Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.179
Filtrar
1.
Neoplasma ; 71(3): 279-288, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38958715

RESUMO

Osteosarcoma (OS) is a common primary bone tumor in children and adolescents. Circular RNA (circRNA)-IARS acts as an oncogene in multiple human tumors. However, the circ-IARS function in OS is unclear. This research aimed to elucidate the roles and mechanisms of circ-IARS in OS. In this study, circ-IARS expressions were raised in OS tissues and cells. circ-IARS expressions were closely related to clinical stage and distant metastasis. Furthermore, overall survival rates were reduced in OS patients with high circ-IARS levels. Also, silencing circ-IARS weakened OS cell proliferation and invasion, yet enhanced cell ferroptosis. Mechanistically, circ-IARS targeted miR-188-5p to regulate RAB14 expressions in OS cells. Moreover, circ-IARS knockdown repressed OS cell proliferation, invasion, and induced ferroptosis, yet these impacts were abolished by co-transfection with anti-miR-188-5p or pcDNA-RAB14. Meanwhile, interference with circ-IARS reduced OS cell proliferation, and decreased RAB14 (a member of the RAS oncogene family), GPX4, and xCT (crucial ferroptosis regulators) expressions in vivo. In conclusion, circ-IARS facilitated OS progression via miR-188-5p/RAB14.


Assuntos
Neoplasias Ósseas , Proliferação de Células , Ferroptose , MicroRNAs , Osteossarcoma , RNA Circular , Proteínas rab de Ligação ao GTP , Humanos , Osteossarcoma/genética , Osteossarcoma/patologia , Osteossarcoma/metabolismo , MicroRNAs/genética , RNA Circular/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Ferroptose/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Masculino , Linhagem Celular Tumoral , Feminino , Progressão da Doença , Camundongos , Animais , Regulação Neoplásica da Expressão Gênica
3.
World J Gastroenterol ; 30(22): 2843-2848, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38947286

RESUMO

Hepatocellular carcinoma (HCC) is the most common and deadliest subtype of liver cancer worldwide and, therefore, poses an enormous threat to global health. Understanding the molecular mechanisms underlying the development and progression of HCC is central to improving our clinical approaches. PIWI-interacting RNAs (piRNAs) are a class of small non-coding RNAs that bind to PIWI family proteins to regulate gene expression at transcriptional and post-transcriptional levels. A growing body of work shows that the dysregulation of piRNAs plays a crucial role in the progression of various human cancers. In this editorial, we report on the current knowledge of HCC-associated piRNAs and their potential clinical utility. Based on the editorial by Papadopoulos and Trifylli, on the role and clinical evaluation of exosomal circular RNAs in HCC, we highlight this other emerging class of non-coding RNAs.


Assuntos
Carcinoma Hepatocelular , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , RNA Interferente Pequeno , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , RNA Interferente Pequeno/metabolismo , Exossomos/metabolismo , Exossomos/genética , RNA Circular/metabolismo , RNA Circular/genética , Progressão da Doença , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
4.
Cell Mol Biol Lett ; 29(1): 95, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956466

RESUMO

BACKGROUND: An increasing number of studies have demonstrated the association of circular RNAs (circRNAs) with the pathological processes of various diseases and their involvement in the onset and progression of multiple cancers. Nevertheless, the functional roles and underlying mechanisms of circRNAs in the autophagy regulation of gastric cancer (GC) have not been fully elucidated. METHODS: We used transmission electron microscopy and the mRFP-GFP-LC3 dual fluorescent autophagy indicator to investigate autophagy regulation. The cell counting kit-8 assay, colony formation assay, 5-ethynyl-2'-deoxyuridine incorporation assay, Transwell assay, and Western blot assay were conducted to confirm circPTPN22's influence on GC progression. Dual luciferase reporter assays validated the binding between circPTPN22 and miR-6788-5p, as well as miR-6788-5p and p21-activated kinase-1 (PAK1). Functional rescue experiments assessed whether circPTPN22 modulates PAK1 expression by competitively binding miR-6788-5p, affecting autophagy and other biological processes in GC cells. We investigated the impact of circPTPN22 on in vivo GC tumors using a nude mouse xenograft model. Bioinformatics tools predicted upstream regulatory transcription factors and binding proteins of circPTPN22, while chromatin immunoprecipitation and ribonucleoprotein immunoprecipitation assays confirmed the binding status. RESULTS: Upregulation of circPTPN22 in GC has been shown to inhibit autophagy and promote cell proliferation, migration, and invasion. Mechanistically, circPTPN22 directly binds to miR-6788-5p, subsequently regulating the expression of PAK1, which activates protein kinase B (Akt) and extracellular signal-regulated kinase (Erk) phosphorylation. This modulation ultimately affects autophagy levels in GC cells. Additionally, runt-related transcription factor 1 (RUNX1) negatively regulates circPTPN22 expression, while RNA-binding proteins such as FUS (fused in sarcoma) and ELAVL1 (recombinant ELAV-like protein 1) positively regulate its expression. Inhibition of the autophagy pathway can increase FUS expression, further upregulating circPTPN22 in GC cells, thereby exacerbating the progression of GC. CONCLUSION: Under the regulation of the transcription factor RUNX1 and RNA-binding proteins FUS and ELAVL1, circPTPN22 activates the phosphorylation of Akt and Erk through the miR-6788-5p/PAK1 axis, thereby modulating autophagy in GC cells. Inhibition of autophagy increases FUS, which in turn upregulates circPTPN22, forming a positive feedback loop that ultimately accelerates the progression of GC.


