Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 783
Filtrar
1.
Sci Rep ; 15(1): 3498, 2025 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-39875501

RESUMO

This study investigated plant growth-promoting (PGP) mechanisms in Priestia aryabhattai VMYP6 and Paenibacillus sp. VMY10, isolated from tomato roots. Their genomes were initially assessed in silico through various approaches, and these observations were then compared with results obtained in vitro and in vivo. Both possess genes associated with the production of siderophores, indole acetic acid (IAA) and cytokinins (CKs), all of which have been shown to promote plant growth. The two strains were able to produce these compounds in vitro. Although both genomes harbor genes for phosphorus solubilization, only VMY10 demonstrated this ability in vitro. Genes linked to flagellar assembly and chemotaxis were identified in the two cases. Both strains were able to colonize plant roots, even though VMYP6 lacked motility and no flagella were observed microscopically. In the greenhouse, tomato plants inoculated with the strains showed increased biomass, leaf area, and root length. These findings underscore the importance of integrating in vitro assays, genomic analyses, and plant trials to gain a comprehensive insight into the PGP mechanisms of rhizobacteria like VMYP6 and VMY10. Such insight may contribute to improving the selection of strains used as biofertilizers in tomato, a major crop worldwide.


Assuntos
Paenibacillus , Raízes de Plantas , Rizosfera , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Solanum lycopersicum/crescimento & desenvolvimento , Paenibacillus/genética , Paenibacillus/crescimento & desenvolvimento , Paenibacillus/isolamento & purificação , Paenibacillus/metabolismo , Paenibacillus/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Microbiologia do Solo , Ácidos Indolacéticos/metabolismo , Genômica/métodos , Genoma Bacteriano , Sideróforos/metabolismo , Citocininas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo
2.
Physiol Plant ; 177(1): e70097, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39887727

RESUMO

This study investigates the physiological and morphological responses of wheat (Triticum aestivum) and pea (Pisum sativum) grown in a mixture of lunar soil (LS) simulant and organic soil (OS). The experiment compared the growth of both pea and wheat in 100% organic soil (OS) and a 3:2 mixture of OS and LS (OS: LS). Wheat exhibited increased branching and root growth in OS: LS, while pea plants showed enhanced aerial elongation and altered branch morphology. Photochemical efficiency (Fv/Fm) and pigment concentrations were significantly affected, with both pea and wheat showing reduced chlorophyll content in OS: LS. Oxidative stress indicators, such as lipid peroxidation, exhibited higher levels in pea plants than wheat plants, particularly in the OS: LS mixture. Hormonal analysis performed by LC-MS/MS indicated significant increases in abscisic acid (ABA) and its catabolites in both pea and wheat in OS: LS, suggesting an adaptive response to suboptimal conditions. The results highlight species-specific growth strategies, with wheat investing more in root development and pea plants promoting aerial growth. These findings provide important insights into how essential crops could adapt to extraterrestrial soils, contributing to the development of sustainable agricultural practices for space exploration. Future research should focus on optimising crop performance based on species-specific adaptative responses in mixed-soil environments.


Assuntos
Pisum sativum , Reguladores de Crescimento de Plantas , Raízes de Plantas , Solo , Triticum , Triticum/fisiologia , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Pisum sativum/fisiologia , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/metabolismo , Pisum sativum/efeitos dos fármacos , Solo/química , Raízes de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Lua , Clorofila/metabolismo , Ácido Abscísico/metabolismo , Fotossíntese/fisiologia , Estresse Oxidativo
3.
Ciênc. rural (Online) ; 55(2): e20230180, 2025. tab, graf
Artigo em Inglês | VETINDEX | ID: biblio-1582053

RESUMO

The mango tree presents a high level of fruit abscission, which is increased in semiarid regions due to environmental stress. The use of biostimulants and phytoregulators has shown to be a promising strategy to improve fruit setting. Thus, the present study defined the best strategy for setting and development of the fruit, with the application of phytoregulators and biostimulants on the 'Keitt' mango tree, cultivated in the São Francisco Valley. Two experiments were performed. In experiment 1, a randomized block design was used, with four treatments T1: control, T2: gibberellic acid (AG3) + 2,4-dichlorophenoxyacetic acid (2,4-D), T3: AG3 + 2,4-D+Benzyladenine, T4: Biostimulant + CoMo® (sources of cobalt and molybdenum). In experiment 2, the factorial scheme (2 ×3 + 1) distributed in randomized blocks was established, corresponding to two forms of potassium fertilization (recommended and adjusted), three gibberellin concentrations (0, 10 and 20 mg L-1) and additional treatment (control - recommended potassium fertilization and no setting strategy). The variables analyzed include the relative number of fruits, the number of fruits for domestic and foreign markets, productive potential, production, productivity, fruit volume, fruit mass, and the yield of peel, pulp and stone. The application of 10 mg L-1 AG3 + 10 mg L-1 2,4-D + 10 mg L-1 Benzyladenine in full flowering of the 'Keitt' mango tree, increased the setting and the production of the fruit. Regardless of fertilization, sequential applications at 10 or 20 mg L-1 of AG3 proved to be an effective strategy to produce 'Keitt' mango tree. Adjusted potassium fertilization and the application at 10 mg L-1 of AG3 promotes the production of fruits with greater mass and volume.


