Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.067
Filtrar
1.
Talanta ; 236: 122823, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34635213

RESUMO

Plant hormones are the molecules that control the vigorous development of plants and help to cope with the stress conditions efficiently due to vital and mechanized physiochemical regulations. Biologists and analytical chemists, both endorsed the extreme problems to quantify plant hormones due to their low level existence in plants and the technological support is devastatingly required to established reliable and efficient detection methods of plant hormones. Surface Enhanced Raman Spectroscopy (SERS) technology is becoming vigorously favored and can be used to accurately and specifically identify biological and chemical molecules. Subsistence molecular properties with varying excitation wavelength require the pertinent substrate to detect SERS signals from plant hormones. Three typical mechanisms of Raman signal enhancement have been discovered, electromagnetic, chemical and Tip-enhanced Raman spectroscopy (TERS). Though, complex detection samples hinder in consistent and reproducible results of SERS-based technology. However, different algorithmic models applied on preprocessed data enhanced the prediction performances of Raman spectra by many folds and decreased the fluorescence value. By incorporating SERS measurements into the microfluidic platform, further highly repeatable SERS results can be obtained. This review paper tends to study the fundamental working principles, methods, applications of SERS systems and their execution in experiments of rapid determination of plant hormones as well as several ways of integrated SERS substrates. The challenges to develop an SERS-microfluidic framework with reproducible and accurate results for plant hormone detection are discussed comprehensively and highlighted the key areas for future investigation briefly.


Assuntos
Reguladores de Crescimento de Plantas , Análise Espectral Raman , Microfluídica
2.
Environ Pollut ; 292(Pt B): 118475, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34763015

RESUMO

Plants detoxify toxic metal(loid)s by accumulating diverse metabolites. Beside scavenging excess reactive oxygen species (ROS) induced by metal(loid)s, some metabolites chelate metal(loid) ions. Classically, thiol-containing compounds, especially glutathione (GSH) and phytochelatins (PCs) are thought to be the major chelators that conjugate with metal(loid)s in the cytoplasm followed by transport and sequestration in the vacuole. In addition to this classical detoxification pathway, a role for secondary metabolites in metal(loid) detoxification has recently emerged. In particular, anthocyanins, a kind of flavonoids with ROS scavenging potential, contribute to enhanced arsenic tolerance in several plant species. Evidence is accumulating that, in analogy to GSH and PCs, anthocyanins may conjugate with arsenic followed by vacuolar sequestration in the detoxification event. Exogenous application or endogenous accumulation of anthocyanins enhances arsenic tolerance, leading to improved plant growth and productivity. The application of some plant hormones and signaling molecules stimulates endogenous anthocyanin synthesis which confers tolerance to arsenic stress. Anthocyanin biosynthesis is transcriptionally regulated by several transcription factors, including myeloblastosis (MYBs). The light-regulated transcription factor elongated hypocotyl 5 (HY5) also affects anthocyanin biosynthesis, but its role in arsenic tolerance remains elusive. Here, we review the mechanism of arsenic detoxification in plants and the potential role of anthocyanins in arsenic tolerance beyond the classical points of view. Our analysis proposes that anthocyanin manipulation in crop plants may ensure sustainable crop yield and food safety in the marginal lands prone to arsenic pollution.


Assuntos
Arsênio , Antocianinas , Arsênio/metabolismo , Arsênio/toxicidade , Regulação da Expressão Gênica de Plantas , Fitoquelatinas/metabolismo , Reguladores de Crescimento de Plantas , Plantas/metabolismo
3.
J Nanosci Nanotechnol ; 21(6): 3197-3202, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34739775