Assuntos
Autofagia , Movimento Celular , Proliferação de Células , Subunidade alfa 2 de Fator de Ligação ao Core , Proteína Semelhante a ELAV 1 , MicroRNAs , RNA Circular , Proteína FUS de Ligação a RNA , Neoplasias Gástricas , Quinases Ativadas por p21 , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Autofagia/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética , Proliferação de Células/genética , Proteína FUS de Ligação a RNA/metabolismo , Proteína FUS de Ligação a RNA/genética , Movimento Celular/genética , Linhagem Celular Tumoral , Animais , Proteína Semelhante a ELAV 1/metabolismo , Proteína Semelhante a ELAV 1/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Camundongos , Invasividade Neoplásica , Camundongos Endogâmicos BALB C
5.
J Immunol Res ; 2024: 9527268, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966668

RESUMO

Aberrant accumulation of circulating follicular helper T cells (cTfh) has been found in the peripheral blood mononuclear cells (PBMCs) of Graves' disease (GD) patients. However, the underlying mechanism that contributes to the imbalance of cTfh cells remains unknown. Previously, studies described a GD-related circular RNAs (circRNAs)-circZNF644 that might be associated with cTfh cells. This study aimed to investigate the role of circZNF644 on cTfh cells in GD patients. Here, we found that circZNF644 was highly stable expression in the PBMCs of GD patients, which was positively correlated with the serum levels of TSH receptor autoantibodies (TRAb). Knockdown of circZNF644 caused a reduction of the proportion of cTfh cells in vitro. Mechanistically, circZNF644 served as a ceRNA for miR-29a-3p to promote ICOS expression, resulting in increased cTfh cells. In the PBMCs of GD patients, circZNF644 expression was positively correlated with ICOS expression and the percentage of cTfh cells, but negatively related to miR-29a-3p expression. Additionally, a strong relationship between circZNF644 and IL-21 was revealed in GD patients, and silencing of circZNF644 inhibited IL-21 expression. Our study elucidated that elevated expression of circZNF644 is a key feature in the development of GD and may contribute to the pathogenic role of cTfh cells in GD.


Assuntos
Doença de Graves , MicroRNAs , RNA Circular , Células T Auxiliares Foliculares , Humanos , Doença de Graves/genética , Doença de Graves/imunologia , RNA Circular/genética , Masculino , Feminino , Células T Auxiliares Foliculares/imunologia , Adulto , MicroRNAs/genética , Pessoa de Meia-Idade , Autoanticorpos/imunologia , Autoanticorpos/sangue , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Interleucinas/genética , Interleucinas/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Regulação da Expressão Gênica
6.
Cell Biol Toxicol ; 40(1): 53, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970639

RESUMO

Diabetic retinopathy (DR), a significant and vision-endangering complication associated with diabetes mellitus, constitutes a substantial portion of acquired instances of preventable blindness. The progression of DR appears to prominently feature the loss of retinal cells, encompassing neural retinal cells, pericytes, and endothelial cells. Therefore, mitigating the apoptosis of retinal cells in DR could potentially enhance the therapeutic approach for managing the condition by suppressing retinal vascular leakage. Recent advancements have highlighted the crucial regulatory roles played by non-coding RNAs (ncRNAs) in diverse biological processes. Recent advancements have highlighted that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs), act as central regulators in a wide array of biogenesis and biological functions, exerting control over gene expression associated with histogenesis and cellular differentiation within ocular tissues. Abnormal expression and activity of ncRNAs has been linked to the regulation of diverse cellular functions such as apoptosis, and proliferation. This implies a potential involvement of ncRNAs in the development of DR. Notably, ncRNAs and apoptosis exhibit reciprocal regulatory interactions, jointly influencing the destiny of retinal cells. Consequently, a thorough investigation into the complex relationship between apoptosis and ncRNAs is crucial for developing effective therapeutic and preventative strategies for DR. This review provides a fundamental comprehension of the apoptotic signaling pathways associated with DR. It then delves into the mutual relationship between apoptosis and ncRNAs in the context of DR pathogenesis. This study advances our understanding of the pathophysiology of DR and paves the way for the development of novel therapeutic strategies.


