Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.678
Filtrar
1.
Chem Biol Drug Des ; 103(2): e14480, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38369620

RESUMO

Cerebral ischaemia-reperfusion (CIR) injury occurs in stroke patients after the restoration of cerebral perfusion. Sinigrin, a phytochemical found in cruciferous vegetables, exhibits strong antioxidant activity. This study investigated the role of sinigrin in oxidative stress using a CIR injury model. The effects of sinigrin were studied in middle cerebral artery occlusion (MCAO) rats and oxygen-glucose deprivation/reoxygenation (OGD/R)-injured SH-SY5Y cells. Sinigrin treatment improved brain injury and neurological deficits induced by MCAO surgery in rats. Sinigrin inhibited apoptosis in brain tissues and SH-SY5Y cells following OGD/R induction. Additionally, sinigrin elevated the levels of superoxide dismutase (SOD), glutathione (GSH) and glutathione peroxidase (GSH-Px) while reducing malondialdehyde (MDA) levels. Furthermore, sinigrin inhibited the toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88) signalling pathway. The anti-apoptotic and antioxidant activities of sinigrin in OGD/R-injured SH-SY5Y cells were reversed by TLR4 overexpression. In conclusion, sinigrin inhibits oxidative stress in CIR injury by suppressing the TLR4/MyD88 signalling pathway.


Assuntos
Isquemia Encefálica , Glucosinolatos , Neuroblastoma , Traumatismo por Reperfusão , Humanos , Ratos , Animais , Receptor 4 Toll-Like/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Glutationa/metabolismo , Oxigênio/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Apoptose
2.
Funct Integr Genomics ; 24(1): 24, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315263

RESUMO

This study is aimed at investigating the roles of Toll-like receptor 4 (TLR4) and microRNA-7 (miR-7) in colorectal cancer (CRC) development and progression. We assessed TLR4 and miR-7 expression in CRC cells and tissues using reverse transcription-quantitative polymerase chain reaction. The relationship between miR-7 and TLR4 was analyzed through dual luciferase reporter assays. MTT, wound healing, and cell invasion assays were conducted to examine the effects of TLR4 and miR-7 on CRC cell proliferation, migration, and invasion. Western blotting was used to explore the involvement of the TRAF6/NF-κB signaling pathway. miR-7 was underexpressed in CRC, while TLR4 levels were increased. miR-7 negatively regulated TLR4 expression and its knockdown enhanced CRC cell proliferation, migration, and invasion. TLR4 knockdown had the opposite effects. The TRAF6/NF-κB pathway was linked to TLR4's role in tumor progression. miR-7 might inhibit TRAF6/NF-κB target a signaling pathway of TLR4 and promote CRC occurrence. miR-7 may therefore be used as a sensitive biomarker in CRC patients.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , NF-kappa B/genética , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Colorretais/genética , Proliferação de Células
3.
Kaohsiung J Med Sci ; 40(2): 119-130, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38305705

RESUMO

Alzheimer's disease (AD) is a progressively debilitating neurodegenerative condition primarily affecting the elderly. Emerging research suggests that microRNAs (miRNAs) play a role in the development of AD. This study investigates the impact of miR-107-5p on neurological damage, oxidative stress, and immune responses in AD. We utilized APP/PS1 mice as AD mouse models and C57BL/6 J mice as controls. AD mice received treatment with agomir miR-107-5p (to overexpress miR-107-5p) or BAY11-7082 (an NF-κB pathway inhibitor). We evaluated learning and memory abilities through the Morris water maze test. Histopathological changes, hippocampal neuron distribution, and apoptosis were assessed using hematoxylin-eosin, Nissl, and TUNEL staining. Reactive oxygen species (ROS) levels, amyloid-Aß (Aß1-40/42) contents, and inflammatory factors (TNF-α, IL-6, IL-1ß) in hippocampal tissues were measured using ROS kits and enzyme-linked immunosorbent assay (ELISA). Microglial activation in hippocampal tissues was observed under a fluorescence microscope. miR-107-5p's binding to TLR4 was predicted via the TargetScan database and confirmed through a dual-luciferase assay. miR-107-5p expression, along with TLR4, APOE, and TREM2 in hippocampal tissue homogenate, and NF-κB p65 protein expression in the nucleus and cytoplasm were assessed via RT-qPCR and Western blot. Overexpression of miR-107-5p ameliorated hippocampal neurological damage, oxidative stress, and immune responses. This was evidenced by improved enhanced learning/memory abilities, reduced Aß1-40 and Aß1-42 levels, diminished neuronal injuries, decreased ROS and TNF-α, IL-6, and IL-1ß levels, increased APOE and TREM2 levels, and suppressed microglial activation. miR-107-5p directly targeted and inhibited TLR4 expression, leading to reduced nuclear translocation of NF-κB p65 in the NF-κB pathway. Inhibition of the NF-κB pathway similarly improved neurological damage, oxidative stress, and immune response in AD mice. miR-107-5p exerts its beneficial effects by suppressing the TLR4/NF-κB pathway, ultimately ameliorating neurological damage, oxidative stress, and immune responses in AD mice.