RESUMO

This study explores the effects of nanomaterials in rice seedlings using carbon 13 (13C)-labelled fullerene (C60). The experiment consisted of three groups, one CK and two nano particle groups with C60: 100 mg L-1 and 20 mg L-1. Mass spectrometry indicated higher 13C abundances in the nano particle groups compared with the CK. The 13C abundances of the 20 mg L-1 group, 100 mg L-1 group and CK were 1.0718%, 1.0715% and 1.0704%, respectively. We analyzed phytohormone concentrations in the rice at harvest time. Decreases in the concentrations of dihydrozeatin riboside (23% and 18% for the 20 mg L-1 and 100 mg L-1 group, respectively), zeatin riboside (23% and 18%, respectively), abscisic acid (11.1% and 12.7%, respectively), brassinolide (12.9% and 13.1%, respectively) and gibberellic acid 4 (12.9% and 13.1%, respectively) were observed compared with the CK. The gibberellic acid 3 concentrations in the 20 mg L-1 and 100 mg L-1 group increased by 12% and 7% compared with the CK, respectively. The methyl jasmonate concentration in the 100 mg L-1 group increased by 19.4% compared with the CK. The concentration of indole-3-acetic acid in the 100 mg L-1 group decreased by 13.5% compared with the CK. There was no change on isopentenyl adenosine concentration. This study indicates that C60 can be absorbed by rice and its effect on the growth of rice via phytohormones, including ABA, IAA, IPA, BR, GA3, GA4, DHZR, ZR and JA-ME. The results showed that, under the treatments of C60 NMs, the contents of some phytohormone in rice were decreased in comparison with CK.


Assuntos
Fulerenos , Oryza , Ácido Abscísico , Isótopos de Carbono , Fulerenos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Plântula
4.
BMC Genomics ; 22(1): 798, 2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34742254

RESUMO

BACKGROUND: Treatment of wheat with the phytohormones abscisic acid (ABA) and gibberellic acid (GA) has been shown to affect Fusarium head blight (FHB) disease severity. However, the molecular mechanisms underlying the elicited phenotypes remain unclear. Toward addressing this gap in our knowledge, global transcriptomic profiling was applied to the FHB-susceptible wheat cultivar 'Fielder' to map the regulatory responses effected upon treatment with ABA, an ABA receptor antagonist (AS6), or GA in the presence or absence of Fusarium graminearum (Fg) challenge. RESULTS: Spike treatments resulted in a total of 30,876 differentially expressed genes (DEGs) identified in 'Fielder' (26,004) and the Fg (4872) pathogen. Topology overlap and correlation analyses defined 9689 wheat DEGs as Fg-related across the treatments. Further enrichment analyses demonstrated that these included expression changes within 'Fielder' defense responses, cell structural metabolism, molecular transport, and membrane/lipid metabolism. Dysregulation of ABA and GA crosstalk arising from repression of 'Fielder' FUS3 was noted. As well, expression of a putative Fg ABA-biosynthetic cytochrome P450 was detected. The co-applied condition of Fg + ABA elicited further up-regulation of phytohormone biosynthesis, as well as SA and ET signaling pathways and cell wall/polyphenolic metabolism. In contrast, co-applied Fg + GA mainly suppressed phytohormone biosynthesis and signaling, while modulating primary and secondary metabolism and flowering. Unexpectedly, co-applied Fg + AS6 did not affect ABA biosynthesis or signaling, but rather elicited antagonistic responses tied to stress, phytohormone transport, and FHB disease-related genes. CONCLUSIONS: Observed exacerbation (misregulation) of classical defense mechanisms and cell wall fortifications upon ABA treatment are consistent with its ability to promote FHB severity and its proposed role as a fungal effector. In contrast, GA was found to modulate primary and secondary metabolism, suggesting a general metabolic shift underlying its reduction in FHB severity. While AS6 did not antagonize traditional ABA pathways, its impact on host defense and Fg responses imply potential for future investigation. Overall, by comparing these findings to those previously reported for four additional plant genotypes, an additive model of the wheat-Fg interaction is proposed in the context of phytohormone responses.


Assuntos
Fusarium , Parede Celular , Resistência à Doença , Perfilação da Expressão Gênica , Giberelinas , Doenças das Plantas/genética , Reguladores de Crescimento de Plantas/farmacologia , Triticum/genética
5.
BMC Genomics ; 22(1): 806, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749655

