Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.673
Filtrar
1.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36675176

RESUMO

Heparin, a class of glycosaminoglycans (GAGs), is widely used to induce sperm capacitation and fertilization. How heparin induces sperm capacitation remains unclear. Olfactory receptors (ORs) which are G protein-coupled receptors, have been proposed to be involved in sperm capacitation. However, the interaction between ORs and odor molecules and the molecular mechanism of ORs mediating sperm capacitation are still unclear. The present study aimed to explore the underlying interaction and mechanism between heparin and ORs in carrying out the boar sperm capacitation. The results showed that olfactory receptor 2C1 (OR2C1) is a compulsory unit which regulates the sperm capacitation by recognizing and binding with heparin, as determined by Dual-Glo Luciferase Assay and molecular docking. In addition, molecular dynamics (MD) simulation indicated that OR2C1 binds with heparin via a hydrophobic cavity comprises of Arg3, Ala6, Thr7, Asn171, Arg172, Arg173, and Pro287. Furthermore, we demonstrated that knocking down OR2C1 significantly inhibits sperm capacitation. In conclusion, we highlighted a novel olfactory receptor, OR2C1, in boar sperm and disclosed the potential binding of heparin to Pro287, a conserved residue in the transmembrane helices region 7 (TMH7). Our findings will benefit the further understanding of ORs involved in sperm capacitation and fertilization.


Assuntos
Heparina , Receptores Odorantes , Capacitação Espermática , Animais , Masculino , Heparina/farmacologia , Heparina/metabolismo , Simulação de Acoplamento Molecular , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Sêmen/metabolismo , Capacitação Espermática/genética , Capacitação Espermática/fisiologia , Espermatozoides/metabolismo , Suínos
2.
J Agric Food Chem ; 71(2): 1067-1076, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36598383

RESUMO

A total of 12 OBPs were identified in the antennae of ladybird Hippodamia variegata. HvarOBP1/2/5/6/10/11 were highly expressed in adults, whereas HvarOBP3/4/7/8/9/12 had higher expression levels in larvae. In adults, HvarOBP1/2/4/5/6/7/8/11/12 were highly expressed in antennae. Among these, recombinant HvarOBP5 strong bound with (E)-ß-farnesene (EßF), (R)-(+)-limonene, (E,E)-4,8,12-trimethyltrideca-l,3,7,11-tetraene (TMTT), (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), hexyl hexanoate, and geranyl acetate. Molecular docking indicated that Leu42, Lys43, and His64 were the key binding sites of HvarOBP5. All six ligands evoked electroantennography (EAG) responses in ladybirds. Moreover, (R)-(+)-limonene and hexyl hexanoate were attractive to both sexes. After RNA interference for 72 h, the EAGs of dsRNA-injected ladybirds to DMNT and hexyl hexanoate were significantly decreased by 73.8 and 78.6%, respectively. Both dsRNA-injected males and females showed significantly lower behavioral preferences for DMNT and hexyl hexanoate. These findings suggest that HvarOBP5 in H. variegata plays an important role in the perception of semiochemical cues from preys and habitat plants.


Assuntos
Feromônios , Receptores Odorantes , Feminino , Masculino , Animais , Feromônios/metabolismo , Caproatos , Limoneno , Simulação de Acoplamento Molecular , Receptores Odorantes/metabolismo , Percepção , Proteínas de Insetos/genética , Antenas de Artrópodes/metabolismo
3.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675132

RESUMO

Insects use a powerful and complex olfactory recognition system to sense odor molecules in the external environment to guide behavior. A large family of odorant receptors (ORs) mediates the detection of pheromone compounds. Anoplophora glabripennis is a destructive pest that harms broad-leaved tree species. Although olfactory sensation is an important factor affecting the information exchange of A. glabripennis, little is known about the key ORs involved. Here, we identified ninety-eight AglaORs in the Agla2.0 genome and found that the AglaOR gene family had expanded with structural and functional diversity. RT-qPCR was used to analyze the expression of AglaORs in sex tissues and in adults at different developmental stages. Twenty-three AglaORs with antennal-biased expression were identified. Among these, eleven were male-biased and two were female-biased and were more significantly expressed in the sexual maturation stage than in the post-mating stage, suggesting that these genes play a role in sexual communication. Relatively, two female-biased AglaORs were overexpressed in females seeking spawning grounds after mating, indicating that these genes might be involved in the recognition of host plant volatiles that may regulate the selection of spawning grounds. Our study provides a theoretical basis for further studies into the molecular mechanism of A. glabripennis olfaction.