Assuntos
Apoptose , Retinopatia Diabética , RNA não Traduzido , Transdução de Sinais , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Retinopatia Diabética/terapia , Humanos , Apoptose/genética , Transdução de Sinais/genética , Animais , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Retina/metabolismo , Retina/patologia
7.
BMC Cancer ; 24(1): 827, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992592

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths globally, influenced by aberrant circRNA expression. Investigating circRNA-miRNA-mRNA interactions can unveil underlying mechanisms of HCC and identify potential therapeutic targets. METHODS: In this study, we conducted differential analyses of mRNAs, miRNAs, and circRNAs, and established their relationships using various databases such as miRanda, miRDB, and miTarBase. Additionally, functional enrichment and immune infiltration analyses were performed to evaluate the roles of key genes. We also conducted qPCR assays and western blotting (WB) to examine the expression levels of circRNA, CCL25, and MAP2K1 in both HCC cells and clinical samples. Furthermore, we utilized overexpression and knockdown techniques for circ_0000069 and conducted wound healing, transwell invasion assays, and a tumorigenesis experiment to assess the migratory and invasive abilities of HCC cells. RESULTS: Our findings revealed significant differential expression of 612 upregulated genes and 1173 downregulated genes in HCC samples compared to normal liver tissue. Additionally, 429 upregulated circRNAs and 453 downregulated circRNAs were identified. Significantly, circ_0000069 exhibited upregulation in HCC tissues and cell lines. The overexpression of circ_0000069 notably increased the invasion and migration capacity of Huh7 cells, whereas the downregulation of circ_0000069 reduced this capability in HepG2 cells. Furthermore, this effect was counteracted by CCL25 silencing or overexpression, separately. Animal studies further confirmed that the overexpression of hsa_circ_0000069 facilitated tumor growth in xenografted nude mice, while the inhibition of CCL25 attenuated this effect. CONCLUSION: Circ_0000069 appears to promote HCC progression by regulating CCL25, suggesting that both circ_0000069 and CCL25 can serve as potential therapeutic targets.


Assuntos
Carcinoma Hepatocelular , Quimiocinas CC , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , RNA Circular , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , RNA Circular/genética , Animais , Camundongos , Quimiocinas CC/genética , Quimiocinas CC/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Camundongos Nus , MicroRNAs/genética , Proliferação de Células/genética , Masculino
8.
Mol Cancer ; 23(1): 143, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992675

RESUMO

BACKGROUND: Emerging evidence indicates the pivotal involvement of circular RNAs (circRNAs) in cancer initiation and progression. Understanding the functions and underlying mechanisms of circRNAs in tumor development holds promise for uncovering novel diagnostic indicators and therapeutic targets. In this study, our focus was to elucidate the function and regulatory mechanism of hsa-circ-0003764 in hepatocellular carcinoma (HCC). METHODS: A newly discovered hsa-circ-0003764 (circPTPN12) was identified from the circbase database. QRT-PCR analysis was utilized to assess the expression levels of hsa-circ-0003764 in both HCC tissues and cells. We conducted in vitro and in vivo experiments to examine the impact of circPTPN12 on the proliferation and apoptosis of HCC cells. Additionally, RNA-sequencing, RNA immunoprecipitation, biotin-coupled probe pull-down assays, and FISH were employed to confirm and establish the relationship between hsa-circ-0003764, PDLIM2, OTUD6B, P65, and ESRP1. RESULTS: In HCC, the downregulation of circPTPN12 was associated with an unfavorable prognosis. CircPTPN12 exhibited suppressive effects on the proliferation of HCC cells both in vitro and in vivo. Mechanistically, RNA sequencing assays unveiled the NF-κB signaling pathway as a targeted pathway of circPTPN12. Functionally, circPTPN12 was found to interact with the PDZ domain of PDLIM2, facilitating the ubiquitination of P65. Furthermore, circPTPN12 bolstered the assembly of the PDLIM2/OTUD6B complex by promoting the deubiquitination of PDLIM2. ESRP1 was identified to bind to pre-PTPN12, thereby fostering the generation of circPTPN12. CONCLUSIONS: Collectively, our findings indicate the involvement of circPTPN12 in modulating PDLIM2 function, influencing HCC progression. The identified ESRP1/circPTPN12/PDLIM2/NF-κB axis shows promise as a novel therapeutic target in the context of HCC.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteínas com Domínio LIM , Neoplasias Hepáticas , NF-kappa B , RNA Circular , Proteínas de Ligação a RNA , Transdução de Sinais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , RNA Circular/genética , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , NF-kappa B/metabolismo , Camundongos , Animais , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Linhagem Celular Tumoral , Progressão da Doença , Apoptose/genética , Prognóstico , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Masculino , Feminino , Camundongos Nus
9.
Int J Biol Sci ; 20(9): 3570-3589, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993556