RESUMO

BACKGROUND: Paphiopedilum, commonly known as slipper orchid, is an important genus of orchid family with prominent horticultural value. Compared with conventional methods such as tillers and in vitro shoots multiplication, induction and regeneration of protocorm-like bodies (PLBs) is an effective micropropagation method in Paphiopedilum. The PLB initiation efficiency varies among species, hybrids and varieties, which leads to only a few Paphiopedilum species can be large-scale propagated through PLBs. So far, little is known about the mechanisms behind the initiation and maintenance of PLB in Paphiopedilum. RESULTS: A protocol to induce PLB development from seed-derived protocorms of Paphiopedilum SCBG Huihuang90 (P. SCBG Prince × P. SCBG Miracle) was established. The morphological characterization of four key PLB developmental stages showed that significant polarity and cell size gradients were observed within each PLB. The endogenous hormone level was evaluated. The increase in the levels of indoleacetic acid (IAA) and jasmonic acid (JA) accompanying the PLBs differentiation, suggesting auxin and JA levels were correlated with PLB development. Gibberellic acid (GA) decreased to a very low level, indicated that GA inactivation may be necessary for shoot apical meristem (SAM) development. Comparative transcriptomic profiles of four different developmental stages of P. SCBG Huihuang90 PLBs explore key genes involved in PLB development. The numbers of differentially expressed genes (DEGs) in three pairwise comparisons (A vs B, B vs C, C vs D) were 1455, 349, and 3529, respectively. KEGG enrichment analysis revealed that DEGs were implicated in secondary metabolite metabolism and photosynthesis. DEGs related to hormone metabolism and signaling, somatic embryogenesis, shoot development and photosynthesis were discussed in detail. CONCLUSION: This study is the first report on PLB development in Paphiopedilum using transcriptome sequencing, which provides useful information to understand the mechanisms of PLB development.


Assuntos
Orchidaceae , Transcriptoma , Orchidaceae/genética , Reguladores de Crescimento de Plantas , Sementes
6.
Plant Sci ; 313: 111068, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34763861

RESUMO

Plants possess specific signaling pathways, such as the MultiStep Phosphorelay (MSP), which is involved in cytokinin and ethylene sensing, and light, drought or osmotic stress sensing. These MSP comprise histidine-aspartate kinases (HKs) as receptors, histidine phosphotransfer (HPts) proteins acting as phosphorelay proteins, and response regulators (RRs), some of which act as transcription factors (type-B RRs). In previous studies, we identified partners of the poplar osmosensing signaling pathway, composed of two HKs, three main HPts, and six type-B RRs. To date, it is unresolved as to how cytokinin or osmotic stress signal specificity is achieved in the MSP in order to generate specific responses. Here, we present a large-scale interaction study of poplar type-B RR dimerization. Using the two-hybrid assay, we were able to show the homodimerization of type-B RRs, the heterodimerization of duplicated type-B RRs, and surprisingly, a lack of interaction between some type-B RRs belonging to different duplicates. The lack of interaction of the duplicates RR12-14 and RR18-19, which are involved in the osmosensing pathway has been confirmed by BiFC experiments. This study reveals, for the first time, an overview of type-B RR dimerization in poplar and makes way for the hypothesis that signal specificity for cytokinin or osmotic stress could be in part due to the fact that it is impossible for specific type-B RRs to heterodimerize.


Assuntos
Aspartato Quinase/metabolismo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Populus/genética , Populus/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Aspartato Quinase/genética , Dimerização , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Histidina Quinase/genética , Histidina Quinase/metabolismo , Pressão Osmótica , Transdução de Sinais/fisiologia , Técnicas do Sistema de Duplo-Híbrido
7.
Plant Sci ; 313: 111084, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34763869

RESUMO

The signaling pathways of both auxin and ethylene regulate peach fruit ripening via the Aux/IAA and ERF transcription factors, respectively. However, the molecular mechanisms that coordinate both auxin and ethylene signals during peach fruit ripening remain unclear. In this study, we show that PpIAA1 and PpERF4 act as key players in a positive feedback loop, and promote peach fruit ripening by directly binding to and enhancing the activity of target gene promoters. PpIAA1 increased the expression of the ethylene biosynthesis gene PpACS1. Furthermore, PpERF4 enhanced the transcription of PpACO1 and PpIAA1 genes by binding to their promoters. Additionally, PpIAA1 and PpERF4 bound to each other to form a complex, which then enhanced the transcription of abscisic acid biosynthesis genes (PpNCED2 and PpNCED3) and the fruit softening gene (PpPG1) to levels higher than those achieved by each transcription factor individually. Moreover, overexpression of PpIAA1 in tomato accelerated fruit ripening and shortened the fruit shelf-life by increasing the production of ethylene and the expression levels of ripening regulator genes. Collectively, these results advance our understanding of the molecular mechanisms underlying peach fruit ripening and softening via auxin and ethylene signaling pathways.