Assuntos
Besouros , Receptores Odorantes , Animais , Feminino , Masculino , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Besouros/metabolismo , Olfato , Plantas/metabolismo , Comunicação , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Antenas de Artrópodes/metabolismo
4.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36675226

RESUMO

Euplatypus parallelus is one of the dominant rubber bark beetle species in Hainan's rubber-planting area. Semiochemicals, including the volatiles found in rubber trees and aggregation pheromones, play an important role in the search for suitable host plants. To examine the possible functional role of highly expressed odorant-binding protein 2 of Euplatypus parallelus (EparOBP2) in the semiochemical recognition process, we cloned and analyzed the cDNA sequence of EparOBP2. The results showed that EparOBP2 contains an open reading frame (ORF) of 393 bp that encodes 130 amino acids, including a 21-amino-acid residue signal peptide at the N-terminus. The matured EparOBP2 protein consists of seven α-helices, creating an open binding pocket and three disulfide bridges. The results of the fluorescence binding assay showed that EparOBP2 had high binding ability with α-pinene and myrcene. The docking results confirmed that the interactions of α-pinene and myrcene with EparOBP2 were primarily achieved through hydrophobic interactions. This study provides evidence that EparOBP2 may be involved in the chemoreception of semiochemicals and that it can successfully contribute to the integrated management of E. parallelus.


Assuntos
Receptores Odorantes , Gorgulhos , Animais , Feromônios/metabolismo , Borracha , Gorgulhos/metabolismo , Receptores Odorantes/metabolismo , Proteínas de Insetos/metabolismo , Ligação Proteica
5.
Sci Rep ; 13(1): 971, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653421

RESUMO

Odorants are detected by olfactory sensory neurons, which are covered by olfactory mucus. Despite the existence of studies on olfactory mucus, its constituents, functions, and interindividual variability remain poorly understood. Here, we describe a human study that combined the collection of olfactory mucus and olfactory psychophysical tests. Our analyses revealed that olfactory mucus contains high concentrations of solutes, such as total proteins, inorganic elements, and molecules for xenobiotic metabolism. The high concentrations result in a capacity to capture or metabolize a specific repertoire of odorants. We provide evidence that odorant metabolism modifies our sense of smell. Finally, the amount of olfactory mucus decreases in an age-dependent manner. A follow-up experiment recapitulated the importance of the amount of mucus in the sensitive detection of odorants by their receptors. These findings provide a comprehensive picture of the molecular processes in olfactory mucus and propose a potential cause of olfactory decline.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Humanos , Olfato/fisiologia , Receptores Odorantes/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Odorantes/análise , Muco/metabolismo
6.
J Adv Res ; 43: 1-12, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36585100