A mangueira apresenta elevado índice de abscisão de frutos, que é potencializado em regiões semiáridas devido ao estresse ambiental. A utilização de bioestimulantes e fitorreguladores tem demonstrado ser uma estratégia promissora para melhorar a fixação de frutos. Assim, o presente estudo foi realizado com objetivo de definir a melhor estratégia para a fixação e desenvolvimento dos frutos, com a aplicação de fitorreguladores e bioestimulante na mangueira 'Keitt', cultivada no Vale do São Francisco. Foram realizados dois experimentos. No experimento 1, foi utilizado o delineamento de blocos casualizados, com quatro tratamentos T1: controle, T2: ácido giberélico AG3 + ácido 2,4-diclorofenoxiacético (2,4-D), T3: AG3+2,4-D+Benziladenina, T4: Bioestimulante + CoMo® (fontes de cobalto e molibdênio). No experimento 2, o esquema fatorial (2 ×3 + 1), correspondendo a duas formas de fertilização de potássio (recomendada e ajustada), três concentrações de giberelina (0, 10 e 20 mg L-1) e um tratamento adicional (controle - fertilização de potássio recomendada e sem estratégia de fixação). As variáveis analisadas incluem o número relativo de frutos, o número de frutos para os mercados doméstico e estrangeiro, o potencial produtivo, a produção, a produtividade, o volume de frutos, a massa dos frutos e o rendimento da casca, polpa e semente. A aplicação de 10 mg L-1 AG3 + 10 mg L-1 2,4-D + 10 mg L-1 de Benziladenina em floração plena da mangueira 'Keitt', aumentou a fixação e a produção de frutos. Independentemente da fertilização, as aplicações sequenciais de 10 ou 20 mg L-1 de AG3, mostraram ser uma estratégia eficaz para a produção da mangueira 'Keitt'. A fertilização potássica ajustada e a aplicação de 10 mg L-1 de AG3 favorece a produção de frutos de maior a massa e o volume.


Assuntos
Reguladores de Crescimento de Plantas , Zona Semiárida , Mangifera/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento
4.
Mol Biol Rep ; 52(1): 9, 2024 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-39576373

RESUMO

BACKGROUND: To tolerate biotic stress, plants employ phytohormones such as jasmonic acid (JA), salicylic acid (SA), and ethylene (ET) to regulate the immune response against different pathogens. Phytohormone-responsive genes, known as "Defense signaling marker genes," are used to evaluate plant disease resistance during pathogen infection. Most information on these marker genes derives from studies on the model plant Arabidopsis thaliana. The present study was aimed analyze the effect of hormonal elicitation at different concentrations at 24 h pos-treatment in the transcript level of 8 traditional genes selected for molecular studies plant-pathogen interactions in Capsicum. METHODS AND RESULTS: Chemical treatment was achieved by spraying leaves of in vitro seedlings C. annuum L. with 0.1 mM, 1 mM or 2.5 mM ET; 1 mM, 2.5 mM, or 5 mM SA; 2.5 mM BABA; or 0.150 mM MeJA. Twenty-four hours after treatments were applied molecular analyses were carried out using qPCR to investigate the expression. Results revealed that 1 mM of ET or 0.15 mM of MeJA activated the expression CaPR1 (18--11.64-fold change), CaLOX2 (13.80-fold), CaAP2/ERF06 (22- 5.3- fold change), and CaPDF1.2 (2.3-1.5- fold). While, 5 mM of SA present effect of negative regulation on the expression in most of these genes. CONCLUSIONS: Our results show that the expression profile induced by phytohormones in CaPR1 are particular in C. annuum, because were significantly induced for ET/MeJA, and dow-regulation with SA Contrary to Arabidopsis. Although, on both plants it is observed the cross talk between JA/ET and SA mediated signal pathways for the regulation of this gene.