Assuntos
Frutas/crescimento & desenvolvimento , Frutas/genética , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Prunus persica/crescimento & desenvolvimento , Prunus persica/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas
8.
Plant Sci ; 313: 111095, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34763878

RESUMO

Photoperiod is dominant environmental factor that controls plant growth and development. Even though research on plants response to photoperiod is significant in agriculture, molecular mechanisms of garlic in response to photoperiod remain largely unknown. In the current investigation, 3 months old garlic plants were treated with long day (LD) and short day (SD) for 10 and 20 days after treatment (DAT). Liquid chromatography-mass spectrometry (LC-MS) analysis of phytohormones exhibited that indole-3-acetic acid (IAA), zeatin riboside (ZR) and salicylic acid (SA) were observed maximum under LD at 10 DAT, whereas abscisic acid (ABA), gibberellic acid 3 (GA3), zeatin (ZT) and jasmonic acid (JA) were observed maximum under LD at 20 DAT. Transcriptome sequencing analysis was done to evaluate the transcriptional response to LD and SD. Differentially expressed genes (DEGs) were detected to have pathway enrichment. i.e., DNA binding transcription factor activity, transcription regulator activity, transferase activity, transferring hexosyl groups, and sequence specific-DNA binding activity, plant hormone signal transduction, circadian rhythm-plant, biosynthesis of amino acids, phenylpropanoid biosynthesis, and starch and sucrose metabolism. Furthermore, 28 and 40 DEGs were identified related to photoperiod and hormone signaling, respectively and their interaction in response to LD and SD were discussed in detail. Outcomes of current investigation might be useful to provide novel resources for garlic bulb formation in response to photoperiod.


Assuntos
Adaptação Ocular/genética , Alho/crescimento & desenvolvimento , Alho/genética , Fotoperíodo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Transcriptoma
9.
Se Pu ; 39(12): 1281-1290, 2021 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-34811999

RESUMO

Plant hormones (PHs) are of significance in plant growth, as they regulate the various processes related to plant growth, development, and resistance. Sensitive and precise quantitative analysis of PHs is a bottleneck in plant science research. Currently, liquid chromatography-tandem mass spectrometry is used for the accurate and efficient detection of PHs. Sample pretreatment is an indispensable step in the chromatography-mass spectrometry analysis of PHs because it directly affects the sensitivity and accuracy of subsequent detection methods. Among various pretreatment methods for PHs, solid phase extraction (SPE) is the most widely used. Various new types of SPE, such as dispersive SPE, magnetic SPE, and solid phase microextraction, have been developed by modifying the extraction cartridge. The choice of adsorption material is the key factor in the abovementioned SPE methods, which has a decisive effect on the extraction, purification, and enrichment effects of the target substance in the sample pretreatment process. Carbon-based materials, including carbon nanotubes, graphene, carbon and nitrogen compounds, as well as organic frameworks, including metal organic frameworks and covalent organic materials, are suitable adsorption materials because of their designable structure, large specific surface area, and good stability. Molecularly imprinted polymers and supramolecular compounds show specific molecular recognition based on host-guest interactions, which can significantly improve the selectivity of sample pretreatment methods. In this paper, SPE-related technology and the abovementioned types of functionalized adsorption materials in the pretreatment of PHs prevalent in the past five years have been reviewed. The related development trends are also summarized.


Assuntos
Nanotubos de Carbono , Reguladores de Crescimento de Plantas , Adsorção , Extração em Fase Sólida , Microextração em Fase Sólida
10.
Planta ; 254(6): 113, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34739601

RESUMO

MAIN CONCLUSION: High-throughput sequencing and yeast one and two-hybrid library screening reveal that DKGA2ox1 and miR171f_3 are involved in the regulation of scion dwarfing with 'Nan-tong-xiao-fang-shi' as interstocks. Diospyros kaki Thunb. cv. Nan-tong-xiao-fang-shi ('Nan-tong-xiao-fang-shi') interstocks play a critical role in the scion dwarfing. However, the understanding of the molecular signaling pathways that regulate the scion dwarfing with 'Nan-tong-xiao-fang-shi' as interstocks remain unclear. In this work, the regulatory network in the scion dwarfing with 'Nan-tong-xiao-fang-shi' as interstocks was identified. Using a yeast one-hybrid library screening, luciferase activity analysis, luciferase complementation imaging assays and GFP signal detection, a SPL transcription factor named Diospyros kaki SPL (DKSPL), potentially functioning as a transcriptional activator of the Diospyros kaki GA2ox1 (DKGA2ox1) gene, was identified as a key stimulating factor in the persimmon growth and development. The DKSPL was found in the nucleus, and might play a role in the transcriptional regulation system. A microRNA named miR171f_3 was identified, which might act as a negative regulator of Diospyros kaki SCR (DKSCR) in persimmon. The interactions between DKSCR and seven proteins were experimentally validated with a yeast two-hybrid library screening. Compared to the non-grafted wildtype persimmon, the tissue section of graft union healed well due to the increased expression of cinnamyl-alcohol dehydrogenase. These results indicate that DKGA2ox1 and miR171f_3 may co-promote the scion dwarfing by plant hormone signal transduction pathways.