Assuntos
Doença de Alzheimer , MicroRNAs , Humanos , Camundongos , Animais , Idoso , NF-kappa B/genética , NF-kappa B/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Doença de Alzheimer/genética , Transdução de Sinais/genética , Espécies Reativas de Oxigênio , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Oxidativo/genética , Imunidade , Apolipoproteínas E/metabolismo
4.
Int Immunopharmacol ; 129: 111538, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38306830

RESUMO

CCl4-induced acute liver injury (ALI) is characterized by heightened autophagy, inflammation, and oxidative damage. Accumulating evidence suggests that harmine exerts beneficial effects in countering CCl4-induced ALI by mitigating inflammation and oxidative stress. However, the impact of autophagy on CCl4-induced ALI and the protective role of harmine remain unclear. This study aimed to investigate the potential protective effects of harmine against CCl4-induced ALI in mice by suppressing autophagy and inflammation. Male Kunming mice were orally administered harmine or bifendate for seven days. Subsequently, one hour after the final administration, the model group and treatment groups were intraperitoneally injected with CCl4 to induce ALI. The findings revealed that harmine significantly reduced the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum, and ameliorated the liver histopathological changes induced by CCl4. Furthermore, harmine diminished the levels of TNF-α and IL-6, restored the levels of glutathione (GSH) and superoxide dismutase (SOD), and suppressed the production of nitric oxide (NO) and malondialdehyde (MDA) in the liver. Mechanistically, harmine down-regulated LC3B II/I, p38 MAPK, TLR4, and NF-κB levels, while upregulating p62, Bcl-2, Beclin1, ULK1, and p-mTOR expression. In conclusion, harmine mitigated CCl4-induced ALI by inhibiting autophagy and inflammation through the p38 MAPK/mTOR autophagy pathway, the Bcl-2/Beclin1 pathway, and the TLR4/NF-κB pathway.


Assuntos
Harmina , NF-kappa B , Camundongos , Masculino , Animais , NF-kappa B/metabolismo , Harmina/farmacologia , Harmina/uso terapêutico , Receptor 4 Toll-Like/metabolismo , Proteína Beclina-1/metabolismo , Fígado/patologia , Inflamação/metabolismo , Glutationa/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Int Immunopharmacol ; 129: 111598, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38309092

RESUMO

BACKGROUND AND PURPOSE: Wuling capsule (WL) has good efficacy in the clinical treatment of chronic hepatitis B and liver injury. Liver fibrosis is a common pathological feature of chronic liver disease and may progress to irreversible cirrhosis and liver cancer. Accumulating evidence reveals that modulating macrophage polarization contribute to the therapy of liver fibrosis. However, the effects of WL on modulating macrophage polarization to relive liver fibrosis remain unclear. This study investigated the anti-liver fibrosis effects of WL in carbon tetrachloride (CCl4)-induced liver fibrosis in rats, and the modulation effects and underlying molecular mechanism on macrophage polarization. METHODS: A rat liver fibrosis model was constructed by intraperitoneal injection of 40 % CCl4 olive oil mixture. At 2, 4, 6, and 8 weeks, the histopathological status of the liver was assessed by hematoxylin-eosin (HE) and Masson staining; the liver biochemical indexes were measured in rat liver tissue. The expression levels of inflammatory cytokines in liver tissue were detected by ELISA. The mRNA levels and proteins expression of macrophage markers of different phenotypes, TLR4-NF-κB signaling pathway indicators were detected independently by ELISA, immunofluorescence, RT-PCR and western blotting. RESULTS: In vivo, WL treatment attenuated abnormal changes in weight, organ indices and biochemical indices, alleviated pathological changes, and reduced collagen fiber deposition as well as the expression of α-SMA in liver tissues. Further studies revealed that WL decreased the expression of the macrophage M1 polarization markers inducible nitric oxide synthase (iNOS), TNF-α, IL-6, and CD86, promoted the expression of the M2 macrophage polarization markers IL-10, CD206, and arginase-1 (Arg-1), and inhibited the activation of the TLR4-NF-κB signaling pathway via several key signaling proteins. In vitro, WL significantly suppressed macrophage M1 polarization, and promoted M2 polarization while boosted M1 polarization transform to M2 polarization in LPS-activated RAW264.7 cells. CONCLUSIONS: This study demonstrated that WL modulated macrophage polarization against liver fibrosis mainly by inhibiting the activation of the TLR4-NF-κB signaling pathway.


Assuntos
Medicamentos de Ervas Chinesas , NF-kappa B , Receptor 4 Toll-Like , Ratos , Animais , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Macrófagos/metabolismo
6.
Mol Biol Rep ; 51(1): 319, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38388914