RESUMO

Background: Cisplatin (DDP) based combination chemotherapy is a vital method for the treatment of bladder cancer (BLca). Chemoresistance easily occurs in the course of cisplatin chemotherapy, which is one of the important reasons for the unfavorable prognosis of BLca patients. Circular RNAs (circRNAs) are widely recognized for their role in the development and advancement of BLca. Nevertheless, the precise role of circRNAs in DDP resistance for BLca remains unclear. Methods: To study the properties of circATIC, sanger sequencing, agarose gel electrophoresis and treatment with RNase R/Actinomycin D were utilized. RT-qPCR assay was utilized to assess the expression levels of circRNA, miRNA and mRNA in BLca tissues and cells. Functional experiments were conducted to assess the function of circATIC in BLca progression and chemosensitivity in vitro. Various techniques such as FISH, Dual-luciferase reporter assay, TRAP, RNA digestion assay, RIP and ChIRP assay were used to investigate the relationships between PTBP1, circATIC, miR-1247-5p and RCC2. Orthotopic bladder cancer model, xenograft subcutaneous tumor model and xenograft lung metastasis tumor model were performed to indicate the function and mechanism of circATIC in BLca progression and chemosensitivity in vivo. Results: In our study, we observed that circATIC expression was significantly enhanced in BLca tissues and cells and DDP resistant cells. Patients with higher circATIC expression have larger tumor diameter, higher incidence of postoperative metastasis and lower overall survival rate. Further experiments showed that circATIC accelerated BLca cell growth and metastasis and induced DDP resistance. Mechanistically, alternative splicing enzyme PTBP1 mediated the synthesis of circATIC. circATIC could enhance RCC2 mRNA stability via sponging miR-1247-5p or constructing a circATIC/LIN28A/RCC2 RNA-protein ternary complex. Finally, circATIC promotes RCC2 expression to enhance Epithelial-Mesenchymal Transition (EMT) progression and activate JNK signal pathway, thus strengthening DDP resistance in BLca cells. Conclusion: Our study demonstrated that circATIC promoted BLca progression and DDP resistance, and could serve as a potential target for BLca treatment.


Assuntos
Cisplatino , Resistencia a Medicamentos Antineoplásicos , Ribonucleoproteínas Nucleares Heterogêneas , Proteína de Ligação a Regiões Ricas em Polipirimidinas , RNA Circular , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/genética , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Cisplatino/uso terapêutico , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Animais , Linhagem Celular Tumoral , Camundongos , Camundongos Nus , MicroRNAs/metabolismo , MicroRNAs/genética , Masculino , Feminino , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Camundongos Endogâmicos BALB C , Proliferação de Células/efeitos dos fármacos
10.
Theranostics ; 14(10): 4058-4075, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994030

RESUMO

Background: Knowledge about the pathogenesis of depression and treatments for this disease are lacking. Epigenetics-related circRNAs are likely involved in the mechanism of depression and have great potential as treatment targets, but their mechanism of action is still unclear. Methods: Circular RNA UBE2K (circ-UBE2K) was screened from peripheral blood of patients with major depressive disorder (MDD) and brain of depression model mice through high-throughput sequencing. Microinjection of circ-UBE2K overexpression lentivirus and adeno-associated virus for interfering with microglial circ-UBE2K into the mouse hippocampus was used to observe the role of circ-UBE2K in MDD. Sucrose preference, forced swim, tail suspension and open filed tests were performed to evaluate the depressive-like behaviors of mice. Immunofluorescence and Western blotting analysis of the effects of circ-UBE2K on microglial activation and immune inflammation. Pull-down-mass spectrometry assay, RNA immunoprecipitation (RIP) test and fluorescence in situ hybridization (FISH) were used to identify downstream targets of circ-UBE2K/ HNRNPU (heterogeneous nuclear ribonucleoprotein U) axis. Results: In this study, through high-throughput sequencing and large-scale screening, we found that circ-UBE2K levels were significantly elevated both in the peripheral blood of patients with MDD and in the brains of depression model mice. Functionally, circ-UBE2K-overexpressing mice exhibited worsened depression-like symptoms, elevated brain inflammatory factor levels, and abnormal microglial activation. Knocking down circ-UBE2K mitigated these changes. Mechanistically, we found that circ-UBE2K binds to heterogeneous nuclear ribonucleoprotein U (HNRNPU) to form a complex that upregulates the expression of the parental gene ubiquitin conjugating enzyme E2 K (UBE2K), leading to abnormal microglial activation and neuroinflammation and promoting the occurrence and development of depression. Conclusions: The findings of the present study revealed that the expression of circUBE2K, which combines with HNRNPU to form the circUBE2K/HNRNPU complex, is increased in microglia after external stress, thus regulating the expression of the parental gene UBE2K and mediating the abnormal activation of microglia to induce neuroinflammation, promoting the development of MDD. These results indicate that circ-UBE2K plays a newly discovered role in the pathogenesis of depression.