Assuntos
Diospyros , MicroRNAs , Diospyros/genética , Frutas , MicroRNAs/genética , Reguladores de Crescimento de Plantas , Fatores de Transcrição
11.
Int J Mol Sci ; 22(19)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34639100

RESUMO

Abscisic acid (ABA) is a key signaling molecule promoting ripening of non-climacteric fruits such as sweet cherry (Prunus avium L.). To shed light on the role of other hormones on fruit development, ripening and anthocyanin production, the synthetic auxin 1-naphthaleneacetic acid (NAA) was applied to sweet cherry trees during the straw-color stage of fruit development. NAA-treated fruits exhibited higher concentrations of 1-aminocyclopropane-1-carboxylic acid (ACC) and ABA-glucose ester (ABA-GE), which are a precursor of ethylene and a primary storage form of ABA, respectively. Consistent with these observations, transcript levels of genes encoding ACC synthase and ACC oxidase, both involved in ethylene biosynthesis, were increased after 6 days of NAA treatment, and both ABA concentration and expression of the regulator gene of ABA biosynthesis (NCED1 encoding 9-cis-epoxycarotenoid dioxygenase) were highest during early fruit ripening. In addition, transcript levels of key anthocyanin regulatory, biosynthetic and transport genes were significantly upregulated upon fruit exposure to NAA. This was accompanied by an increased anthocyanin concentration and fruit weight whilst fruit firmness and cracking index decreased. Altogether our data suggest that NAA treatment alters ethylene production, which in turn induces ripening in sweet cherry and enhanced anthocyanin production, possibly through ABA metabolism. The results from our study highlight the potential to use a single NAA treatment for manipulation of cherry ripening.


Assuntos
Antocianinas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Prunus avium/metabolismo , Proteínas de Plantas/genética , Prunus avium/efeitos dos fármacos , Prunus avium/crescimento & desenvolvimento
12.
Nat Commun ; 12(1): 5858, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615886

RESUMO

Brassinosteroids (BRs) are plant steroid hormones that regulate cell division and stress response. Here we use a systems biology approach to integrate multi-omic datasets and unravel the molecular signaling events of BR response in Arabidopsis. We profile the levels of 26,669 transcripts, 9,533 protein groups, and 26,617 phosphorylation sites from Arabidopsis seedlings treated with brassinolide (BL) for six different lengths of time. We then construct a network inference pipeline called Spatiotemporal Clustering and Inference of Omics Networks (SC-ION) to integrate these data. We use our network predictions to identify putative phosphorylation sites on BES1 and experimentally validate their importance. Additionally, we identify BRONTOSAURUS (BRON) as a transcription factor that regulates cell division, and we show that BRON expression is modulated by BR-responsive kinases and transcription factors. This work demonstrates the power of integrative network analysis applied to multi-omic data and provides fundamental insights into the molecular signaling events occurring during BR response.


Assuntos
Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Transdução de Sinais , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Divisão Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteômica , Plântula/metabolismo , Esteroides Heterocíclicos , Fatores de Transcrição/metabolismo
13.
Int J Mol Sci ; 22(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34638707

RESUMO

The B-box zinc-finger transcription factors are important for plant growth, development, and various physiological processes such as photomorphogenesis, light signaling, and flowering, as well as for several biotic and abiotic stress responses. However, there is relatively little information available regarding Brassica B-box genes and their expression. In this study, we identified 51, 52, and 101 non-redundant genes encoding B-box proteins in Brassica rapa (BrBBX genes), B. oleracea (BoBBX genes), and B. napus (BnBBX genes), respectively. A whole-genome identification, characterization, and evolutionary analysis (synteny and orthology) of the B-box gene families in the diploid species B. rapa (A genome) and B. oleracea (C genome) and in the allotetraploid species B. napus (AC genome) revealed segmental duplications were the major contributors to the expansion of the BrassicaBBX gene families. The BrassicaBBX genes were classified into five subgroups according to phylogenetic relationships, gene structures, and conserved domains. Light-responsive cis-regulatory elements were detected in many of the BBX gene promoters. Additionally, BrBBX expression profiles in different tissues and in response to various abiotic stresses (heat, cold, salt, and drought) or hormones (abscisic acid, methyl jasmonate, and gibberellic acid) were analyzed by qRT-PCR. The data indicated that many B-box genes (e.g., BrBBX13, BrBBX15, and BrBBX17) may contribute to plant development and growth as well as abiotic stress tolerance. Overall, the identified BBX genes may be useful as functional genetic markers for multiple stress responses and plant developmental processes.


Assuntos
Brassica napus , Brassica rapa , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Família Multigênica , Reguladores de Crescimento de Plantas , Proteínas de Plantas , Estresse Fisiológico , Brassica napus/genética , Brassica napus/metabolismo , Brassica rapa/genética , Brassica rapa/metabolismo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética
14.
J Agric Food Chem ; 69(41): 12111-12125, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34610745

RESUMO

Plant hormones, also called phytohormones, are small signaling molecules regulating a wide range of growth and developmental processes. These unique compounds respond to both external (light, temperature, water, nutrition, or pathogen attack) and internal factors (e.g., age) and mediate signal transduction leading to gene expression with the aim of allowing plants to adapt to constantly changing environmental conditions. Within the regulation of biological processes, individual groups of phytohormones act mostly through a web of interconnected responses rather than linear pathways, making elucidation of their mode of action in living organisms quite challenging. To further progress with our knowledge, the development of novel tools for phytohormone research is required. Although plenty of small molecules targeting phytohormone metabolic or signaling pathways (agonists, antagonists, and inhibitors) and labeled or tagged (fluorescently, isotopically, or biotinylated) compounds have been produced, the control over them in vivo is lost at the time of their administration. Caged compounds, on the other hand, represent a new approach to the development of small organic substances for phytohormone research. The term "caged compounds" refers to light-sensitive probes with latent biological activity, where the active molecule can be freed using a light beam in a highly spatio/temporal-, amplitude-, or frequency-defined manner. This review summarizes the up-to-date development in the field of caged plant hormones. Research progress is arranged in chronological order for each phytohormone regardless of the cage compound formulation and bacterial/plant/animal cell applications. Several known drawbacks and possible directions for future research are highlighted.


Assuntos
Reguladores de Crescimento de Plantas , Plantas , Adaptação Fisiológica , Animais , Células Vegetais , Transdução de Sinais
15.
Se Pu ; 39(11): 1213-1221, 2021 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-34677016

RESUMO

As among the most widely used pesticides in agriculture, plant growth regulators (PGRs) have a positive influence on plants. However, the overuse of PGRs may induce toxicity in food and even be hazardous to human health. Numerous studies have investigated the presence and residues of PGRs on vegetables and fruits. Animal-derived foods are one of the most dominant food sources providing nutrients to fulfil the daily dietary intake, and could also be potentially contaminated by PGRs. However, there is little information on PGR residues in animal-derived foods. Standardization also lacks among the techniques for PGR determination in animal-derived foods, thereby restricting the further establishment of pesticide usage and food safety regulations. Therefore, in this study, a rapid and effective method for analyzing chlormequat chloride, thidiazuron, and paclobutrazol in animal-derived food samples was established. The method primarily involves high performance liquid chromatography-tandem mass spectrometry combined with the use of isotope-labeled internal standards. The extraction and clean-up procedures were based on the QuEChERS method. The analytes were extracted from pork, beef, chicken, pork liver, egg, and milk samples using acetonitrile, followed by 4 g anhydrous magnesium sulfate (MgSO4), and 1 g sodium chloride (NaCl). The supernatant was removed using a mixture of 50 mg N-propyl ethylenediamine (PSA), 50 mg octadecyl silane (C18), and 150 mg MgSO4, and then passed through a 0.22 µm membrane filter before determination. The Agilent ZORBAX Eclipse Plus C18 column (150 mm×3.0 mm, 1.8 µm) was used to separate the analytes under a gradient elution program, with acetonitrile and 5 mmol/L ammonium acetate solution as mobile phases. The analytes were detected by mass spectrometry using the positive and negative electrospray ionization modes under the multiple reaction monitoring mode. Matrix-matched calibration combined with internal standards was used to quantify the PGRs. The linear regression correlation coefficients (r2) for the PGRs were all greater than 0.990 in the corresponding linear concentration ranges. Chlormequat chloride, thidiazuron, and paclobutrazol showed good linearities in the range of 0.1-100 µg/L for the egg and pork liver samples and 0.1-50 µg/L for the pork, beef, and chicken samples. For the milk samples, thidiazuron and paclobutrazol showed good linearities in the range of 0.05-10 µg/L, while chlormequat chloride showed linearity in the range of 0.05-5 µg/L. The limit of detection (LOD) and limit of quantification (LOQ) for each PGR were based on the signal-to-noise (S/N) ratios. Under optimal conditions, the LODs ranged from 0.01 µg/kg to 0.1 µg/kg, where the LOD was defined as the amount of the tested compound that generated an S/N ratio higher than 3. In addition, the LOQs were in the range of 0.5-5 µg/kg, with an S/N ratio higher than 10. The precision and accuracy were evaluated by recovery experiments. At the LOQ, twice the LOQ, and 10 times the LOQ, the mean recoveries were in the range of 70.0%-117.4%, and the relative standard deviations (RSDs) ranged from 0.8% to 16.1%. The results indicated that the proposed method is accurate and reliable. This method is a modification of the QuEChERS method, and is advantageous owing to its simplicity and high sensitivity. The use of matrix-matching calibration curves and internal standards can eliminate matrix interference, thereby increasing the accuracy of the method. This method satisfies the testing requirements for chlormequat chloride, thidiazuron, and paclobutrazol residues in animal-derived foods, and is promising for the determination of other PGRs or other types of pesticides in animal-derived foods.


Assuntos
Reguladores de Crescimento de Plantas , Espectrometria de Massas em Tandem , Animais , Bovinos , Cromatografia Líquida de Alta Pressão , Humanos , Isótopos , Padrões de Referência , Extração em Fase Sólida
16.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34638735

RESUMO

In Arabidopsis seeds, ROS have been shown to be enabling actors of cellular signaling pathways promoting germination, but their accumulation under stress conditions or during aging leads to a decrease in the ability to germinate. Previous biochemical work revealed that a specific class of plastid thioredoxins (Trxs), the y-type Trxs, can fulfill antioxidant functions. Among the ten plastidial Trx isoforms identified in Arabidopsis, Trx y1 mRNA is the most abundant in dry seeds. We hypothesized that Trx y1 and Trx y2 would play an important role in seed physiology as antioxidants. Using reverse genetics, we found important changes in the corresponding Arabidopsis mutant seeds. They display remarkable traits such as increased longevity and higher and faster germination in conditions of reduced water availability or oxidative stress. These phenotypes suggest that Trxs y do not play an antioxidant role in seeds, as further evidenced by no changes in global ROS contents and protein redox status found in the corresponding mutant seeds. Instead, we provide evidence that marker genes of ABA and GAs pathways are perturbed in mutant seeds, together with their sensitivity to specific hormone inhibitors. Altogether, our results suggest that Trxs y function in Arabidopsis seeds is not linked to their previously identified antioxidant roles and reveal a new role for plastid Trxs linked to hormone regulation.


Assuntos
Proteínas de Arabidopsis/biossíntese , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Plastídeos/metabolismo , Sementes/metabolismo , Tiorredoxinas/biossíntese , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Germinação , Reguladores de Crescimento de Plantas/genética , Plastídeos/genética , Sementes/crescimento & desenvolvimento , Tiorredoxinas/genética
17.
BMC Plant Biol ; 21(1): 485, 2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34688264

RESUMO

BACKGROUND: GROWTH-REGULATING FACTORs (GRFs), a type of plant-specific transcription factors, play important roles in regulating plant growth and development. Although GRF gene family has been identified in various plant species, a genome-wide analysis of this family in lettuce (Lactuca sativa L.) has not been reported yet. RESULTS: Here we identified 15 GRF genes in lettuce and performed comprehensive analysis of them, including chromosomal locations, gene structures, and conserved motifs. Through phylogenic analysis, we divided LsaGRFs into six groups. Transactivation assays and subcellular localization of LsaGRF5 showed that this protein is likely to act as a transcriptional factor in the cell nucleus. Furthermore, transgenic lettuce lines overexpressing LsaGRF5 exhibited larger leaves, while smaller leaves were observed in LsaMIR396a overexpression lines, in which LsaGRF5 was down-regulated. CONCLUSIONS: These results in lettuce provide insight into the molecular mechanism of GRF gene family in regulating leaf growth and development and foundational information for genetic improvement of the lettuce variations specialized in leaf character.