RESUMO

OBJECTIVE: The prevalence of allergic rhinitis is high, making it a relatively common chronic condition. Countless patients suffer from seasonal Allergic rhinitis (AR). The objective of this investigation is to examine the potential involvement of common pollen allergens in seasonal allergic rhinitis, and study the proposed mechanism of Toll-like receptor 4 (TLR4)/Myeloid differentiation primary response gene 88 (MyD88) signaling pathway in the induction of AR. METHOD: A mouse AR model (sensitized group) was constructed with pollen extracts and ovalbumin (OVA) of Artemisia annua (An), Artemisia argyi (Ar) and Artemisia Sieversiana (Si), and thereafter, AR symptom score was performed. After successful modeling, mouse serum and nasal mucosa tissues were extracted for subsequent experiments. The expression levels of immunoglobulin E (IgE), Interleukin (IL)-4, IL-5, IL-13 and Tumor Necrosis Factor-α (TNF-α) in serum were detected using Enzyme-linked immunosorbent assay (ELISA); Hematoxylin-eosin (H&E) staining methods were used to observe the pathological changes of the nasal mucosal tissue; Utilizing immunohistochemistry (IHC) staining, the expression levels of TLR4, MyD88 and Nuclear factor kappa B (NF-κB) p65 in mouse nasal mucosa were quantified; The mRNA and protein expression levels of TLR4, MyD88 and NF-κB p65 in nasal mucosa of sensitized mice were detected with Quantitative reverse transcription PCR (qRT-PCR) and Western Blot. Finally, the in vitro culture of Human nasal mucosal epithelial cells (HNEpC) cells was conducted, and cells were treated with 200 µg/ml Artemisia annua pollen extract and OVA for 24 h. Western Blot assay was used to detect the expression level of TLR4, MyD88 and NF-κB p65 proteins before and after HNEpC cells were treated with MyD88 inhibitor ST-2825. RESULT: On the second day after AR stimulation, the mice showed obvious AR symptoms. H&E results showed that compared to the control group, the nasal mucosal tissue in the sensitized group was significantly more inflamed. Furthermore, ELISA assay showed increased expression levels of IgE, IL-4, IL-5, IL-13 and TNF-α in serum of mice induced by OVA and Artemisia annua pollen, Artemisia argyi pollen and Artemisia Sieversiana pollen than those of the control group. However, the expression level of IL-2 was lower than that of the control group (P < 0.05). Using Immunohistochemistry staining visually observed the expression levels of TLR4, MyD88 and NF-κB p65 in mouse nasal mucosa tissues and quantitatively analyzed. The expression levels of TLR4, MyD88 and NF-κB p65 in the sensitized group were higher than those in the control group, and the differences were statistically significant (P < 0.05). The results from qRT-PCR and Western Blot showed that the mRNA and protein expression levels of TLR4, MyD88 and NF-κB p65 in nasal mucosa of the sensitized group were significantly higher than those in the control group (P < 0.05). Finally, HNEpC cells were cultured in vitro and analyzed using Western Blot. The expression levels of TLR4, MyD88 and NF-κB p65 in OVA and An groups were significantly increased (P < 0.05). After ST-2825 treatment, TLR4 protein expression was significantly increased (P < 0.05) and MyD88 and NF-κB p65 protein expression were significantly decreased (P < 0.05). CONCLUSION: To sum up, the occurrence and development of AR induced by OVA and pollen of Artemisia annua, Artemisia argyi and Artemisia Sieversiana were related to TLR4/MyD88 signal pathway.


Assuntos
Artemisia , Rinite Alérgica Sazonal , Rinite Alérgica , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Ovalbumina , Interleucina-13/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-5/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais , Pólen , Imunoglobulina E/metabolismo , RNA Mensageiro
7.
Mol Biol Rep ; 51(1): 292, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332381

RESUMO

BACKGROUND: Neuroinflammation contributes to both epileptogenesis and the associated neurodegeneration, so regulation of inflammatory signaling is a potential strategy for suppressing epilepsy development and pathological progression. Exosomes are enriched in microRNAs (miRNAs), considered as vital communication tools between cells, which have been proven as potential therapeutic method for neurological disease. Here, we investigated the role of miR129-5p-loaded mesenchymal stem cell (MSC)-derived exosomes in status epilepticus (SE) mice model. METHODS: Mice were divided into four groups: untreated control (CON group), kainic acid (KA)-induced SE groups (KA group), control exosome injection (KA + Exo-con group), miR129-5p-loaded exosome injection (KA + Exo-miR129-5p group). Hippocampal expression levels of miR129-5p, HMGB1, and TLR4 were compared among groups. Nissl and Fluoro-jade B staining were conducted to evaluate neuronal damage. In addition, immunofluorescence staining for IBA-1 and GFAP was performed to assess glial cell activation, and inflammatory factor content was determined by ELISA. Hippocampal neurogenesis was assessed by BrdU staining. RESULTS: The expression of HMGB1 was increased after KA-induced SE and peaking at 48 h, while hippocampal miR129-5p expression decreased in SE mice. Exo-miR129-5p injection reversed KA-induced upregulation of hippocampal HMGB1 and TLR4, alleviated neuronal damage in the hippocampal CA3, reduced IBA-1 + and GFAP + staining intensity, suppressed SE-associated increases in inflammatory factors, and decreased BrdU + cell number in dentate gyrus. CONCLUSIONS: Exosomes loaded with miR129-5p can protect neurons against SE-mediated degeneration by inhibiting the pro-inflammatory HMGB1/TLR4 signaling axis.