RESUMO

INTRODUCTION: The parasitoid wasp Microplitis mediator is an important natural enemy of the turnip moth Agrotis segetum and other Noctuidae pests. In our field observation, it was fortuitously discovered that sex pheromone traps used for A. segetum also attract female wasps, verified by a simulated field condition dual-choice laboratory assay. Therefore, it was hypothesized that olfactory recognition could be crucial in this process. In this regard, a female-biased odorant receptor of the wasp, MmedOR49, attracted our attention. OBJECTIVES: To unravel the significance of the female-biased MmedOR49 regulating host pheromone recognition. METHODS: Expression analysis (fluorescence in situ hybridization; quantitative realtime PCR), in vitro (two-electrode voltage-clamp recordings) and in vivo (RNAi combined with behavioral assessments) functional studies, and bioinformatics (structural modeling and molecular docking) were carried out to investigate the characteristics of MmedOR49. RESULTS: MmedOR49 expression was detected in the antennae of females by FISH. Quantification indicated that the expression level of MmedOR49 increased significantly after adult emergence. In vitro functional study revealed that MmedOR49 was specifically tuned to cis-5-decenyl acetate (Z5-10:Ac), the major sex pheromone component of A. segetum. Molecular docking showed that Z5-10:Ac strongly bound to the key amino acid residues His 80, Ile 81, and Arg 84 of MmedOR49 through hydrogen bonding. Behavioral assays indicated that female wasps were significantly attracted by Z5-10:Ac in a three-cage olfactometer. RNAi targeting further confirmed that MmedOR49 was necessary to recognize Z5-10:Ac, as female wasps lost their original behavioral responses to Z5-10:Ac after down-regulation of the MmedOR49 transcript. CONCLUSION: Although M. mediator is a larval endoparasitoid, female wasps have a behavioral preference for a sex pheromone component of lepidopteran hosts. In this behavior, for female M. mediator, MmedOR49 plays an important role in guiding the habitat of host insects. These data provide a potential target for enhancing natural enemy utilization and pest control.


Assuntos
Mariposas , Receptores Odorantes , Atrativos Sexuais , Vespas , Feminino , Animais , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Atrativos Sexuais/metabolismo , Hibridização in Situ Fluorescente , Simulação de Acoplamento Molecular , Vespas/genética , Vespas/metabolismo , Mariposas/genética , Mariposas/metabolismo
7.
Int J Mol Sci ; 23(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36555416

RESUMO

Scopula subpunctaria, an abundant pest in tea gardens, produce type-II sex pheromone components, which are critical for its communicative and reproductive abilities; however, genes encoding the proteins involved in the detection of type-II sex pheromone components have rarely been documented in moths. In the present study, we sequenced the transcriptomes of the male and female S. subpunctaria antennae. A total of 150 candidate olfaction genes, comprising 58 odorant receptors (SsubORs), 26 ionotropic receptors (SsubIRs), 24 chemosensory proteins (SsubCSPs), 40 odorant-binding proteins (SsubOBPs), and 2 sensory neuron membrane proteins (SsubSNMPs) were identified in S. subpunctaria. Phylogenetic analysis, qPCR, and mRNA abundance analysis results suggested that SsubOR46 may be the Orco (non-traditional odorant receptor, a subfamily of ORs) of S. subpunctaria. SsubOR9, SsubOR53, and SsubOR55 belonged to the pheromone receptor (PR) clades which have a higher expression in male antennae. Interestingly, SsubOR44 was uniquely expressed in the antennae, with a higher expression in males than in females. SsubOBP25, SsubOBP27, and SsubOBP28 were clustered into the moth pheromone-binding protein (PBP) sub-family, and they were uniquely expressed in the antennae, with a higher expression in males than in females. SsubOBP19, a member of the GOBP2 group, was the most abundant OBP in the antennae. These findings indicate that these olfactory genes, comprising five candidate PRs, three candidate PBPs, and one candidate GOBP2, may be involved in type II sex pheromone detection. As well as these genes, most of the remaining SsubORs, and all of the SsubIRs, showed a considerably higher expression in the female antennae than in the male antennae. Many of these, including SsubOR40, SsubOR42, SsubOR43, and SsubIR26, were more abundant in female antennae. These olfactory and ionotropic receptors may be related to the detection of host plant volatiles. The results of this present study provide a basis for exploring the olfaction mechanisms in S. subpunctaria, with a focus on the genes involved in type II sex pheromones. The evolutionary analyses in our study provide new insights into the differentiation and evolution of lepidopteran PRs.


Assuntos
Mariposas , Receptores Odorantes , Atrativos Sexuais , Animais , Feminino , Masculino , Atrativos Sexuais/genética , Atrativos Sexuais/metabolismo , Filogenia , Olfato/genética , Perfilação da Expressão Gênica/métodos , Mariposas/genética , Mariposas/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Antenas de Artrópodes/metabolismo
8.
Mol Med ; 28(1): 150, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36503361

RESUMO

BACKGROUND: Therapeutic options for steroid-resistant non-type 2 inflammation in obstructive lung diseases are lacking. Alveolar macrophages are central in the progression of these diseases by releasing proinflammatory cytokines, making them promising targets for new therapeutic approaches. Extra nasal expressed olfactory receptors (ORs) mediate various cellular processes, but clinical data are lacking. This work investigates whether ORs in human primary alveolar macrophages could impact pathophysiological processes and could be considered as therapeutic targets. METHODS: Human primary alveolar macrophages were isolated from bronchoalveolar lavages of 50 patients with pulmonary diseases. The expression of ORs was validated using RT-PCR, immunocytochemical staining, and Western blot. Changes in intracellular calcium levels were analyzed in real-time by calcium imaging. A luminescent assay was used to measure the cAMP concentration after OR stimulation. Cytokine secretion was measured in cell supernatants 24 h after stimulation by ELISA. Phagocytic ability was measured by the uptake of fluorescent-labeled beads by flow cytometry. RESULTS: We demonstrated the expression of functional OR2AT4 and OR1A2 on mRNA and protein levels. Both ORs were primarily located in the plasma membrane. Stimulation with Sandalore, the ligand of OR2AT4, and Citronellal, the ligand of OR1A2, triggered a transient increase of intracellular calcium and cAMP. In the case of Sandalore, this calcium increase was based on a cAMP-dependent signaling pathway. Stimulation of alveolar macrophages with Sandalore and Citronellal reduced phagocytic capacity and release of proinflammatory cytokines. CONCLUSION: These are the first indications for utilizing olfactory receptors as therapeutic target molecules in treating steroid-resistant lung diseases with non-type 2 inflammation.


Assuntos
Pneumopatias , Receptores Odorantes , Humanos , Cálcio/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Ligantes , Pneumopatias/metabolismo , Macrófagos Alveolares/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Esteroides
9.
Cells ; 11(24)2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36552724

RESUMO

In recent years, there has been a great deal of interest in the ectopic roles of olfactory receptors (ORs) throughout the human body. Especially, the ectopic function of OR in the skin is one of the most actively researched areas. Suberic acid, a scent compound, was hypothesized to increase collagen synthesis in the ultraviolet B (UVB)-irradiated human dermal fibroblasts (Hs68) through a specific olfactory receptor. Suberic acid ameliorated UVB-induced decreases in collagen production in Hs68 cells. Using in silico docking to predict the binding conformation and affinity of suberic acid to 15 ectopic ORs detectable in Hs68, several ORs were identified as promising candidates. The effect of suberic acid on collagen synthesis in UVB-exposed dermal fibroblasts was nullified only by a reduction in OR10A3 expression via specific siRNA. In addition, using the cells transiently expressing OR10A3, we demonstrated that suberic acid can activate OR10A3 by assessing the downstream effector cAMP response element (CRE) luciferase activity. We examined that the activation of OR10A3 by suberic acid subsequently stimulates collagen synthesis via the downstream cAMP-Akt pathway. The findings support OR10A3 as a promising target for anti-aging treatments of the skin.


Assuntos
Receptores Odorantes , Envelhecimento da Pele , Humanos , Colágeno/metabolismo , Fibroblastos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/genética , Envelhecimento da Pele/fisiologia , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
10.
BMC Genomics ; 23(1): 845, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36544089

RESUMO

BACKGROUND: In insects, the chemosensory system is crucial in guiding their behaviors for survival. Plagiodera versicolora (Coleoptera: Chrysomelidae), is a worldwide leaf-eating forest pest in salicaceous trees. There is little known about the chemosensory genes in P. versicolora. Here, we conducted a transcriptome analysis of larvae heads in P. versicolora. RESULTS: In this study, 29 odorant binding proteins (OBPs), 6 chemosensory proteins (CSPs), 14 odorant receptors (ORs), 13 gustatory receptors (GRs), 8 ionotropic receptors (IRs) and 4 sensory neuron membrane proteins (SNMPs) were identified by transcriptome analysis. Compared to the previous antennae and foreleg transcriptome data in adults, 12 OBPs, 2 CSPs, 5 ORs, 4 IRs, and 7 GRs were newly identified in the larvae. Phylogenetic analyses were conducted and found a new candidate CO2 receptor (PverGR18) and a new sugar receptor (PverGR23) in the tree of GRs. Subsequently, the dynamic expression profiles of various genes were analyzed by quantitative real-time PCR. The results showed that PverOBP31, OBP34, OBP35, OBP38, and OBP40 were highly expressed in larvae, PverOBP33 and OBP37 were highly expressed in pupae, and PverCSP13 was highly expressed in eggs, respectively. CONCLUSIONS: We identified a total of 74 putative chemosensory genes based on a transcriptome analysis of larvae heads in P. versicolora. This work provides new information for functional studies on the chemoreception mechanism in P. versicolora.


Assuntos
Besouros , Receptores Odorantes , Animais , Filogenia , Larva/genética , Larva/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Besouros/genética , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Antenas de Artrópodes/metabolismo
11.
Sci Rep ; 12(1): 22628, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36587060

RESUMO

Locusts depend upon their sense of smell and provide useful models for understanding olfaction. Extending this understanding requires knowledge of the molecular and structural organization of the olfactory system. Odor sensing begins with olfactory receptor neurons (ORNs), which express odorant receptors (ORs). In insects, ORNs are housed, in varying numbers, in olfactory sensilla. Because the organization of ORs within sensilla affects their function, it is essential to identify the ORs they contain. Here, using RNA sequencing, we identified 179 putative ORs in the transcriptomes of the two main olfactory organs, antenna and palp, of the locust Schistocerca americana. Quantitative expression analysis showed most putative ORs (140) are expressed in antennae while only 31 are in the palps. Further, our analysis identified one OR detected only in the palps and seven ORs that are expressed differentially by sex. An in situ analysis of OR expression suggested ORs are organized in non-random combinations within antennal sensilla. A phylogenetic comparison of OR predicted protein sequences revealed homologous relationships among two other Acrididae species. Our results provide a foundation for understanding the organization of the first stage of the olfactory system in S. americana, a well-studied model for olfactory processing.


Assuntos
Gafanhotos , Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Receptores Odorantes/metabolismo , Filogenia , Neurônios Receptores Olfatórios/metabolismo , Gafanhotos/genética , Gafanhotos/metabolismo , Sensilas/metabolismo , Olfato/genética , Antenas de Artrópodes/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
12.
Elife ; 112022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36511779

RESUMO

The southern house mosquito, Culex quinquefasciatus, utilizes two odorant receptors, CquiOR10 and CquiOR2, narrowly tuned to oviposition attractants and well conserved among mosquito species. They detect skatole and indole, respectively, with reciprocal specificity. We swapped the transmembrane (TM) domains of CquiOR10 and CquiOR2 and identified TM2 as a specificity determinant. With additional mutations, we showed that CquiOR10A73L behaved like CquiOR2. Conversely, CquiOR2L74A recapitulated CquiOR10 specificity. Next, we generated structural models of CquiOR10 and CquiOR10A73L using RoseTTAFold and AlphaFold and docked skatole and indole using RosettaLigand. These modeling studies suggested space-filling constraints around A73. Consistent with this hypothesis, CquiOR10 mutants with a bulkier residue (Ile, Val) were insensitive to skatole and indole, whereas CquiOR10A73G retained the specificity to skatole and showed a more robust response than the wildtype receptor CquiOR10. On the other hand, Leu to Gly mutation of the indole receptor CquiOR2 reverted the specificity to skatole. Lastly, CquiOR10A73L, CquiOR2, and CquiOR2L74I were insensitive to 3-ethylindole, whereas CquiOR2L74A and CquiOR2L74G gained activity. Additionally, CquiOR10A73G gave more robust responses to 3-ethylindole than CquiOR10. Thus, we suggest the specificity of these receptors is mediated by a single amino acid substitution, leading to finely tuned volumetric space to accommodate specific oviposition attractants.


Assuntos
Culicidae , Receptores Odorantes , Animais , Feminino , Culicidae/genética , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Escatol , Aminoácidos , Indóis , Oviposição/fisiologia
13.
Nat Commun ; 13(1): 6889, 2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371422

RESUMO

Stimulus transduction in cilia of olfactory sensory neurons is mediated by odorant receptors, Gαolf, adenylate cyclase-3, cyclic nucleotide-gated and chloride ion channels. Mechanisms regulating trafficking and localization of these proteins in the dendrite are unknown. By lectin/immunofluorescence staining and in vivo correlative light-electron microscopy (CLEM), we identify a retinitis pigmentosa-2 (RP2), ESCRT-0 and synaptophysin-containing multivesicular organelle that is not part of generic recycling/degradative/exosome pathways. The organelle's intraluminal vesicles contain the olfactory transduction proteins except for Golf subunits Gγ13 and Gß1. Instead, Gß1 colocalizes with RP2 on the organelle's outer membrane. The organelle accumulates in response to stimulus deprivation, while odor stimuli or adenylate cyclase activation cause outer membrane disintegration, release of intraluminal vesicles, and RP2/Gß1 translocation to the base of olfactory cilia. Together, these findings reveal the existence of a dendritic organelle that mediates both stimulus-regulated storage of olfactory ciliary transduction proteins and membrane-delimited sorting important for G protein heterotrimerization.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Adenilil Ciclases/metabolismo , Corpos Multivesiculares , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/metabolismo , Olfato/fisiologia , Cílios/metabolismo , Proteínas/metabolismo , Mucosa Olfatória/metabolismo
14.
Int J Mol Sci ; 23(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36361515

RESUMO

The non-orthotopic expression of olfactory receptors (ORs) includes the male reproductive system, and in particular spermatozoa; their active ligands could be essential to sperm chemotaxis and chemical sperm-oocyte communication. OR51E2 expression has been previously reported on sperm cells' surface. It has been demonstrated in different cellular models that olfactory receptor 51E2 (OR51E2) binds volatile short-chain fatty acids (SCFAs) as specific ligands. In the present research, we make use of Western blot, confocal microscopy colocalization analysis, and the calcium-release assay to demonstrate the activation of sperm cells through OR51E2 upon SCFAs stimulus. Moreover, we perform a novel modified swim-up assay to study the involvement of OR51E2/SCFAs in sperm migration. Taking advantage of computer-assisted sperm analysis (CASA system), we determine the kinematics parameters of sperm cells migrating towards SCFAs-enriched medium, revealing that these ligands are able to promote a more linear sperm-cell orientation. Finally, we obtain SCFAs by mass spectrometry in cervico-vaginal mucus and show for the first time that a direct incubation between cervical mucus and sperm cells could promote their activation. This study can shed light on the possible function of chemosensory receptors in successful reproduction activity, laying the foundation for the development of new strategies for the treatment of infertile individuals.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Feminino , Masculino , Animais , Receptores Odorantes/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Ácidos Graxos Voláteis , Neurônios Receptores Olfatórios/metabolismo
15.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293357

RESUMO

Mammals recognize chemicals in the air via G protein-coupled odorant receptors (ORs). In addition to their orthosteric binding site, other segments of these receptors modulate ligand recognition. Focusing on human hOR1A1, which is considered prototypical of class II ORs, we used a combination of molecular modeling, site-directed mutagenesis, and in vitro functional assays. We showed that the third extracellular loop of ORs (ECL3) contributes to ligand recognition and receptor activation. Indeed, site-directed mutations in ECL3 showed differential effects on the potency and efficacy of both carvones, citronellol, and 2-nonanone.


Assuntos
Receptores Odorantes , Animais , Humanos , Receptores Odorantes/metabolismo , Ligantes , Sítios de Ligação/genética , Receptores Acoplados a Proteínas G/metabolismo , Mamíferos/metabolismo , Proteínas de Ligação ao GTP/metabolismo
16.
Front Immunol ; 13: 1029244, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311776

RESUMO

Olfactory receptors (ORs) that bind odorous ligands are the largest family of G-protein-coupled receptors. In the olfactory epithelium, approximately 400 and 1,100 members are expressed in humans and mice, respectively. Growing evidence suggests the extranasal functions of ORs. Here, we review OR expression and function in macrophages, specialized innate immune cells involved in the detection, phagocytosis, and destruction of cellular debris and pathogens as well as the initiation of inflammatory responses. RNA sequencing data in mice suggest that up to 580 ORs may be expressed in macrophages. Macrophage OR expression is increased after treatment with the Toll-like receptor 4 ligand lipopolysaccharide, which also induces the transcription of inflammasome components. Triggering human OR6A2 or its mouse orthologue Olfr2 with their cognate ligand octanal induces inflammasome assembly and the secretion of IL-1ß, which exacerbates atherosclerosis. Octanal is positively correlated with blood lipids like low-density lipoprotein -cholesterol in humans. Another OR, Olfr78, is activated by lactate, which promotes the generation of tumor-associated macrophages that dampen the immune response and promote tumor progression. Olfactory receptors in macrophages are a rich source of untapped opportunity for modulating inflammation. It is not known which of the many ORs expressed in macrophages promote or modulate inflammation. Progress in this area also requires deorphanizing more ORs and determining the sources of their ligands.


Assuntos
Inflamassomos , Receptores Odorantes , Humanos , Camundongos , Animais , Inflamassomos/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Ligantes , Macrófagos , Inflamação
17.
Anticancer Res ; 42(11): 5195-5203, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36288877

RESUMO

BACKGROUND/AIM: Scirrhous-type gastric cancer (SGC), one of the most intractable cancer subtypes, is characterized by rapid cancer cell proliferation and infiltration accompanied by extensive stromal fibrosis. One of the reasons for its poor prognosis may be the lack of molecular target drugs for SGC, because of the unknown driver genes. Exploration of somatic mutations in the human samples of SGC using next-generation sequencing (NGS) has been hampered by abundant fibrous tissues in these samples. Therefore, this study aimed to determine a novel oncogene by RNA-sequencing using SGC cell lines, avoiding contamination with fibrosis. MATERIALS AND METHODS: In silico analysis of RNA-sequencing public data of the gastric cancer cell line, and RNA- sequencing using five of our unique SGC cell lines, OCUM1, OCUM2MLN, OCUM8, OCUM12, and OCUM14 were performed. RESULTS: We found three differentially expressed genes, ARHGAP4, NOS3, and OR51B5 that are significantly over-expressed in SGC cells. Immunohistochemical analysis indicated that the protein expression levels of these three genes were significantly higher in SGC than in other types of gastric cancer. The prognosis of patients with positive expression of these three genes was significantly poorer than those with negative expression. In particular, ARHGAP4 expression was an independent predictor of poor prognosis and recurrence. CONCLUSION: ARHGAP4, NOS3, and OR51B5 may be candidate driver genes for SGC. ARHGAP4 may be a promising molecular target for SGC.


Assuntos
Adenocarcinoma Esquirroso , Neoplasias Gástricas , Humanos , Adenocarcinoma Esquirroso/genética , Adenocarcinoma Esquirroso/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Fibrose , Proteínas Ativadoras de GTPase/genética , Óxido Nítrico Sintase Tipo III , Oncogenes , RNA , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Receptores Odorantes/metabolismo
18.
J Biol Chem ; 298(11): 102573, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36209821

RESUMO

Insect gustatory receptors play roles in sensing tastants, such as sugars and bitter substances. We previously demonstrated that the BmGr9 silkworm gustatory receptor is a d-fructose-gated ion channel receptor. However, the molecular mechanism of how d-fructose could initiate channel opening were unclear. Herein, we present a structural model for a channel pore and a d-fructose-binding site in BmGr9. Since the membrane topology and oligomeric state of BmGr9 appeared to be similar to those of an insect odorant receptor coreceptor, Orco, we constructed a structural model of BmGr9 based on the cryo-EM Orco structure. Our site-directed mutagenesis data suggested that the transmembrane region 7 forms channel pore and controls channel gating. This model also suggested that a pocket formed by transmembrane helices 2 to 4 and 6 binds d-fructose. Using mutagenesis experiments in combination with docking simulations, we were able to determine the potent binding mode of d-fructose. Finally, based on these data, we propose a conformational change that leads to channel opening upon d-fructose binding. Taken together, these findings detail the molecular mechanism by which an insect gustatory receptor can be activated by its ligand molecule.


Assuntos
Proteínas de Drosophila , Receptores Odorantes , Animais , Ligantes , Receptores Odorantes/metabolismo , Proteínas de Drosophila/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Insetos/metabolismo , Frutose/metabolismo , Modelos Estruturais
19.
Ann Hepatol ; 27(6): 100767, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36223880

RESUMO

INTRODUCTION AND OBJECTIVES: Obesity is a global health problem that triggers fat liver accumulation. The prevalence of obesity and the risk of non-alcoholic steatohepatitis (NASH) among young obese Mexican is high. Furthermore, genetic predisposition is a key factor in weight gain and disrupts metabolism. Herein, we used Whole-Exome Sequencing to identify potential causal variants and the biological processes that lead to obesity with progression to NASH among Mexican patients. MATERIALS AND METHODS: Whole-Exome Sequencing was performed in nine obese patients with NASH diagnosis with a BMI ≥30 kg/m2 and one control (BMI=24.2 kg/m2) by using the Ion S5TM platform. Genetic variants were determined by Ion Reporter software. Enriched GO biological set genes were identified by the WebGestalt tool. Genetic variants within ≥2 obese NASH patients and having scores of SIFT 0.0-0.05 and Polyphen 0.85-1.0 were categorized as pathogenic. RESULTS: A total of 1359 variants with a probable pathogenic effect were determined in obese patients with NASH diagnosis. After several filtering steps, the most frequent pathogenic variants found were rs25640-HSD17B4, rs8105737-OR1I1, rs998544-OR5R1, and rs4916685, rs10037067, and rs2366926 in ADGRV1. Notably, the primary biological processes affected by these pathogenic variants were the sensory perception and detection of chemical stimulus pathways in which the olfactory receptor gene family was the most enriched. CONCLUSIONS: Variants in the olfactory receptor genes were highly enriched in Mexican obese patients that progress to NASH and could be potential targets of association studies.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Receptores Odorantes , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/genética , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Fígado/patologia , Obesidade/diagnóstico , Obesidade/epidemiologia , Obesidade/genética
20.
BMC Biol ; 20(1): 230, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36217142

RESUMO

BACKGROUND: The nose of most animals comprises multiple sensory subsystems, which are defined by the expression of different olfactory receptor families. Drosophila melanogaster antennae contain two morphologically and functionally distinct subsystems that express odorant receptors (Ors) or ionotropic receptors (Irs). Although these receptors have been thoroughly characterized in this species, the subsystem-specific expression and roles of other genes are much less well-understood. RESULTS: Here we generate subsystem-specific transcriptomic datasets to identify hundreds of genes, encoding diverse protein classes, that are selectively enriched in either Or or Ir subsystems. Using single-cell antennal transcriptomic data and RNA in situ hybridization, we find that most neuronal genes-other than sensory receptor genes-are broadly expressed within the subsystems. By contrast, we identify many non-neuronal genes that exhibit highly selective expression, revealing substantial molecular heterogeneity in the non-neuronal cellular components of the olfactory subsystems. We characterize one Or subsystem-specific non-neuronal molecule, Osiris 8 (Osi8), a conserved member of a large, insect-specific family of transmembrane proteins. Osi8 is expressed in the membranes of tormogen support cells of pheromone-sensing trichoid sensilla. Loss of Osi8 does not have obvious impact on trichoid sensillar development or basal neuronal activity, but abolishes high sensitivity responses to pheromone ligands. CONCLUSIONS: This work identifies a new protein required for insect pheromone detection, emphasizes the importance of support cells in neuronal sensory functions, and provides a resource for future characterization of other olfactory subsystem-specific genes.


Assuntos
Receptores Odorantes , Animais , Antenas de Artrópodes/metabolismo , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Insetos/genética , Insetos/genética , Feromônios/genética , Feromônios/metabolismo , RNA/metabolismo , Receptores Odorantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...