Assuntos
Alface/crescimento & desenvolvimento , Alface/genética , Desenvolvimento Vegetal/genética , Reguladores de Crescimento de Plantas/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , China , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta , Filogenia , Fatores de Transcrição
18.
Plant Sci ; 312: 111024, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34620429

RESUMO

Fruit coloration is an appearance trait that directly affects the commercial value and market competitiveness of apples. The red color of apple fruit is mainly affected by anthocyanin accumulation, and the synthesis of anthocyanin is affected by various factors. The critical roles of hormones and environmental factors during apple anthocyanin biosynthesis are described. This review also elaborates the specific mechanisms of the responses of internal genes to stress and changes in anthocyanin when apples are exposed to different environmental stressors. This study provides direction for future research on apple anthocyanin and is a reference for anthocyanin studies in other species.


Assuntos
Adaptação Fisiológica/fisiologia , Antocianinas/biossíntese , Poluentes Ambientais/efeitos adversos , Malus/genética , Malus/metabolismo , Pigmentação/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Adaptação Fisiológica/genética , Antocianinas/genética , Vias Biossintéticas/genética , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Pigmentação/genética , Reguladores de Crescimento de Plantas/genética
19.
Plant Sci ; 312: 111045, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34620443

RESUMO

The present study provides a visual insight into the effects of simulated microgravity (MG) on somatic embryogenesis (SE) in Begonia through the analysis of phytohormone fluctuations and energy metabolism. To investigate this relationship, thin cell layer culture model was first used. The results showed that MG changed the phytohormone content and stimulated starch biosynthesis to convert into sugar to release energy needed for regeneration and proliferation. Moreover, from the results it is likely that MG accelerated the initiation and subsequently maturation and aging of SE via decrease of AUX and increase of ABA. High content of GA, CKs, starch, sugar and low ABA as well as high CKs/ABA ratio were responsible for the increase in the number of embryos under clinorotation which was 1.57-fold higher than control after 90 days. The increase in fresh and dry weight of somatic embryos and chlorophyll content under MG were confirmed as their adaptive responses to gravitational stress. However, long-term exposure to MG (120 days) stimulated biosynthesis of ABA levels 1.85-fold higher than controls, which resulted in a decrease in chlorophyll content, increase in number of mature embryos and stomata length. These results revealed that MG regulated the induction, differentiation and senescence of somatic embryos via a biochemical interaction pathway.


Assuntos
Ácido Abscísico/metabolismo , Begoniaceae/crescimento & desenvolvimento , Begoniaceae/metabolismo , Diferenciação Celular/efeitos dos fármacos , Metabolismo Energético , Reguladores de Crescimento de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Técnicas de Cultura de Células , Técnicas de Embriogênese Somática de Plantas
20.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34638610

RESUMO

Teosinte branched1/cycloidea/proliferating cell factor (TCP) gene family members are plant-specific transcription factors that regulate plant growth and development by controlling cell proliferation and differentiation. However, there are no reported studies on the TCP gene family in Dendrobium catenatum Lindl. Here, a genome-wide analysis of TCP genes was performed in D. catenatum, and 25 TCP genes were identified. A phylogenetic analysis classified the family into two clades: Class I and Class II. Genes in the same clade share similar conserved motifs. The GFP signals of the DcaTCP-GFPs were detected in the nuclei of tobacco leaf epidermal cells. The activity of DcaTCP4, which contains the miR319a-binding sequence, was reduced when combined with miR319a. A transient activity assay revealed antagonistic functions of Class I and Class II of the TCP proteins in controlling leaf development through the jasmonate-signaling pathway. After different phytohormone treatments, the DcaTCP genes showed varied expression patterns. In particular, DcaTCP4 and DcaTCP9 showed opposite trends after 3 h treatment with jasmonate. This comprehensive analysis provides a foundation for further studies on the roles of TCP genes in D. catenatum.


Assuntos
Dendrobium/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Motivos de Aminoácidos , Sequência Conservada , Ciclopentanos/farmacologia , Dendrobium/efeitos dos fármacos , Dendrobium/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genoma de Planta , Estudo de Associação Genômica Ampla , Levanogestrel , Lipoxigenase/genética , Família Multigênica , Oxilipinas/farmacologia , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/química , Plantas Geneticamente Modificadas , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...