Assuntos
Capsicum , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Oxilipinas , Reguladores de Crescimento de Plantas , Ácido Salicílico , Capsicum/genética , Capsicum/metabolismo , Capsicum/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxilipinas/farmacologia , Ciclopentanos/farmacologia , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Transdução de Sinais/genética , Etilenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistência à Doença/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Genes de Plantas , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
5.
Funct Plant Biol ; 512024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39413063

RESUMO

Bassinosteroids (BRs) can induce plant defence responses and promote plant growth. In this work, we evaluated the effect of a natural (EP24) and a synthetic (BB16) brassinosteroid on strawberry (Fragaria vesca ) plants exposed to saline stress. Treated plants showed higher shoot dry weight and root growth compared to untreated control plants. In BR-treated plants, crown diameters increased 66% and 40%, leaf area 148% and 112%, relative water content in leaves 84% and 61%, and SPAD values 24% and 26%, in response to BB16 and EP24, respectively. A marked stomatal closure, increased leaflet lignification, and a decrease in cortex thickness, root diameter and stele radius were also observed in treated plants. Treatments also reduces stress-induced damage, as plants showed a 34% decrease in malondialdehyde content and a lower proline content compared to control plants. A 22% and 15% increase in ascorbate peroxidase and total phenolic compound activities was observed in response to BB16, and a 24% increase in total flavonoid compound in response to both BRs, under stress conditions. These results allow us to propose the use of BRs as an environmentally safe crop management strategy to overcome salinity situations that severely affect crop yield.


Assuntos
Brassinosteroides , Fragaria , Estresse Salino , Fragaria/efeitos dos fármacos , Fragaria/crescimento & desenvolvimento , Fragaria/metabolismo , Brassinosteroides/farmacologia , Brassinosteroides/metabolismo , Estresse Salino/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Malondialdeído/metabolismo
6.
Int J Mol Sci ; 25(18)2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39337642

RESUMO

Much work has been dedicated to the quest to determine the structure-activity relationship in synthetic brassinosteroid (BR) analogs. Recently, it has been reported that analogs with phenyl or benzoate groups in the alkyl chain present activities comparable to those shown by natural BRs, depending on the nature of the substituent in the aromatic ring. However, as it is well known that the activity depends on the structure of the whole molecule, in this work, we have synthesized a series of compounds with the same substituted benzoate in the alkyl chain and a hydroxyl group at C3. The main goal was to compare the activities with analogs with -OH at C2 and C3. Additionally, a molecular-docking study and molecular dynamics simulations were performed to establish a correlation between the experimental and theoretical results. The synthesis of eight new BR analogs was described. All the analogs were fully characterized by spectroscopical methods. The bioactivity of these analogs was assessed using the rice lamina inclination test (RLIT) and the inhibition of the root and hypocotyl elongation of Arabidopsis thaliana. The results of the RLIT indicate that at the lowest tested concentration (1 × 10-8 M), in the BR analogs in which the aromatic ring was substituted at the para position with methoxy, the I and CN substituents were more active than brassinolide (50-72%) and 2-3 times more active than those analogs in which the substituent group was F, Cl or Br atoms. However, at the highest concentrations, brassinolide was the most active compound, and the structure-activity relationship changed. On the other hand, the results of the A. thaliana root sensitivity assay show that brassinolide and the analogs with I and CN as substituents on the benzoyl group were the most active compounds. These results are in line with those obtained via the RLIT. A comparison of these results with those obtained for similar analogs that had a hydroxyl group at C2 indicates the importance of considering the whole structure. The molecular-docking results indicate that all the analogs adopted a brassinolide-like orientation, while the stabilizing effect of the benzoate group on the interactions with the receptor complex provided energy binding values ranging between -10.17 and -13.17 kcal mol-1, where the analog with a nitrile group was the compound that achieved better contact with the amino acids present in the active site.


Assuntos
Arabidopsis , Brassinosteroides , Simulação de Acoplamento Molecular , Brassinosteroides/química , Brassinosteroides/síntese química , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Relação Estrutura-Atividade , Simulação de Dinâmica Molecular , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/efeitos dos fármacos , Hipocótilo/química , Reguladores de Crescimento de Plantas/síntese química , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/farmacologia , Estrutura Molecular
7.
Plant Sci ; 349: 112243, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39233143

RESUMO

Fleshy fruit metabolism is intricately influenced by environmental changes, yet the hormonal regulations underlying these responses remain poorly elucidated. ABA and ethylene, pivotal in stress responses across plant vegetative tissues, play crucial roles in triggering fleshy fruit ripening. Their actions are intricately governed by complex mechanisms, influencing key aspects such as nutraceutical compound accumulation, sugar content, and softening parameters. Both hormones are essential orchestrators of significant alterations in fruit development in response to stressors like drought, salt, and temperature fluctuations. These alterations encompass colour development, sugar accumulation, injury mitigation, and changes in cell-wall degradation and ripening progression. This review provides a comprehensive overview of recent research progress on the roles of ABA and ethylene in responding to drought, salt, and temperature stress, as well as the molecular mechanisms controlling ripening in environmental cues. Additionally, we propose further studies aimed at genetic manipulation of ABA and ethylene signalling, offering potential strategies to enhance fleshy fruit resilience in the face of future climate change scenarios.