Assuntos
Transtorno Depressivo Maior , Modelos Animais de Doenças , Microglia , RNA Circular , Enzimas de Conjugação de Ubiquitina , Animais , RNA Circular/genética , RNA Circular/metabolismo , Microglia/metabolismo , Humanos , Camundongos , Masculino , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Feminino , Depressão/genética , Depressão/metabolismo , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL , Adulto , Pessoa de Meia-Idade
11.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39000605

RESUMO

Non-coding RNAs (ncRNAs) are a heterogeneous group, in terms of structure and sequence length, consisting of RNA molecules that do not code for proteins. These ncRNAs have a central role in the regulation of gene expression and are virtually involved in every process analyzed, ensuring cellular homeostasis. Although, over the years, much research has focused on the characterization of non-coding transcripts of nuclear origin, improved bioinformatic tools and next-generation sequencing (NGS) platforms have allowed the identification of hundreds of ncRNAs transcribed from the mitochondrial genome (mt-ncRNA), including long non-coding RNA (lncRNA), circular RNA (circRNA), and microRNA (miR). Mt-ncRNAs have been described in diverse cellular processes such as mitochondrial proteome homeostasis and retrograde signaling; however, the function of the majority of mt-ncRNAs remains unknown. This review focuses on a subgroup of human mt-ncRNAs whose dysfunction is associated with both failures in cell cycle regulation, leading to defects in cell growth, cell proliferation, and apoptosis, and the development of tumor hallmarks, such as cell migration and metastasis formation, thus contributing to carcinogenesis and tumor development. Here we provide an overview of the mt-ncRNAs/cancer relationship that could help the future development of new biomedical applications in the field of oncology.


Assuntos
Neoplasias , RNA não Traduzido , Humanos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Divisão Celular/genética , Animais , Mitocôndrias/metabolismo , Mitocôndrias/genética , Regulação Neoplásica da Expressão Gênica , RNA Circular/genética , RNA Circular/metabolismo , Genoma Mitocondrial , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
12.
Curr Gene Ther ; 24(5): 395-409, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005062

RESUMO

Pulmonary fibrosis is a class of fibrosing interstitial lung diseases caused by many pathogenic factors inside and outside the lung, with unknown mechanisms and without effective treatment. Therefore, a comprehensive understanding of the molecular mechanism implicated in pulmonary fibrosis pathogenesis is urgently needed to develop new and effective measures. Although circRNAs have been widely acknowledged as new contributors to the occurrence and development of diseases, only a small number of circRNAs have been functionally characterized in pulmonary fibrosis. Here, we systematically review the biogenesis and functions of circRNAs and focus on how circRNAs participate in pulmonary fibrogenesis by influencing various cell fates. Meanwhile, we analyze the current exploration of circRNAs as a diagnostic biomarker, vaccine, and therapeutic target in pulmonary fibrosis and objectively discuss the challenges of circRNA- based therapy for pulmonary fibrosis. We hope that the review of the implication of circRNAs will provide new insights into the development circRNA-based approaches to treat pulmonary fibrosis.


Assuntos
Fibrose Pulmonar , RNA Circular , RNA Circular/genética , Humanos , Fibrose Pulmonar/genética , Biomarcadores , Animais , MicroRNAs/genética , Pulmão/patologia , Pulmão/metabolismo
13.
Theor Appl Genet ; 137(7): 176, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969812

RESUMO

Circular RNAs (circRNAs), a class of non-coding RNA molecules, are recognized for their unique functions; however, their responses to herbicide stress in Brassica napus remain unclear. In this study, the role of circRNAs in response to herbicide treatment was investigated in two rapeseed cultivars: MH33, which confers non-target-site resistance (NTSR), and EM28, which exhibits target-site resistance (TSR). The genome-wide circRNA profiles of herbicide-stressed and non-stressed seedlings were analyzed. The findings indicate that NTSR seedlings exhibited a greater abundance of circRNAs, shorter lengths of circRNAs and their parent genes, and more diverse functions of parent genes compared with TSR seedlings. Compared to normal-growth plants, the herbicide-stressed group exhibited similar trends in the number of circRNAs, functions of parent genes, and differentially expressed circRNAs as observed in NTSR seedlings. In addition, a greater number of circRNAs that function as competing microRNA (miRNA) sponges were identified in the herbicide stress and NTSR groups compared to the normal-growth and TSR groups, respectively. The differentially expressed circRNAs were validated by qPCR. The differntially expressed circRNA-miRNA networks were predicted, and the mRNAs targeted by these miRNAs were annotated. Our results suggest that circRNAs play a crucial role in responding to herbicide stress, exhibiting distinct responses between NTSR and TSR in rapeseed. These findings offer valuable insights into the mechanisms underlying herbicide resistance in rapeseed.


Assuntos
Brassica napus , Regulação da Expressão Gênica de Plantas , Resistência a Herbicidas , Herbicidas , RNA Circular , RNA de Plantas , Brassica napus/genética , Brassica napus/efeitos dos fármacos , Brassica napus/crescimento & desenvolvimento , RNA Circular/genética , Herbicidas/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , RNA de Plantas/genética , Resistência a Herbicidas/genética , Plântula/genética , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Estresse Fisiológico/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Genoma de Planta
14.
J Prev Alzheimers Dis ; 11(4): 1055-1062, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39044517

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease and there is by far no effective treatment for it, especially in its late stage. Circular RNAs (circRNAs), known as a class of non-coding RNAs are widely observed in eukaryotic transcriptomes, and are reported to play an important role in neurodegenerative diseases including AD. circRNAs usually act as microRNA (miRNA) inhibitors or «sponges¼ to regulate the function of miRNAs, leading to subsequent changes in protein activities and functions. Accumulating evidence indicates that circRNAs can serve as potential biomarker in AD early prediction. The functional roles of circRNAs are very versatile including miRNAs binding - thus affecting downstream gene expression, generating abnormally translated protein peptides, and affecting epigenetic modifications which subsequently affect AD related gene expressions. Therefore, identifying AD-related circRNAs can contribute to AD early diagnosis and intervention. In this work, we collected and curated an AD-related circRNA dataset; by exploring the circRNAs' corresponding DNA loci distribution in chromatin 3D conformation (3D genome) and utilize the such 3D genome information, we were able to selected a concise yet predictively effective circRNA panel, based on which, significantly better AD prediction machine learning models were achieved.


Assuntos
Doença de Alzheimer , RNA Circular , Doença de Alzheimer/genética , Doença de Alzheimer/diagnóstico , Humanos , RNA Circular/genética , Biomarcadores , Aprendizado de Máquina , MicroRNAs/genética
15.
J Ovarian Res ; 17(1): 151, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039600

RESUMO

BACKGROUND: Polycystic ovarian syndrome (PCOS) accounts for about 75% of anovulatory infertility. The cause of PCOS is not clear. CircRNAs acting as miRNA sponges mediate the post-transcriptional regulation of multiple genes. CYP19A1 is a limiting enzyme in the ovarian steroidogenesis pathway. However, the mechanism of circRNAs regulating granulosa cell (GC) estradiol secretion in PCOS remains to be elucidated. METHODS: Bioinformatics was used to predict the potential target miRNAs of circ_0043532 and target genes of miR-1270. Target miRNAs and mRNA expression were verified by qRT-PCR in GCs from 45 women with PCOS and 65 non-PCOS. Western blot, ELISA and dual-luciferase reporter assays were applied to confirm the substrate of miR-1270. RESULTS: Circ_0043532 and CYP19A1 were significant up-regulation in GCs from patients with PCOS. The predicted target miRNAs of circ_0053432, miR-1270, miR-576-5p, miR-421 and miR-142-5p, were notably decreased in GCs from patients with PCOS. Mechanistic experiments showed that circ_0043532 specifically binds to miR-1270. MiR-1270 was negatively regulated by circ_0043532. Concomitantly, miR-1270 inhibited CYP19A1 expression and estradiol production, which could be reversed by circ_0043532 over-expression. CONCLUSION: We identified that circ_0043532/miR-1270/CYP19A1 axis contributes to the aberrant steroidogenesis of GCs from patients with PCOS. This study broadens the spectrum of pathogenic factors of PCOS, and circ_0043532 might be a potential therapeutic target for PCOS.


Assuntos
Aromatase , MicroRNAs , Síndrome do Ovário Policístico , RNA Circular , Regulação para Cima , Humanos , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Aromatase/genética , Aromatase/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Adulto , Células da Granulosa/metabolismo , RNA Endógeno Competitivo
16.
Elife ; 132024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041323

RESUMO

Circular RNAs represent a class of endogenous RNAs that regulate gene expression and influence cell biological decisions with implications for the pathogenesis of several diseases. Here, we disclose a novel gene-regulatory role of circHIPK3 by combining analyses of large genomics datasets and mechanistic cell biological follow-up experiments. Using time-course depletion of circHIPK3 and specific candidate RNA-binding proteins, we identify several perturbed genes by RNA sequencing analyses. Expression-coupled motif analyses identify an 11-mer motif within circHIPK3, which also becomes enriched in genes that are downregulated upon circHIPK3 depletion. By mining eCLIP datasets and combined with RNA immunoprecipitation assays, we demonstrate that the 11-mer motif constitutes a strong binding site for IGF2BP2 in bladder cancer cell lines. Our results suggest that circHIPK3 can sequester IGF2BP2 as a competing endogenous RNA (ceRNA), leading to target mRNA stabilization. As an example of a circHIPK3-regulated gene, we focus on the STAT3 mRNA as a specific substrate of IGF2BP2 and validate that manipulation of circHIPK3 regulates IGF2BP2-STAT3 mRNA binding and, thereby, STAT3 mRNA levels. Surprisingly, absolute copy number quantifications demonstrate that IGF2BP2 outnumbers circHIPK3 by orders of magnitude, which is inconsistent with a simple 1:1 ceRNA hypothesis. Instead, we show that circHIPK3 can nucleate multiple copies of IGF2BP2, potentially via phase separation, to produce IGF2BP2 condensates. Our results support a model where a few cellular circHIPK3 molecules can induce IGF2BP2 condensation, thereby regulating key factors for cell proliferation.