Assuntos
Exossomos , Proteína HMGB1 , MicroRNAs , Estado Epiléptico , Animais , Camundongos , Bromodesoxiuridina/efeitos adversos , Bromodesoxiuridina/metabolismo , Exossomos/metabolismo , Hipocampo/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Ácido Caínico/efeitos adversos , Ácido Caínico/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças Neuroinflamatórias , Convulsões/genética , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/genética , Estado Epiléptico/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
8.
Immun Inflamm Dis ; 12(2): e1205, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38414294

RESUMO

BACKGROUND: Psoriasis is an immune-mediated chronic inflammatory skin disease, in which T helper 17 (Th17) cells and its effective cytokine interleukin (IL)-17A play a pivotal pathogenic role. High mobility group box 1 (HMGB1) is an important proinflammatory cytokine, which has been confirmed to be highly expressed in the peripheral circulation and epidermis tissues of psoriasis patients. The regulatory effect of HMGB1 on IL-17A expression and function has been reported in some inflammatory and autoimmune diseases by the HMGB1-Toll-like receptor 4 (TLR4)-interleukin (IL)-23-IL-17A pathway. While, in the pathological environment of psoriasis, whether HMGB1 can exert the regulatory effect on IL-17A is not clear. OBJECTIVE: We aimed to evaluate the role of HMGB1-TLR4-IL-23-IL-17A pathway in the pathogenesis of psoriasis and explore the possible regulatory mechanism of HMGB1 on Th17 cell differentiation. METHODS: Serum levels of HMGB1, TLR4, IL-23, and IL-17A were quantified in 50 patients with moderate-to-severe plaque psoriasis and 30 healthy controls. Peripheral blood mononuclear cells  were acquired from 10 severe psoriasis patients and administrated by different concentrations of recombinant-HMGB1 (rHMGB1) to detect the Th17 cell percentage, mRNA and protein levels of TLR4, IL-23, IL-17A and retinoid-related orphan receptor γt (RORγt). RESULTS: The serum levels of HMGB1, TLR4, IL-23, and IL-17A in psoriasis patients were significantly higher than healthy controls, especially in severe patients, and positively correlated with the severity index. There were also positive correlations between every two detected indicators of HMGB1, TLR4, IL-23, and IL-17A. In vitro study, rHMGB1 can promote the elevated expression of Th17 cell percentage as well as TLR4, IL-23, IL-17A, and RORγt in a dose-dependent manner. CONCLUSION: HMGB1 can contribute to the pathogenesis of psoriasis by regulating Th17 cell differentiation through HMGB1-TLR4-IL-23-RORγt pathway, then promotes IL-17A production and aggravates inflammation process. Targeting HMGB1 may be a possible potential candidate for the immunotherapy of psoriasis.


Assuntos
Proteína HMGB1 , Psoríase , Humanos , Diferenciação Celular , Citocinas/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Interleucina-17 , Interleucina-23/genética , Interleucina-23/metabolismo , Interleucinas , Leucócitos Mononucleares/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Psoríase/genética , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
9.
J Enzyme Inhib Med Chem ; 39(1): 2313055, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38416868

RESUMO

Toll-like receptor (TLR) innate immunity signalling protects against pathogens, but excessive or prolonged signalling contributes to a range of inflammatory conditions. Structural information on the TLR cytoplasmic TIR (Toll/interleukin-1 receptor) domains and the downstream adaptor proteins can help us develop inhibitors targeting this pathway. The small molecule o-vanillin has previously been reported as an inhibitor of TLR2 signalling. To study its mechanism of action, we tested its binding to the TIR domain of the TLR adaptor MAL/TIRAP (MALTIR). We show that o-vanillin binds to MALTIR and inhibits its higher-order assembly in vitro. Using NMR approaches, we show that o-vanillin forms a covalent bond with lysine 210 of MAL. We confirm in mouse and human cells that o-vanillin inhibits TLR2 but not TLR4 signalling, independently of MAL, suggesting it may covalently modify TLR2 signalling complexes directly. Reactive aldehyde-containing small molecules such as o-vanillin may target multiple proteins in the cell.


Assuntos
Benzaldeídos , Lisina , Receptor 2 Toll-Like , Humanos , Animais , Camundongos , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores Toll-Like/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Interleucina-1/metabolismo
10.
Mol Med ; 30(1): 17, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302880

RESUMO

BACKGROUND: In sepsis, intestinal barrier dysfunction is often caused by the uncontrolled death of intestinal epithelial cells (IECs). CD4CD8αα intraepithelial lymphocytes (IELs), a subtype of CD4+ T cells residing within the intestinal epithelium, exert cytotoxicity by producing granzyme B (GrB) and perforin (Prf). Extracellular cold-inducible RNA-binding protein (eCIRP) is a recently identified alarmin which stimulates TLR4 on immune cells to induce proinflammatory responses. Here, we hypothesized that eCIRP enhances CD4CD8αα IEL cytotoxicity and induces IEC death in sepsis. METHODS: We subjected wild-type (WT) and CIRP-/- mice to sepsis by cecal ligation and puncture (CLP) and collected the small intestines to isolate IELs. The expression of GrB and Prf in CD4CD8αα IELs was assessed by flow cytometry. IELs isolated from WT and TLR4-/- mice were challenged with recombinant mouse CIRP (eCIRP) and assessed the expression of GrB and Prf in CD4CD8αα by flow cytometry. Organoid-derived IECs were co-cultured with eCIRP-treated CD4CD8αα cells in the presence/absence of GrB and Prf inhibitors and assessed IEC death by flow cytometry. RESULTS: We found a significant increase in the expression of GrB and Prf in CD4CD8αα IELs of septic mice compared to sham mice. We found that GrB and Prf levels in CD4CD8αα IELs were increased in the small intestines of WT septic mice, while CD4CD8αα IELs of CIRP-/- mice did not show an increase in those cytotoxic granules after sepsis. We found that eCIRP upregulated GrB and Prf in CD4CD8αα IELs isolated from WT mice but not from TLR4-/- mice. Furthermore, we also revealed that eCIRP-treated CD4CD8αα cells induced organoid-derived IEC death, which was mitigated by GrB and Prf inhibitors. Finally, histological analysis of septic mice revealed that CIRP-/- mice were protected from tissue injury and cell death in the small intestines compared to WT mice. CONCLUSION: In sepsis, the cytotoxicity initiated by the eCIRP/TLR4 axis in CD4CD8αα IELs is associated with intestinal epithelial cell (IEC) death, which could lead to gut injury.


Assuntos
Linfócitos Intraepiteliais , Sepse , Animais , Camundongos , Mucosa Intestinal/metabolismo , Intestinos , Camundongos Endogâmicos C57BL , Sepse/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
11.
J Nanobiotechnology ; 22(1): 48, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302938

RESUMO

Inflammatory bowel disease (IBD) is closely linked to the homeostasis of the intestinal environment, and exosomes can be used to treat IBD due to their high biocompatibility and ability to be effectively absorbed by the intestinal tract. However, Ginseng-derived nanoparticles (GDNPs) have not been studied in this context and their mechanism of action remains unclear. Here, we investigated GDNPs ability to mediate intercellular communication in a complex inflammatory microenvironment in order to treat IBD. We found that GDNPs scavenge reactive oxygen species from immune cells and intestinal epithelial cells, inhibit the expression of pro-inflammatory factors, promote the proliferation and differentiation of intestinal stem cells, as well as enhancing the diversity of the intestinal flora. GDNPs significantly stabilise the intestinal barrier thereby promoting tissue repair. Overall, we proved that GDNPs can ameliorate inflammation and oxidative stress in vivo and in vitro, acting on the TLR4/MAPK and p62/Keap1/Nrf2 pathways, and exerting an anti-inflammatory and antioxidant effect. GDNPs mitigated IBD in mice by reducing inflammatory factors and improving the intestinal environment. This study offers new evidence of the potential therapeutic effects of GDNPs in the context of IBD, providing the conceptual ground for an alternative therapeutic strategy.


Assuntos
Doenças Inflamatórias Intestinais , Nanopartículas , Panax , Animais , Camundongos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Nanopartículas/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Panax/metabolismo , Receptor 4 Toll-Like/metabolismo
12.
Cell Mol Biol Lett ; 29(1): 24, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317065

RESUMO

BACKGROUND: Chronic nonhealing wounds remain a considerable challenge in clinical treatment due to excessive inflammation and impeded reepithelialization and angiogenesis. Therefore, the discovery of novel prohealing agents for chronic skin wounds are urgent and important. Amphibian-derived prohealing peptides, especially immunomodulatory peptides, provide a promising strategy for the treatment of chronic skin trauma. However, the mechanism of immunomodulatory peptides accelerating the skin wound healing remains poorly understood. METHODS: The prohealing ability of peptide Andersonin-W1 (AW1) was assessed by cell scratch, cell proliferation, transwell, and tube formation. Next, full-thickness, deep second-degree burns and diabetic full-thickness skin wounds in mice were performed to detect the therapeutic effects of AW1. Moreover, the tissue regeneration and expression of inflammatory cytokines were evaluated by hematoxylin and eosin (H&E), enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry staining. Molecular docking, colocalization, and western blotting were used to explore the mechanism of AW1 in promoting wound healing. RESULTS: We provide solid evidence to display excellent prohealing effects of AW1, identified as a short antimicrobial peptide in our previous report. At relative low concentration of nM, AW1 promoted the proliferation, migration, and scratch repair of keratinocyte, macrophage proliferation, and tube formation of HUVEC. AW1 also facilitated reepithelialization, granulation regeneration, and angiogenesis, thus significantly boosting the healing of full-thickness, deep second-degree burns and diabetic skin wounds in mice. Mechanistically, in macrophages, AW1 directly bound to Toll-like receptor 4 (TLR4) in the extracellular region and regulated the downstream nuclear factor-κB (NF-κB) signaling pathway to facilitate the inflammatory factor secretion and suppress excessive inflammation induced by lipopolysaccharide (LPS). Moreover, AW1 regulated macrophage polarization to promote the transition from the inflammatory to the proliferative phase and then facilitated reepithelialization, granulation regeneration, and angiogenesis, thus exhibiting excellent therapeutic effects on diabetic skin wounds. CONCLUSIONS: AW1 modulates inflammation and the wound healing process by the TLR4/NF-κB molecular axis, thus facilitating reepithelialization, granulation regeneration, and angiogenesis. These findings not only provided a promising multifunctional prohealing drug candidate for chronic nonhealing skin wounds but also highlighted the unique roles of "small" peptides in the elucidation of "big" human disease mechanisms.


Assuntos
Queimaduras , Diabetes Mellitus , Humanos , Camundongos , Animais , Pele/metabolismo , Receptor 4 Toll-Like/metabolismo , NF-kappa B/metabolismo , Simulação de Acoplamento Molecular , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Peptídeos/química , Diabetes Mellitus/metabolismo , Queimaduras/tratamento farmacológico , Queimaduras/metabolismo , Inflamação/metabolismo
13.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339153

RESUMO

Acute lung injury (ALI) is a serious inflammatory disease with high morbidity and mortality. Rosavin is an anti-inflammatory and antioxidant phenylpropanoid and glucoside, which is isolated from Rhodiola rosea L. However, its potential molecular mechanisms and whether it has protective effects against lipopolysaccharide (LPS)-induced ALI remain to be elucidated. To assess the in vitro anti-inflammatory effects and anti-lung injury activity of rosavin, RAW264.7 and A549 cells were stimulated using 1 µg/mL LPS. Rosavin attenuated LPS-induced activation of the TLR-4/NF-κB signaling pathway in RAW264.7 cells and inhibited LPS-induced release of inflammatory factors in A549 cells. A mouse model of acute lung injury was constructed by intraperitoneal injection of 5 mg/kg LPS to observe the therapeutic effect of rosavin. Transcriptomics analysis and Western blot assays were utilized to verify the molecular mechanism, rosavin (20, 40, and 80 mg/kg) dose-dependently ameliorated histopathological alterations, reduced the levels of inflammatory factors, and inhibited the TLR-4/NF-κB/MAPK signaling pathway and apoptosis activation. Rosavin is a promising therapeutic candidate for acute lung injury by inhibiting the TLR-4/NF-κB/MAPK pathway.


Assuntos
Lesão Pulmonar Aguda , Dissacarídeos , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/efeitos adversos , Dissacarídeos/uso terapêutico , Lipopolissacarídeos/toxicidade , Pulmão/patologia , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo
14.
J Appl Oral Sci ; 32: e20230304, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359267

RESUMO

OBJECTIVE: We aimed to investigate the regulatory effects of HMGB1/TLR4 signaling pathway on the expression of IL-10 and VEGF in human bone marrow mesenchymal stem cells. METHODOLOGY: Human JBMSCs were isolated and cultured. Then, HMGB1 was added into the JBMSCs culture medium, and the protein and mRNA expression levels of IL-10 and VEGF were assessed. Moreover, cells were pretreated with a specific TLR4 inhibitor (TAK-242), and the expression changes of IL-10 and VEGF were compared. RESULTS: Compared with the control group, exposure to HMGB1 in human JBMSCs up-regulated TLR4, IL-10, and VEGF secretion at both protein and mRNA levels (P<0. 05). In addition, the increased expression of IL-10 and VEGF could be restrained in TAK-242 group compared with the HMGB1 group (P<0.05). CONCLUSIONS: The results indicated that HMGB1 activate TLR4 signaling pathway in Human JBMSCs, which plays a regulatory role in cytokines expression.


Assuntos
Proteína HMGB1 , Células-Tronco Mesenquimais , Sulfonamidas , Humanos , Interleucina-10 , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator A de Crescimento do Endotélio Vascular , Proteína HMGB1/farmacologia , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Medula Óssea/metabolismo , Células-Tronco Mesenquimais/metabolismo , RNA Mensageiro
15.
J Neurosci ; 44(6)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326029

RESUMO

Toll-like receptors (TLRs) play an important role in the innate immune response after CNS injury. Although TLR4 is one of the best characterized, its role in chronic stages after spinal cord injury (SCI) is not well understood. We examined the role of TLR4 signaling in injury-induced responses at 1 d, 7 d, and 8 weeks after spinal cord contusion injury in adult female TLR4 null and wild-type mice. Analyses include secondary damage, a range of transcriptome and protein analyses of inflammatory, cell death, and extracellular matrix (ECM) molecules, as well as immune cell infiltration and changes in axonal sprouting and locomotor recovery. Lack of TLR4 signaling results in reduced neuronal and myelin loss, reduced activation of NFκB, and decreased expression of inflammatory cytokines and necroptotic cell death pathway at a late time point (8 weeks) after injury. TLR4 null mice also showed reduction of scar-related ECM molecules at 8 weeks after SCI, accompanied by increase in ECM molecules associated with perineuronal nets, increased sprouting of serotonergic fibers, and improved locomotor recovery. These findings reveal novel effects of TLR4 signaling in chronic SCI. We show that TLR4 influences inflammation, cell death, and ECM deposition at late-stage post-injury when secondary injury processes are normally considered to be over. This highlights the potential for late-stage targeting of TLR4 as a potential therapy for chronic SCI.


Assuntos
Citocinas , Traumatismos da Medula Espinal , Camundongos , Feminino , Animais , Citocinas/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Neurônios/metabolismo , Inflamação/metabolismo , Camundongos Knockout , Medula Espinal/metabolismo , Recuperação de Função Fisiológica/fisiologia
16.
Clin Sci (Lond) ; 138(4): 137-151, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38299431

RESUMO

Hypercholesterolemia in pregnancy is a physiological process required for normal fetal development. In contrast, excessive pregnancy-specific hypercholesterolemia increases the risk of complications, such as preeclampsia. However, the underlying mechanisms are unclear. Toll-like receptor 4 (TLR4) is a membrane receptor modulated by high cholesterol levels, leading to endothelial dysfunction; but whether excessive hypercholesterolemia in pregnancy activates TLR4 is not known. We hypothesized that a high cholesterol diet (HCD) during pregnancy increases TLR4 activity in uterine arteries, leading to uterine artery dysfunction. Sprague Dawley rats were fed a control diet (n=12) or HCD (n=12) during pregnancy (gestational day 6-20). Vascular function was assessed in main uterine arteries using wire myography (vasodilation to methacholine and vasoconstriction to phenylephrine; with and without inhibitors for mechanistic pathways) and pressure myography (biomechanical properties). Exposure to a HCD during pregnancy increased maternal blood pressure, induced proteinuria, and reduced the fetal-to-placental weight ratio for both sexes. Excessive hypercholesterolemia in pregnancy also impaired vasodilation to methacholine in uterine arteries, whereby at higher doses, methacholine caused vasoconstriction instead of vasodilation in only the HCD group, which was prevented by inhibition of TLR4 or prostaglandin H synthase 1. Endothelial nitric oxide synthase expression and nitric oxide levels were reduced in HCD compared with control dams. Vasoconstriction to phenylephrine and biomechanical properties were similar between groups. In summary, excessive hypercholesterolemia in pregnancy impairs uterine artery function, with TLR4 activation as a key mechanism. Thus, TLR4 may be a target for therapy development to prevent adverse perinatal outcomes in complicated pregnancies.


Assuntos
Hipercolesterolemia , Hiperlipidemias , Animais , Feminino , Masculino , Gravidez , Ratos , Hipercolesterolemia/metabolismo , Hiperlipidemias/metabolismo , Cloreto de Metacolina/metabolismo , Fenilefrina/farmacologia , Fenilefrina/metabolismo , Placenta , Ratos Sprague-Dawley , Receptor 4 Toll-Like/metabolismo , Artéria Uterina/metabolismo , Vasodilatação/fisiologia
17.
Aging (Albany NY) ; 16(3): 2978-2988, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38345562

RESUMO

Acute lung injury (ALI) is one of the most common high-risk diseases associated with a high mortality rate and is still a challenge to treat effectively. Netrin-1 (NT-1) is a novel peptide with a wide range of biological functions, however, its effects on ALI have not been reported before. In this study, an ALI model was constructed using lipopolysaccharide (LPS) and treated with NT-1. Pulmonary function and lung wet to dry weight ratio (W/D) were detected. The expressions of pro-inflammatory cytokines and chemokines interleukin-8 (IL-8), interleukin-1ß (IL-1ß), and chemokine (C-X-C motif) ligand 2 (CXCL2) were measured using real-time polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). We found that the levels of NT-1 were reduced in the LPS-induced ALI mice model. Administration of NT-1 improved histopathological changes of lung tissues and lung function in LPS-challenged ALI mice. We also report that NT-1 decreased Myeloperoxidase (MPO) activity and ameliorated pulmonary edema. Additionally, treatment with NT-1 reduced the levels of pro-inflammatory cytokines and chemokines such as IL-8, IL-1ß, and CXCL2 in lung tissues of LPS-challenged ALI mice. Importantly, NT-1 reduced cell count in BALF and mitigated oxidative stress (OS) by reducing the levels of MDA and increasing the levels of GSH. Mechanistically, it is shown that NT-1 reduced the levels of Toll-like receptor 4 (TLR4) and prevented nuclear translocation of nuclear factor-κB (NF-κB) p65. Our findings indicate that NT-1 is a promising agent for the treatment of ALI through inhibiting TLR4/NF-κB signaling.


Assuntos
Lesão Pulmonar Aguda , NF-kappa B , Animais , Camundongos , Lesão Pulmonar Aguda/metabolismo , Citocinas/metabolismo , Interleucina-8 , Lipopolissacarídeos/toxicidade , Pulmão/patologia , Netrina-1 , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo
18.
Cell Death Dis ; 15(2): 146, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360839

RESUMO

Tuberous sclerosis complex 1 (TSC1) plays important roles in regulating innate immunity. However, the precise role of TSC1 in macrophages in the regulation of oxidative stress response and hepatic inflammation in liver ischemia/reperfusion injury (I/R) remains unknown. In a mouse model of liver I/R injury, deletion of myeloid-specific TSC1 inhibited AKT and MST1 phosphorylation, and decreased NRF2 accumulation, whereas activated TLR4/NF-κB pathway, leading to increased hepatic inflammation. Adoptive transfer of AKT- or MST1-overexpressing macrophages, or Keap1 disruption in myeloid-specific TSC1-knockout mice promoted NRF2 activation but reduced TLR4 activity and mitigated I/R-induced liver inflammation. Mechanistically, TSC1 in macrophages promoted AKT and MST1 phosphorylation, and protected NRF2 from Keap1-mediated ubiquitination. Furthermore, overexpression AKT or MST1 in TSC1-knockout macrophages upregulated NRF2 expression, downregulated TLR4/NF-κB, resulting in reduced inflammatory factors, ROS and inflammatory cytokine-mediated hepatocyte apoptosis. Strikingly, TSC1 induction in NRF2-deficient macrophages failed to reverse the TLR4/NF-κB activity and production of pro-inflammatory factors. Conclusions: Macrophage TSC1 promoted the activation of the AKT/MST1 signaling pathway, increased NRF2 levels via reducing Keap1-mediated ubiquitination, and modulated oxidative stress-driven inflammatory responses in liver I/R injury. Our findings underscore the critical role of macrophage TSC1 as a novel regulator of innate immunity and imply the therapeutic potential for the treatment of sterile liver inflammation in transplant recipients. Schematic illustration of macrophage TSC1-mediated AKT/MST1/NRF2 signaling pathway in I/R-triggered liver inflammation. Macrophage TSC1 can be activated in I/R-stressed livers. TSC1 activation promotes phosphorylation of AKT and MST1, which in turn increases NRF2 expression and inhibits ROS production and TLR4/NF-κB activation, resulting in reduced hepatocellular apoptosis in I/R-triggered liver injury.


Assuntos
Traumatismo por Reperfusão , Esclerose Tuberosa , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Esclerose Tuberosa/metabolismo , Fígado/metabolismo , Transdução de Sinais , Macrófagos/metabolismo , Inflamação/metabolismo , Traumatismo por Reperfusão/metabolismo
19.
Front Immunol ; 15: 1336813, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375470

RESUMO

Lipopolysaccharide (LPS) induces potent cell activation via Toll-like receptor 4/myeloid differentiation protein 2 (TLR4/MD-2), often leading to septic death and cytokine storm. TLR4 signaling is diverted to the classical acute innate immune, inflammation-driving pathway in conjunction with the classical NF-κB pivot of MyD88, leading to epigenetic linkage shifts in nuclear pro-inflammatory transcription and chromatin structure-function; in addition, TLR4 signaling to the TIR domain-containing adapter-induced IFN-ß (TRIF) apparatus and to nuclear pivots that signal the association of interferons alpha and beta (IFN-α and IFN-ß) with acute inflammation, often coupled with oxidants favor inhibition or resistance to tissue injury. Although the immune response to LPS, which causes sepsis, has been clarified in this manner, there are still many current gaps in sepsis immunology to reduce mortality. Recently, selective agonists and inhibitors of LPS signals have been reported, and there are scattered reports on LPS tolerance and control of sepsis development. In particular, IRF3 signaling has been reported to be involved not only in sepsis but also in increased pathogen clearance associated with changes in the gut microbiota. Here, we summarize the LPS recognition system, main findings related to the IRF3, and finally immunological gaps in sepsis.


Assuntos
Sepse , Receptor 4 Toll-Like , Humanos , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos/farmacologia , Transdução de Sinais , Inflamação , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo
20.
J Ethnopharmacol ; 319(Pt 3): 117365, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38380568

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Fufangxiaopi Formula (FF) is a modified form of Sishen Wan, traditionally used for treating diarrhea. The application of FF for treating ulcerative colitis (UC) has achieved desirable outcomes in clinical settings. However, the underlying mechanism of the effect of FF on UC is yet to be determined. AIM OF STUDY: This study aimed to evaluate the protective effect and underlying mechanism of FF on mice with dextran sodium sulfate (DSS)-induced colitis. MATERIALS AND METHODS: In vivo, the efficacy of FF on the symptoms associated with DSS-induced colitis in mice was clarified by observing the body weight change, colon length, DAI score, and H&E staining. The release of inflammatory mediators in mouse colon tissues was detected by ELISA and MPO, and the contents of TLR4/NF-κB signaling pathway and MAPK signaling pathway-related proteins, as well as intestinal barrier-related proteins, were detected in mouse colon tissues by western blot method. Changes in the content of barrier proteins in mouse colon tissues were detected by immunofluorescence. 16S rRNA sequencing and FMT were performed to clarify the effects of FF on intestinal flora. In vitro, the effect of FF-containing serum on LPS-induced inflammatory mediator release from RAW264.7 cells were detected by qRT-PCR. The contents of TLR4/NF The effects of FF-containing serum on B signaling pathway and MAPK signaling pathway related proteins in RAW264.7 cells and intestinal barrier related proteins in Caco-2 cells were detected by western blot. The effects of FF-containing serum on LPS-induced nuclear translocation of p65 protein in RAW264.7 cells and barrier-associated protein in Caco-2 cells were detected by immunofluorescence. RESULTS: In vivo studies showed that FF could significantly alleviate the symptoms of UC, including reducing colon length, weight loss, clinical score, and colon tissue injury in mice. FF could significantly reduce the secretion of proinflammatory cytokines by suppressing the activation of the TLR4/NF-κB and MAPK signaling pathways. Moreover, FF could protect the integrity of intestinal barriers by significantly increasing claudin-3, occludin, and ZO-1 expression levels. 16S rRNA sequencing and FMT elucidate that FF can alleviate symptoms associated with colitis in mice by interfering with intestinal flora. In vitro studies showed that FF drug-containing serum could significantly inhibit proinflammatory responses and attenuate the secretion of iNOS, IL-1ß, TNF-α, IL-6, and COX-2 by suppressing the activation of TLR4/NF-κB and MAPK signaling pathways in RAW264.7 cells. Furthermore, FF could protect the Caco-2 cell epithelial barrier. CONCLUSION: FF could alleviate DSS-induced colitis in mice by maintaining the intestinal barrier, inhibiting the activation of TLR4/NF-κB and MAPK signaling pathways, reducing the release of proinflammatory factors, and regulating intestinal microecology.


Assuntos
Colite Ulcerativa , Colite , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , RNA Ribossômico 16S , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos/farmacologia , Células CACO-2 , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Inflamação/tratamento farmacológico , Colo , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...