Assuntos
Ácido Abscísico , Etilenos , Frutas , Reguladores de Crescimento de Plantas , Estresse Fisiológico , Etilenos/metabolismo , Ácido Abscísico/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Frutas/metabolismo , Frutas/genética , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Secas
8.
Braz J Biol ; 84: e279435, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39258720

RESUMO

Maize is a crop of global economic importance and is widely cultivated throughout the Brazilian territory. The use of biostimulants can increase yield and improve crop yield. Unmanned aerial vehicles can be employed in arable areas, allowing their use in an economically way. This study to evaluate the use of biostimulant and the best application timing using photogrammetric indexes in maize, and indicate the most suitable plant index for yield increase through a Pearson's correlation. The DJI Drone coupled with RGB camera was used, and the images were processed through the AgisoftPhotoscan® software to generate the orthomosaic, and the QGIS® software version 3.4.15 with GRASS was used to generate thematic maps with the classification of the indexes of vegetation (NGRDI, EXG, SAVI, TGI, GLI, RI). A matrix of Pearson correlation coefficients between the variables was also created, and the results were analyzed with the R software. In general, the products Pyroligneous Extract (PE) and the hormonal product (HP) were the best for the two seasons studied. However, the HP was the best product to mitigate plant water stress in the dry period. Application at phenological stage V3 showed the lowest growth in the rainy season and in application to the seeds in the dry season. Dose 4 of the pyroligneous extract increased productivity in the rainy season and level 3.4 for the hormone product. Among the indexes evaluated, only the SAVI index showed significant differences between the others and showed significance for productivity in the two periods.


Assuntos
Tecnologia de Sensoriamento Remoto , Estações do Ano , Zea mays , Zea mays/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/farmacologia
9.
Plant Cell Environ ; 47(12): 5343-5357, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39189962

RESUMO

Methylobacterium sp. 2A, a plant growth-promoting rhizobacteria (PGPR) able to produce indole-3-acetic acid (IAA), significantly promoted the growth of Arabidopsis thaliana plants in vitro. We aimed to understand the determinants of Methylobacterium sp. 2A-A. thaliana interaction, the factors underlying plant growth-promotion and the host range. Methylobacterium sp. 2A displayed chemotaxis to methanol and formaldehyde and was able to utilise 1-aminocyclopropane carboxylate as a nitrogen source. Confocal microscopy confirmed that fluorescent protein-labelled Methylobacterium sp. 2A colonises the apoplast of A. thaliana primary root cells and its inoculation increased jasmonic and salicylic acid in A. thaliana, while IAA levels remained constant. However, inoculation increased DR5 promoter activity in root tips of A. thaliana and tomato plants. Inoculation of this PGPR partially restored the agravitropic response in yucQ mutants and lateral root density was enhanced in iaa19, arf7, and arf19 mutant seedlings. Furthermore, Methylobacterium sp. 2A volatile organic compounds (VOCs) had a dose-dependent effect on the growth of A. thaliana. This PGPR is also able to interact with monocots eliciting positive responses upon inoculation. Methylobacterium sp. 2A plant growth-promoting effects can be achieved through the regulation of plant hormone levels and the emission of VOCs that act either locally or at a distance.


Assuntos
Arabidopsis , Ácidos Indolacéticos , Methylobacterium , Raízes de Plantas , Methylobacterium/fisiologia , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Arabidopsis/microbiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Compostos Orgânicos Voláteis/metabolismo , Solanum lycopersicum/microbiologia , Solanum lycopersicum/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Quimiotaxia
10.
Physiol Plant ; 176(4): e14492, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39166265