Assuntos
RNA Circular , Proteínas de Ligação a RNA , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , RNA Circular/genética , RNA Circular/metabolismo , Linhagem Celular Tumoral , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ligação Proteica , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , RNA Endógeno Competitivo , Proteínas Serina-Treonina Quinases
17.
PLoS One ; 19(7): e0302772, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39042659

RESUMO

Noncoding RNAs play a part in many chronic diseases and interact with each other to regulate gene expression. MicroRNA-9-5p (miR9) has been thought to be a potential inhibitor of diabetic cardiomyopathy. Here we examined the role of miR9 in regulating cardiac fibrosis in the context of diabetic cardiomyopathy. We further expanded our studies through investigation of a regulatory circularRNA, circRNA_012164, on the action of miR9. We showed at both the in vivo and in vitro level that glucose induced downregulation of miR9 and upregulation of circRNA_012164 resulted in the subsequent upregulation of downstream fibrotic genes. Further, knockdown of circRNA_012164 shows protective effects in cardiac endothelial cells and reverses increased transcription of genes associated with fibrosis and fibroblast proliferation through a regulatory axis with miR9. This study presents a novel regulatory axis involving noncoding RNA that is evidently important in the development of cardiac fibrosis in diabetic cardiomyopathy.


Assuntos
Cardiomiopatias Diabéticas , Fibrose , MicroRNAs , RNA Circular , MicroRNAs/genética , MicroRNAs/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/patologia , Animais , RNA Circular/genética , RNA Circular/metabolismo , Camundongos , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , RNA/genética , RNA/metabolismo , Glucose/metabolismo , Regulação da Expressão Gênica , Proliferação de Células/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Ratos , Camundongos Endogâmicos C57BL
18.
J Exp Clin Cancer Res ; 43(1): 200, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39030638

RESUMO

BACKGROUND: The progression of non-small cell lung cancer (NSCLC) is significantly influenced by circular RNAs (circRNAs), especially in tumor hypoxia microenvironment. However, the precise functions and underlying mechanisms of dysregulated circRNAs in NSCLC remain largely unexplored. METHODS: Differentially expressed circRNAs in NSCLC tissues were identified through high-throughput RNA sequencing. The characteristics of circ_0007386 were rigorously confirmed via Sanger sequencing, RNase R treatment and actinomycin D treatment. The effects of circ_0007386 on proliferation and apoptosis were investigated using CCK8, cloning formation assays, TUNEL staining, and flow cytometry assays in vitro. In vivo, xenograft tumor models were used to evaluate its impact on proliferation. Mechanistically, the regulatory relationships of circ_0007386, miR-383-5p and CIRBP were examined through dual luciferase reporter assays and rescue experiments. Additionally, we detected the binding of EIF4A3 to CRIM1 pre-mRNA by RNA immunoprecipitation and the interaction between YAP1 and EIF4A3 under hypoxic conditions by co-immunoprecipitation. RESULTS: Our investigation revealed a novel circRNA, designated as circ_0007386, that was upregulated in NSCLC tissues and cell lines. Circ_0007386 modulated proliferation and apoptosis in NSCLC both in vitro and in vivo. Functionally, circ_0007386 acted as a sponge for miR-383-5p, targeting CIRBP, which influenced NSCLC cell proliferation and apoptosis via the PI3K/AKT signaling pathway. Furthermore, under hypoxic conditions, the interaction between YAP1 and EIF4A3 was enhanced, leading to the displacement of EIF4A4 from binding to CRIM1 pre-mRNA. This facilitated the back-splicing of CRIM1 pre-mRNA, increasing the formation of circ_0007386. The circ_0007386/miR-383-5p/CIRBP axis was significantly associated with the clinical features and prognosis of NSCLC patients. CONCLUSIONS: Circ_0007386, regulated by YAP1-EIF4A3 interaction under hypoxia conditions, plays an oncogenic role in NSCLC progression via the miR-383-5p/CIRBP axis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Progressão da Doença , Fator de Iniciação 4A em Eucariotos , Neoplasias Pulmonares , RNA Circular , Proteínas de Sinalização YAP , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Animais , Proteínas de Sinalização YAP/metabolismo , Camundongos , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4A em Eucariotos/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Feminino , Linhagem Celular Tumoral , Proliferação de Células , Precursores de RNA/metabolismo , Precursores de RNA/genética , Masculino , Splicing de RNA , Apoptose , MicroRNAs/genética , MicroRNAs/metabolismo , Camundongos Nus , Regulação Neoplásica da Expressão Gênica , RNA Helicases DEAD-box
19.
J Physiol Pharmacol ; 75(3)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39042393

RESUMO

Circular E3 ubiquitin-protein ligase (circ-ITCH), a novel circRNA, is generated from several exons of itchy E3 ubiquitin protein ligase. Reports on circ-ITCH have discussed its pathogenic performance in human diseases. Based on this, this study determines whether and how circ-ITCH is involved in the pathogenesis of chronic glomerulonephritis (CGN). First, a rat model of CGN induced by cationic bovine serum albumin was established. Then, CGN rats were injected with lentiviruses interfering with the expression of circ-ITCH, miR-146a-5p or tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma (YWHAG). Then, blood urea nitrogen and serum creatinine levels were measured to evaluate renal function; inflammatory factor content and fibrosis marker expression in kidney tissue were detected; renal pathological damage was analyzed by hematoxylin-eosin staining and periodic acid-Schiff staining. Finally, the binding relationship between miR-146a-5p and circ-ITCH or YWHAG was verified. Elevating circ-ITCH or depleting miR-146a-5p improved renal function (both P<0.05), reduced inflammatory factor content and fibrosis marker expression (all P<0.05) and alleviated renal pathological damage in CGN rats. Circ-ITCH negatively regulated miR-146a-5p expression by adsorbing miR-146a-5p (P<0.05), and miR-146a-5p inhibited YWHAG expression by binding to the 3'-UTR of YWHAG (P<0.05). Loss of YWHAG reversed the protective effect of upregulated circ-ITCH in CGN rats (all P<0.05). We conclude that circ-ITCH improves renal function and attenuates inflammation and renal injury in rats with CGN via the miR-146a-5p/YWHAG axis.


Assuntos
Glomerulonefrite , Inflamação , Rim , MicroRNAs , Ratos Sprague-Dawley , Ubiquitina-Proteína Ligases , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos , Masculino , Rim/patologia , Rim/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Glomerulonefrite/metabolismo , Glomerulonefrite/genética , Inflamação/metabolismo , Inflamação/genética , RNA Circular/genética , RNA Circular/metabolismo , Doença Crônica
20.
Clin Transl Med ; 14(7): e1759, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38997803

RESUMO

BACKGROUND: CircRNA-encoded proteins (CEPs) are emerging as new players in health and disease, and function as baits for the common partners of their cognate linear-spliced RNA encoded proteins (LEPs). However, their prevalence across human tissues and biological roles remain largely unexplored. The placenta is an ideal model for identifying CEPs due to its considerable protein diversity that is required to sustain fetal development during pregnancy. The aim of this study was to evaluate circRNA translation in the human placenta, and the potential roles of the CEPs in placental development and dysfunction. METHODS: Multiomics approaches, including RNA sequencing, ribosome profiling, and LC-MS/MS analysis, were utilised to identify novel translational events of circRNAs in human placentas. Bioinformatics methods and the protein bait hypothesis were employed to evaluate the roles of these newly discovered CEPs in placentation and associated disorders. The pathogenic role of a recently identified CEP circPRKCB119aa in preeclampsia was investigated through qRT-PCR, Western blotting, immunofluorescence imaging and phenotypic analyses. RESULTS: We found that 528 placental circRNAs bound to ribosomes with active translational elongation, and 139 were translated to proteins. The CEPs showed considerable structural homology with their cognate LEPs, but are more stable, hydrophobic and have a lower molecular-weight than the latter, all of which are conducive to their function as baits. On this basis, CEPs are deduced to be closely involved in placental function. Furthermore, we focused on a novel CEP circPRKCB119aa, and illuminated its pathogenic role in preeclampsia; it enhanced trophoblast autophagy by acting as a bait to inhibit phosphorylation of the cognate linear isoform PKCß. CONCLUSIONS: We discovered a hidden circRNA-encoded proteome in the human placenta, which offers new insights into the mechanisms underlying placental development, as well as placental disorders such as preeclampsia. Key points A hidden circRNA-encoded proteome in the human placenta was extensively identified and systematically characterised. The circRNA-encoded proteins (CEPs) are potentially related to placental development and associated disorders. A novel conserved CEP circPRKCB119aa enhanced trophoblast autophagy by inhibiting phosphorylation of its cognate linear-spliced isoform protein kinase C (PKC) ß in preeclampsia.


Assuntos
Placenta , Pré-Eclâmpsia , Proteoma , RNA Circular , Humanos , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Gravidez , Feminino , RNA Circular/genética , RNA Circular/metabolismo , Placenta/metabolismo , Proteoma/metabolismo , Proteoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA