial, is known to exhibit excellent biocompatibility, immunomodulation and antimicrobial activity, thereby imparting essential qualities for an optimal TM regeneration. This work investigates the application of CN as a nanofiller for poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT) copolymer to manufacture clinically suitable TM scaffolds using electrospinning and fused deposition modelling. The inclusion of CN within the PEOT/PBT matrix showed a three-fold reduction in the corresponding electrospun fiber diameters and demonstrated a significant improvement in the mechanical properties required for TM repair. Furthermore, in vitro biodegradation assay highlighted a favorable influence of CN in accelerating the scaffold degradation over a period of one year. Finally, the oto- and cytocompatibility response of the nanocomposite substrates corroborated their biological relevance for the reconstruction of perforated eardrums.
Assuntos
Ácidos Ftálicos , Membrana Timpânica , Quitina/farmacologia , Engenharia Tecidual , Polietilenotereftalatos , Tecidos SuporteRESUMO
A mechanistic understanding of how macromolecules, typically as an organic matrix, nucleate and grow crystals to produce functional biomineral structures remains elusive. Advances in structural biology indicate that polysaccharides (e.g., chitin) and negatively charged proteoglycans (due to carboxyl, sulfate, and phosphate groups) are ubiquitous in biocrystallization settings and play greater roles than currently recognized. This review highlights studies of CaCO3 crystallization onto chitinous materials and demonstrates that a broader understanding of macromolecular controls on mineralization has not emerged. With recent advances in biopolymer chemistry, it is now possible to prepare chitosan-based hydrogels with tailored functional group compositions. By deploying these characterized compounds in hypothesis-based studies of nucleation rate, quantitative relationships between energy barrier to crystallization, macromolecule composition, and solvent structuring can be determined. This foundational knowledge will help researchers understand composition-structure-function controls on mineralization in living systems and tune the designs of new materials for advanced applications.
Assuntos
Quitosana , Quitosana/química , Carbonato de Cálcio/química , Cristalização , Quitina/química , Substâncias MacromolecularesRESUMO
Phosphorylation is a key route to achieve varieties of biological activities for polysaccharides. Here, we report the phosphorylated surface deacetylated chitin nanofibers (PS-ChNFs) using the sodium tripolyphosphate/sodium trimetaphosphate (STPP/STMP) method. Response surface methodology (RSM) was employed to optimize in this study. Under optimal conditions, a maximum degree of substitution (DS) of 0.13 was obtained. In addition, the structures of PS-ChNFs were investigated by Fourier transform infrared spectroscopy (FT-IR), Nuclear Magnetic Resonance spectra (NMR), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM) and (Energy Dispersive Spectroscopy-mapping) EDS-mapping. The findings revealed that the FT-IR spectroscopy and XPS analysis confirmed the appearance of phosphate groups in PS-ChNFs. The 31P NMR results indicate that the PS-ChNFs structure has characteristic peaks of P elements. SEM images showed that PS-ChNFs had a rough surface with many cavities, but the P elements on the surface of the EDS-mapping are uniformly distributed throughout the sample without any enrichment. Antioxidant and antibacterial test showed that PS-ChNFs had significant scavenging effect on free radicals and antibacterial effect. The above results indicate that the chemical modification of PS-ChNFs was successful.
Assuntos
Nanofibras , Nanofibras/química , Quitina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Polissacarídeos , Espectroscopia FotoeletrônicaRESUMO
Injective thermosensitive hydrogels are considered promising scaffolds to trigger dental pulp regeneration in devitalized human teeth. In this study, we developed a hydroxypropyl chitin (HPCH)/chitin whisker (CW) thermosensitive hydrogel with enhanced mechanical properties and biological activities. Exosomes can serve as biomimetic tools for tissue engineering, but the rapid clearance of unconjugated exosomes in vivo limits their therapeutic effects. To address this challenge, exosomes were isolated from human pulp stem cells (hDPSCs) and directly embedded into the HPCH/CW pre-gel to form an exosome-loaded hydrogel (HPCH/CW/Exo). The exosome-loaded thermosensitive hydrogel can be easily injected into an irregular endodontic space and gelated in situ. In vitro cell experiments proved that the delivery of exosomes significantly improved the ability of hydrogels to promote odontogenesis and angiogenesis. Meanwhile, in vivo animal experiments revealed the formation of new dental pulp-like tissues in an implanted tooth root model. Therefore, the proposed hydrogel provides a great potential alternative to traditional root canal therapy in dental clinics.
Assuntos
Exossomos , Hidrogéis , Animais , Humanos , Quitina , Polpa Dentária , Diferenciação Celular , RegeneraçãoRESUMO
Chitin deacetylase (CDA) can accelerate the conversion of chitin to chitosan, influencing the mechanical properties and permeability of the cuticle structures and the peritrophic membrane (PM) in insects. Putative Group V CDAs SeCDA6/7/8/9 (SeCDAs) were identified and characterized from beet armyworm Spodoptera exigua larvae. The cDNAs of SeCDAs contained open reading frames of 1164 bp, 1137 bp, 1158 bp and 1152 bp, respectively. The deduced protein sequences showed that SeCDAs are synthesized as preproteins of 387, 378, 385 and 383 amino acid residues, respectively. It was revealed via spatiotemporal expression analysis that SeCDAs were more abundant in the anterior region of the midgut. The SeCDAs were down-regulated after treatment with 20-hydroxyecdysone (20E). After treatment with a juvenile hormone analog (JHA), the expression of SeCDA6 and SeCDA8 was down-regulated; in contrast, the expression of SeCDA7 and SeCDA9 was up-regulated. After silencing SeCDAV (the conserved sequences of Group V CDAs) via RNA interference (RNAi), the layer of intestinal wall cells in the midgut became more compact and more evenly distributed. The vesicles in the midgut were small and more fragmented or disappeared after SeCDAs were silenced. Additionally, the PM structure was scarce, and the chitin microfilament structure was loose and chaotic. It was indicated in all of the above results that Group V CDAs are essential for the growth and structuring of the intestinal wall cell layer in the midgut of S. exigua. Additionally, the midgut tissue and the PM structure and composition were affected by Group V CDAs.
Assuntos
Beta vulgaris , Animais , Spodoptera/genética , Beta vulgaris/metabolismo , Larva/metabolismo , Quitina/metabolismo , Proteínas de Insetos/genéticaRESUMO
This review provides a report on the properties and recent advances in the application of chitosan and chitosan-based materials in cosmetics. Chitosan is a polysaccharide that can be obtained from chitin via the deacetylation process. Chitin most commonly is extracted from cell walls in fungi and the exoskeletons of arthropods, such as crustaceans and insects. Chitosan has attracted significant academic interest, as well as the attention of the cosmetic industry, due to its interesting properties, which include being a natural humectant and moisturizer for the skin and a rheology modifier. This review paper covers the structure of chitosan, the sources of chitosan used in the cosmetic industry, and the role played by this polysaccharide in cosmetics. Future aspects regarding applications of chitosan-based materials in cosmetics are also mentioned.
Assuntos
Quitosana , Cosméticos , Animais , Quitosana/química , Quitina/química , Polissacarídeos/química , Crustáceos/química , Materiais Biocompatíveis/químicaRESUMO
A breakthrough in cosmeceuticals by utilizing insects as major ingredients in cosmetic products is gaining popularity. Therefore, the interest in rare sources of ingredients, for instance, from the Oryctes rhinoceros beetle, can bring huge benefits in terms of turning pests into wealth. In this study, curcumin was chosen as the active ingredient loaded into chitosan-gold nanoparticles (CCG-NP). Curcumin is unstable and has poor absorption, a high rate of metabolism, and high sensitivity to light. These are all factors that contribute to the low bioavailability of any substance to reach the target cells. Therefore, chitosan extracted from O. rhinoceros could be used as a drug carrier to overcome these limitations. In order to overcome these limitations, CCG-NPs were synthesized and characterized. Chitosan was isolated from O. rhinoceros and CCG-NPs were successfully synthesized at 70 °C for 60 min under optimal conditions of a reactant ratio of 2:0.5 (0.5 mM HAuCl4: 0.1% curcumin). Characterizations of CCG-NP involved FTIR analysis, zeta potential, morphological properties determination by FE-SEM, particle size analysis, crystallinity study by XRD, and elemental analysis by EDX. The shape of the CCG-NP was round, its size was 128.27 d.nm, and the value of the zeta potential was 20.2 ± 3.81 mV. The IC50 value for cell viability is 58%, indicating a mild toxicity trait. To conclude, CCG-NP is a stable, spherical, nano-sized, non-toxic, and homogeneous solution.
Assuntos
Quitosana , Besouros , Cosmecêuticos , Curcumina , Nanopartículas Metálicas , Nanopartículas , Animais , Quitina , Ouro , Portadores de Fármacos , Tamanho da PartículaRESUMO
Arthropods, the largest animal phylum, including insects, spiders and crustaceans, are characterized by their bodies being covered primarily in chitin. Besides being a source of this biopolymer, crustaceans have also attracted attention from biotechnology given their cuticles' remarkable and diverse mechanical properties. The goose barnacle, Pollicipes pollicipes, is a sessile crustacean characterized by their body parts covered with calcified plates and a peduncle attached to a substrate covered with a cuticle. In this work, the composition and structure of these plates and cuticle were characterized. The morphology of the tergum plate revealed a compact homogeneous structure of calcium carbonate, a typical composition among marine invertebrate hard structures. The cuticle consisted of an outer zone covered with scales and an inner homogenous zone, predominantly organic, composed of successive layers parallel to the surface. The scales are similar to the tergum plate and are arranged in parallel and oriented semi-vertically. Structural and biochemical characterization confirmed a bulk composition of É-chitin and suggested the presence of elastin-based proteins and collagen. The mechanical properties of the cuticle showed that the stiffness values are within the range of values described in elastomers and soft crustacean cuticles resulting from molting. The removal of calcified components exposed round holes, detailed the structure of the lamina, and changed the protein properties, increasing the rigidity of the material. This flexible cuticle, predominantly inorganic, can provide bioinspiration for developing biocompatible and mechanically suitable biomaterials for diverse applications, including in tissue engineering approaches.
Assuntos
Artrópodes , Thoracica , Animais , Thoracica/metabolismo , Quitina/químicaRESUMO
Chitin degradation is a vital process for the growth of insects. Chitin hydrolase OfChtI and ß-N-acetylhexosaminidase OfHex1 are two key enzymes involved in hydrolyzing the chitin of insects' cuticles. Thus, they are considered promising targets for preventing and controlling agricultural pests. In this study, we designed and synthesized a series of compounds bearing N-methylcarbamoylguanidinyl and N-methoxycarbonylguanidinyl as dual-target inhibitors of OfChtI and OfHex1. The most potent dual-target inhibitor, compound 10d, exhibited half-maximal inhibitory concentration (IC50) values of 27.1 and 249.1 nM against OfChtI and OfHex1, respectively. Furthermore, the insecticidal activity studies showed that compounds 10a-c, 10k, and 10l bear significant effects on the growth and development of Plutella xylostella. This work provides a promising method for the development of novel chitin hydrolase inhibitors as potential pest control and management agents.
Assuntos
Inseticidas , Lepidópteros , Mariposas , Animais , Quitina/metabolismo , Insetos/metabolismo , Lepidópteros/metabolismo , beta-N-Acetil-Hexosaminidases , Inseticidas/farmacologiaRESUMO
Natural polymer hydrogels are widely used in various aspects of biomedical engineering, such as wound repair, owing to their abundance and biosafety. However, the low strength and the lack of function restricted their development and application scope. Herein, we fabricated novel multifunctional chitin/PEGDE-tannic acid (CPT) hydrogels through chemical- and physical-crosslinking strategies, using chitin as the base material, polyethylene glycol diglycidyl ether (PEGDE) and tannic acid (TA) as crosslinking agents, and 90 % ethanol as the regenerative bath. CPT hydrogels maintained a stable three-dimensional porous structure with suitable water contents and excellent biocompatibility. The mechanical properties of hydrogels were greatly improved (tensile stress up to 5.43 ± 1.14 MPa). Moreover, CPT hydrogels had good antibacterial, antioxidant, and hemostatic activities and could substantially promote wound healing in a rat model of full-thickness skin defect by regulating inflammatory responses and promoting collagen deposition and blood vessel formation. Therefore, this work provides a useful strategy to fabricate novel multifunctional CPT hydrogels with excellent mechanical, antibacterial, antioxidant, hemostatic, and biocompatible properties. CPT hydrogels could be promising candidates for wound healing.
Assuntos
Hemostáticos , Ratos , Animais , Hemostáticos/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Hidrogéis/farmacologia , Hidrogéis/química , Cicatrização/fisiologia , Antibacterianos/farmacologia , Antibacterianos/química , Quitina/farmacologiaRESUMO
In this study, two chitinases (VhChit2 and VhChit6) from Vibrio harveyi possessed specific activity of 36.5 and 20.8 U/mg, respectively. Structure analysis indicates that their amino acid composition of active sites is similar, but the substrate binding cleft of VhChit2 is deeper than that of VhChit6. They were shown to have a synergistic effect on chitin degradation, and the optimized degree of synergy and the degradation ratio of chitin reached 1.75 and 23.6 %, respectively. The saturated adsorption capacity of VhChit2 and VhChit6 adsorbed in 1 g of chitin was 48.5 and 33.4 mg. It was found that VhChit2 and VhChit6 had different adsorption sites on chitin, making more enzymes absorbed by chitin. Furthermore, the combined use of VhChit2 and VhChit6 increased their binding force of chitinases with the substrate. The synergistic action of VhChit2 and VhChit6 may be attributed to their different adsorption sites on chitin and the increased binding force with chitin.