RESUMO

Genomic DNA methylation patterns play a crucial role in the developmental processes of plants and mammals. In this study, we aimed to investigate the significant effects of epigenetic mechanisms on the development of soybean seedlings and metabolic pathways. Our analyses show that 5-azaC-treatment affects radicle development from two Days After Imbibition (DAI), as well as both shoot and root development. We examined the expression levels of key genes related to DNA methylation and demethylation pathways, such as DRM2, which encodes RNA-directed DNA Methylation (RdDM) pathway, SAM synthase, responsible for methyl group donation, and ROS1, a DNA demethylase. In treated seedling roots, we observed an increase in DRM2 expression and a decrease in ROS1 expression. Additionally, 5-azaC treatment altered protein accumulation, indicating epigenetic control over stress response while inhibiting nitrogen assimilation, urea cycle, and glycolysis-related proteins. Furthermore, it influenced the levels of various phytohormones and metabolites crucial for seedling growth, such as ABA, IAA, ethylene, polyamines (PUT and Cad), and free amino acids, suggesting that epigenetic changes may shape soybean responses to pathogens, abiotic stress, and nutrient absorption. Our results assist in understanding how hypomethylation shapes soybean responses to pathogens, abiotic stress, and nutrient absorption crucial for seedling growth, suggesting that the plant's assimilation of carbon and nitrogen, along with hormone pathways, may be influenced by epigenetic changes.


Assuntos
Metilação de DNA , Glycine max , Redes e Vias Metabólicas , Reguladores de Crescimento de Plantas , Metilação de DNA/genética , Glycine max/genética , Glycine max/metabolismo , Glycine max/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Epigênese Genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
11.
Braz J Biol ; 84: e284231, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39140506

RESUMO

Date palm (Phoenix dactylifera( cv. Medjool is a significant plant, grown in Jordan. In vitro propagation gives operative resources for the significant propagation of date palms. Maximum callus induction was achieved from MS media supplemented with benzyl amino purine (BA) and naphthalene acetic acid (NAA). The highest plant regeneration was recorded on MS medium supplemented with dichlorophenoxyacetic acid (2,4-D) at 3.0 mg/L, and BA at 2.0 mg/L. A significant positive impact on shoot formation was recorded on MS medium supplemented with 1.0 mg/L BA with 0.5 to 1.5 mg/L NAA in both liquid and solid MS medium. To maintain survival and regrowth capacity, sucrose could be used for medium-term conservation at lower concentrations (0.1 - 0.2 M). In addition, sorbitol might be used at 0.1 M to maintain the quality of explants. The vitrification technique for long-term preservation was experimented. Embryogenic callus was used as explants for conservation. The survival as well as regrowth percentages of non-cryopreserved and cryopreserved tissue cultures were affected by their duration of treatment with the vitrification solution plant vitrification solution 2 (PVS2) and modified plant vitrification solution 2 (MPVS2). Results showed that using PVS2 for 60 minutes for cryopreserved calli was more effective than other treatments. After storage in liquid nitrogen, the highest survival rate (65%) and regrowth rate (40%) were achieved.


Assuntos
Phoeniceae , Brotos de Planta , Regeneração , Phoeniceae/fisiologia , Phoeniceae/efeitos dos fármacos , Regeneração/fisiologia , Regeneração/efeitos dos fármacos , Brotos de Planta/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Meios de Cultura , Reguladores de Crescimento de Plantas/farmacologia , Criopreservação , Técnicas de Cultura de Tecidos
12.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39062767

RESUMO

Brassinosteroids (BRs) are an important group of polyhydroxylated naturally occurring steroidal phytohormones found in the plant kingdom in extremely low amounts. Due to the low concentrations in which these compounds are found, much effort has been dedicated to synthesizing these compounds or their structural analogs using natural and abundant sterols. In this work, we report the synthesis of new brassinosteroid analogs obtained from hyodeoxycholic acid, with a 3,6 dioxo function, 24-Nor-22(S)-hydroxy side chain and p-substituted benzoate function at C-23. The plant growth activities of these compounds were evaluated by two different bioassays: rice lamina inclination test (RLIT) and BSI. The results show that BRs' analog with p-Br (compound 41f) in the aromatic ring was the most active at 1 × 10-8 M in the RLIT and BSI assays. These results are discussed in terms of the chemical structure and nature of benzoate substituents at the para position. Electron-withdrawing and size effects seems to be the most important factor in determining activities in the RLIT assay. These results could be useful to propose a new structural requirement for bioactivity in brassinosteroid analogs.


Assuntos
Benzoatos , Brassinosteroides , Oryza , Brassinosteroides/química , Brassinosteroides/síntese química , Oryza/crescimento & desenvolvimento , Oryza/efeitos dos fármacos , Oryza/metabolismo , Benzoatos/química , Benzoatos/farmacologia , Benzoatos/síntese química , Reguladores de Crescimento de Plantas/síntese química , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/farmacologia , Desenvolvimento Vegetal/efeitos dos fármacos , Ácido Desoxicólico
13.
Braz J Biol ; 84: e284946, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985062

RESUMO

In vitro androgenesis is a unique model for producing homozygous doubled haploid plants. The use of haploid biotechnology accelerates to obtain of doubled haploid plants, which is very important in rice breeding. The purpose of this work is to improve the production of doubled haploids in rice anther culture in vitro and selection of doubled haploid plants with valuable traits. The study the influence of nutrient media on the production of calli and plant regeneration processes in anther culture of 35 rice genotypes was revealed a significant influence of nutrient media on callus production. It was shown that the addition to culture medium phytohormones ratio with high level of cytokinin (5.0 mg/L BAP) and a low level of auxin (0.5 mg/L NAA), supplemented with amino acid composition promotes high production of green regenerated plants (68.75%) compared to albino plants (31.25%). As a result, doubled haploid lines of the glutinous variety Violetta were selected, which characterized by a low amylose content variation (from 1.86 to 2.80%). These doubled haploids are superior to the original variety in some yield traits and represent valuable breeding material.


Assuntos
Amilose , Haploidia , Oryza , Oryza/genética , Oryza/crescimento & desenvolvimento , Amilose/análise , Amilose/metabolismo , Meios de Cultura , Genótipo , Reguladores de Crescimento de Plantas , Flores/genética , Flores/química , Melhoramento Vegetal
14.
Braz J Biol ; 84: e280312, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38922192

RESUMO

Peas are an important agricultural crop of great importance in human and animal nutrition. Peas, being a legume crop, help replenish nitrogen reserves in the soil. In field studies of the Federal State Budgetary Scientific Institution of the Federal Scientific Center of Legumes and Goat Crops (Oryol region), the influence of various growth regulators and biological products on the yield and quality indicators of pea seeds of the Nord and Multik varieties was studied. Pea plants are grown on dark gray forest, medium loamy soil of average cultivation. Before sowing, pea seeds were treated with solutions of Kornevin, Albit and Epin-extra by soaking for 5 hours. Solutions of the drugs were used at a concentration of 10-6 M, then dried and treated with Rizotorfin before sowing. Growth rates during the growing season and the yield of pea plants were determined. The content of protein, starch and amylose in starch was determined in the seeds. Research results have shown that the yield of pea plants depends on weather conditions. Under favorable weather conditions, the highest yield was obtained from the pea variety Nord (42.2 c/ha) in the variant with seed treatment with Kornevin, and in the Multik variety (43.0 c/ha) when treated with Rizotorfin. In arid conditions, the highest yield of peas of the Nord variety was obtained using the preparations Epin-extra and Kornevin. The highest yield of peas of the Multik variety was obtained using the preparations Rizotorfin, Kornevin and Epin-Extra. The research results, confirmed by statistical evaluation, showed that bioregulators and growth regulators help stimulate the amount of nitrogen supplied to plants, as well as the synthetic processes of protein synthesis. This contributed to improving the quality of seeds and green mass.


Assuntos
Pisum sativum , Reguladores de Crescimento de Plantas , Sementes , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/química , Sementes/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/análise , Estações do Ano , Produtos Biológicos/análise
15.
Braz J Biol ; 84: e280778, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38922193

RESUMO

Despite being valuable for producing a natural sweetener Curculin, Curculigo latifolia has a low growth and difficult to domestificate. So, to solve this problem, propagation on in vitro culture will be an alternative method to propagated this spesies under different cytokinins and light condition. Cytokinins and light has major role in organogenesis, growth and gene expression of many species. Thus, in this study, we aimed to improve the Curculigo latifolia growth on in vitro condition and expression of curculin gene by combining cytokinins addition and different light exposure. Four weeks seedlings were sub-cultured into medium (MS free hormone) containing 3 mg/L benzyladenine (BA) and various concentrations of meta-Topolin (mT) including 0.1 mg/L, 0.5 mg/L, and 5 mg/L. The cultures then incubated under different light types (red, blue, white LED lights and white fluorescence light) with 16-h light/ 18-h dark photoperiod for 14 weeks at 25 ± 2°C. Several parameters, including plant height, leaf number, chlorophyll contents, stomatal structure, and density and curculin expression, were observed every week. Unexpectedly, our results showed that C. latifolia growth displayed significant improvement when it was treated under white LED light without any additional cytokinins. In sum, white LED light further improves plantlets phenotype, such as plant height, leaf number, chlorophyll production, and stomatal number and structure, whereas, red LED light lead to a decreased phenotypes but increase the curculin gene expression.


Assuntos
Curculigo , Citocininas , Luz , Reguladores de Crescimento de Plantas , Citocininas/farmacologia , Curculigo/genética , Reguladores de Crescimento de Plantas/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
16.
Antonie Van Leeuwenhoek ; 117(1): 76, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38705910

RESUMO

Despite being one of the most abundant elements in soil, phosphorus (P) often becomes a limiting macronutrient for plants due to its low bioavailability, primarily locked away in insoluble organic and inorganic forms. Phosphate solubilizing and mineralizing bacteria, also called phosphobacteria, isolated from P-deficient soils have emerged as a promising biofertilizer alternative, capable of converting these recalcitrant P forms into plant-available phosphates. Three such phosphobacteria strains-Serratia sp. RJAL6, Klebsiella sp. RCJ4, and Enterobacter sp. 198-previously demonstrated their particular strength as plant growth promoters for wheat, ryegrass, or avocado under abiotic stresses and P deficiency. Comparative genomic analysis of their draft genomes revealed several genes encoding key functionalities, including alkaline phosphatases, isonitrile secondary metabolites, enterobactin biosynthesis and genes associated to the production of indole-3-acetic acid (IAA) and gluconic acid. Moreover, overall genome relatedness indexes (OGRIs) revealed substantial divergence between Serratia sp. RJAL6 and its closest phylogenetic neighbours, Serratia nematodiphila and Serratia bockelmanii. This compelling evidence suggests that RJAL6 merits classification as a novel species. This in silico genomic analysis provides vital insights into the plant growth-promoting capabilities and provenance of these promising PSRB strains. Notably, it paves the way for further characterization and potential application of the newly identified Serratia species as a powerful bioinoculant in future agricultural settings.


Assuntos
Enterobacter , Genoma Bacteriano , Genômica , Ácidos Indolacéticos , Filogenia , Serratia , Microbiologia do Solo , Ácidos Indolacéticos/metabolismo , Serratia/genética , Serratia/isolamento & purificação , Serratia/metabolismo , Serratia/classificação , Enterobacter/genética , Enterobacter/isolamento & purificação , Enterobacter/classificação , Enterobacter/metabolismo , Klebsiella/genética , Klebsiella/metabolismo , Klebsiella/isolamento & purificação , Klebsiella/classificação , Desenvolvimento Vegetal , Solo/química , Reguladores de Crescimento de Plantas/metabolismo
17.
J Exp Bot ; 75(14): 4360-4372, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38666596

RESUMO

Plants rely on complex regulatory mechanisms to ensure proper growth and development. As plants are sessile organisms, these mechanisms must be flexible enough to adapt to changes in the environment. GROWTH-REGULATING FACTORS (GRFs) are plant-specific transcription factors that act as a central hub controlling plant growth and development, which offer promising biotechnological applications to enhance plant performance. Here, we analyze the complex molecular mechanisms that regulate GRFs activity, and how their natural and synthetic variants can impact on plant growth and development. We describe the biological roles of the GRFs and examine how they regulate gene expression and contribute to the control of organ growth and plant responses to a changing environment. This review focuses on the premise that unlocking the full biotechnological potential of GRFs requires a thorough understanding of the various regulatory layers governing GRF activity, the functional divergence among GRF family members, and the gene networks that they regulate.


Assuntos
Regulação da Expressão Gênica de Plantas , Desenvolvimento Vegetal , Desenvolvimento Vegetal/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Meio Ambiente , Plantas/metabolismo , Plantas/genética
18.
Braz J Biol ; 84: e273999, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38451628

RESUMO

The production of seedlings of the passion fruit tree, usually, is sexual, and the seeds are not uniform in the seedling emergence, and soaking treatments of seeds can provide faster and more uniform germination. It was aimed to study the action of plant growth regulators and the mobilization of reserves in the stages of soaking of yellow passion fruit seeds. The seeds were soaked for five hours in solutions containing plant growth regulators, in a completely randomized design, in a factorial 8 x 4, with four replications. The first factor corresponds to eight plant growth regulators: T1 - distilled water (control); T2 - 6-benzylaminepurine ​​500 mg L-1; T3 - 4-(3-indolyl) butyric acid 500 mg L-1; T4 - gibberellic acid 500 mg L-1; T5 - spermine 250 mg L-1; T6 - spermine 750 mg L-1; T7 - spermidine 750 mg L-1; T8 - spermidine 1250 mg L-1; and the second factor, to the four soaking times: zero, four, 72 and 120 hours, corresponding, respectively, to the dry seed, and to phases I, II, and III of the imbibition curve. It was evaluated the biochemical composition of seeds (lipids, soluble sugars and starch). The seeds showed accumulation of lipids in phase III; the content of soluble sugars increased in phase I and decreased in phase II. The starch content increased until the phase II and decreased in phase III. Starch is the main reserve in the seeds and the main source of energy used in phase III; soaking the seeds in polyamines generates an accumulation of lipids in the seeds and soaking in plant growth regulators increases the burning of starch.


Assuntos
Passiflora , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Frutas , Espermidina , Espermina , Ácido Butírico , Plântula , Amido , Açúcares
19.
Microb Ecol ; 87(1): 52, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498218

RESUMO

The use of algae for industrial, biotechnological, and agricultural purposes is spreading globally. Scenedesmus species can play an essential role in the food industry and agriculture due to their favorable nutrient content and plant-stimulating properties. Previous research and the development of Scenedesmus-based foliar fertilizers raised several questions about the effectiveness of large-scale algal cultivation and the potential effects of algae on associative rhizobacteria. In the microbiological practice applied in agriculture, bacteria from the genus Azospirillum are one of the most studied plant growth-promoting, associative, nitrogen-fixing bacteria. Co-cultivation with Azospirillum species may be a new way of optimizing Scenedesmus culturing, but the functioning of the co-culture system still needs to be fully understood. It is known that Azospirillum brasilense can produce indole-3-acetic acid, which could stimulate algae growth as a plant hormone. However, the effect of microalgae on Azospirillum bacteria is unclear. In this study, we investigated the behavior of Azospirillum brasilense bacteria in the vicinity of Scenedesmus sp. or its supernatant using a microfluidic device consisting of physically separated but chemically coupled microchambers. Following the spatial distribution of bacteria within the device, we detected a positive chemotactic response toward the microalgae culture. To identify the metabolites responsible for this behavior, we tested the chemoeffector potential of citric acid and oxaloacetic acid, which, according to our HPLC analysis, were present in the algae supernatant in 0.074 mg/ml and 0.116 mg/ml concentrations, respectively. We found that oxaloacetic acid acts as a chemoattractant for Azospirillum brasilense.


Assuntos
Azospirillum brasilense , Scenedesmus , Scenedesmus/metabolismo , Microfluídica , Ácido Oxaloacético/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo
20.
Appl Microbiol Biotechnol ; 108(1): 158, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252271

RESUMO

Astaxanthin is one of the most attractive carotenoids due to its high antioxidant activity and beneficial biological properties, while Xanthophyllomyces dendrorhous is one of its main microbial sources. Since astaxanthin is synthesized as a response to oxidative stress, several oxidative agents have been evaluated to increase X. dendrorhous astaxanthin yields. However, the extent of the stimulation is determined by the cellular damage caused by the applied oxidative agent. Phytohormones have also been reported as stimulants of astaxanthin biosynthesis acting directly on its metabolic pathway and indirectly promoting cellular resistance to reactive oxygen species. We reasoned that both oxidative agents and phytohormones lead to increased astaxanthin synthesis, but the latter could mitigate the drawbacks of the former. Thus, here, the stimulation on astaxanthin biosynthesis, as well as the cellular and transcriptional responses of wild type X. dendrorhous to phytohormones (6-benzylaminopurine, 6-BAP; abscisic acid, ABA; and indole-3-acetic acid, IAA), and oxidative agents (glutamate, menadione, H2O2, and/or Fe2+) were evaluated as a single or combined treatments. ABA and 6-BAP were the best individual stimulants leading to 2.24- and 2.60-fold astaxanthin biosynthesis increase, respectively. Nevertheless, the effect of combined 6-BAP and H2O2 led to a 3.69-fold astaxanthin synthesis increase (0.127 ± 0.018 mg astaxanthin/g biomass). Moreover, cell viability (> 82.75%) and mitochondrial activity (> 82.2%) remained almost intact in the combined treatment (6-BAP + H2O2) compared to control (< 52.17% cell viability; < 85.3% mitochondrial activity). On the other hand, mRNA levels of hmgR, idi, crtYB, crtR, and crtS, genes of the astaxanthin biosynthetic pathway, increased transiently along X. dendrorhous fermentation due to stimulations assayed in this study. KEY POINTS: • Combined 6-BAP and H2O2 is the best treatment to increase astaxanthin yields in X. dendrorhous. • 6-BAP preserves cell integrity under oxidative H2O2 stress conditions. • 6-BAP and H2O2 increase transcriptional responses of hmgR, idi, and crt family genes transiently.


Assuntos
Basidiomycota , Compostos de Benzil , Estimulantes do Sistema Nervoso Central , Reguladores de Crescimento de Plantas , Purinas , Peróxido de Hidrogênio , Xantofilas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA