Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.730
Filtrar
1.
Soft Matter ; 17(35): 8195-8210, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525167

RESUMO

We present an experimental study combining particle tracking, active microrheology, and differential dynamic microscopy (DDM) to investigate the dynamics and rheology of an oil-water interface during biofilm formation by the bacteria Pseudomonas Aeruginosa PA14. The interface transitions from an active fluid dominated by the swimming motion of adsorbed bacteria at early age to an active viscoelastic system at late ages when the biofilm is established. The microrheology measurements using microscale magnetic rods indicate that the biofilm behaves as a viscoelastic solid at late age. The bacteria motility at the interface during the biofilm formation, which is characterized in the DDM measurements, evolves from diffusive motion at early age to constrained, quasi-localized motion at later age. Similarly, the mobility of passively moving colloidal spheres at the interface decreases significantly with increasing interface age and shows a dependence on sphere size after biofilm formation that is orders-of-magnitude larger than that expected in a homogeneous system in equilibrium. We attribute this anomalous size dependence to either length-scale-dependent rheology of the biofilm or widely differing effects of the bacteria activity on the motion of spheres of different sizes.


Assuntos
Biofilmes , Água , Bactérias , Pseudomonas aeruginosa , Reologia
2.
Molecules ; 26(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34443312

RESUMO

Subcritical water extraction of Himanthalia elongata and the subsequent acetone fractionation to precipitate crude fucoidans generated a liquid phase which was used to recover alginates with a wide range of viscoelastic features and other soluble extracts with potential biological activities. The precipitated alginate was converted to sodium alginate using an environmentally friendly treatment before being characterized by Fourier transform infrared attenuated total reflectance, nuclear magnetic resonance, high performance size exclusion chromatography and rheological measurements. The cell viability of three human cell lines (A549, HCT-116, T98G) in the presence of the extracts obtained before and after acetone fractionation was assessed. Fractionation with different acetone volumes showed a slight effect in the behavior of the different tested cell lines. Results also indicated a notable effect of the processing conditions on the block structure and molar mass of the extracted biopolymer, with the subsequent impact on the rheological properties of the corresponding gelled matrices.


Assuntos
Alginatos/isolamento & purificação , Feófitas/química , Água/química , Alginatos/química , Alginatos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Conformação Molecular , Reologia , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
3.
Molecules ; 26(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34443340

RESUMO

The oat ß-glucan (OG) was added into set-type yogurt as a functional ingredient, in order to evaluate effects on the rheological characteristics and microstructure of set-type yogurt. When the OG concentration increased from 0 to 0.3%, the WHC gradually increased. At 0.3% OG, the set-type yogurt had the highest WHC of 94.67%. Additionally, the WHC continuously decreased, reaching the lowest WHC (about 80%) at 0.5% OG. When 0.3% OG was added, the highest score of sensory evaluation was about 85. The rheological result showed that the fermentation process went through the changes as follows: solid → liquid → solid → liquid. The addition of 0.3% OG decreased the fermentation time of set-type yogurt by about 16 min, making yogurt more inclined to be liquid. The acidity of set-type yogurt with OG was slightly higher. The result of microstructure showed that the addition of OG destroyed the three-dimensional network structure of yogurt, and some spherical aggregate particles could be clearly observed at 0.3% OG. Overall, this study provided a theoretical basis for the application of OG in set-type yogurt.


Assuntos
Avena/química , Reologia , Iogurte/análise , beta-Glucanas/farmacologia , Fermentação/efeitos dos fármacos
4.
Molecules ; 26(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34443601

RESUMO

Surfactant aggregates have long been considered as a tool to improve drug delivery and have been widely used in medical products. The pH-responsive aggregation behavior in anionic gemini surfactant 1,3-bis(N-dodecyl-N-propanesulfonate sodium)-propane (C12C3C12(SO3)2) and its mixture with a cationic monomeric surfactant cetyltrimethylammonium bromide (CTAB) have been investigated. The spherical-to-wormlike micelle transition was successfully realized in C12C3C12(SO3)2 through decreasing the pH, while the rheological properties were perfectly enhanced for the formation of wormlike micelles. Especially at 140 mM and pH 6.7, the mixture showed high viscoelasticity, and the maximum of the zero-shear viscosity reached 1530 Pa·s. Acting as a sulfobetaine zwitterionic gemini surfactant, the electrostatic attraction, the hydrogen bond and the short spacer of C12C3C12(SO3)2 molecules were all responsible for the significant micellar growth. Upon adding CTAB, the similar transition could also be realized at a low pH, and the further transformation to branched micelles occurred by adjusting the total concentration. Although the mixtures did not approach the viscosity maximum appearing in the C12C3C12(SO3)2 solution, CTAB addition is more favorable for viscosity enhancement in the wormlike-micelle region. The weakened charges of the headgroups in a catanionic mixed system minimizes the micellar spontaneous curvature and enhances the intermolecular hydrogen-bonding interaction between C12C3C12(SO3)2, facilitating the formation of a viscous solution, which would greatly induce entanglement and even the fusion of wormlike micelles, thus resulting in branched microstructures and a decline of viscosity.


Assuntos
Reologia , Tensoativos/química , Cetrimônio/química , Glutamatos/química , Concentração de Íons de Hidrogênio , Micelas , Viscosidade
5.
ACS Appl Mater Interfaces ; 13(33): 40013-40031, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34375080

RESUMO

Flexible and wearable hydrogel strain sensors have attracted tremendous attention for applications in human motion and physiological signal monitoring. However, it is still a great challenge to develop a hydrogel strain sensor with certain mechanical properties and tensile deformation capabilities, which can be in conformal contact with the target organ and also have self-healing properties, self-adhesive capability, biocompatibility, antibacterial properties, high strain sensitivity, and stable electrical performance. In this paper, an ionic conductive hydrogel (named PBST) is rationally designed by proportionally mixing polyvinyl alcohol (PVA), borax, silk fibroin (SF), and tannic acid (TA). SF can not only be a reinforcement to introduce an energy dissipation mechanism into the dynamically cross-linked hydrogel network to stabilize the non-Newtonian behavior of PVA and borax but it can also act as a cross-linking agent to combine with TA to reduce the dissociation of TA on the hydrogel network, improving the mechanical properties and viscoelasticity of the hydrogel. The combination of SF and TA can improve the self-healing ability of the hydrogel and realize the adjustable viscoelasticity of the hydrogel without sacrificing other properties. The obtained hydrogel has excellent stretchability (strain > 1000%) and shows good conformal contact with human skin. When the hydrogel is damaged by external strain, it can rapidly self-repair (mechanical and electrical properties) without external stimuli. It shows adhesiveness and repeatable adhesiveness to different materials (steel, wood, PTFE, glass, iron, and cotton fabric) and biological tissues (pigskin) and is easy to peel off without residue. The obtained PBST conductive hydrogel also has a wide strain-sensing range (>650%) and reliable stability. The hydrogel adhered to the skin surface can monitor large strain movements such as in finger joints, wrist joints, knee joints, and so on and detect swallowing, smiling, facial bulging and calming, and other micro-deformation behaviors. It can also distinguish physical signals such as light smile, big laugh, fast and slow breathing, and deep and shallow breathing. Therefore, the PBST conductive hydrogel material with multiple synergistic functions has great potential as a flexible wearable strain sensor. The PBST hydrogel has antibacterial properties and good biocompatibility at the same time, which provides a safety guarantee for it as a flexible wearable strain sensor. This work is expected to provide a new way for people to develop ideal wearable strain sensors.


Assuntos
Adesivos/química , Materiais Biocompatíveis/química , Fibroínas/química , Hidrogéis/química , Substâncias Viscoelásticas/química , Animais , Antibacterianos/química , Materiais Biocompatíveis/metabolismo , Boratos/química , Sobrevivência Celular/efeitos dos fármacos , Reagentes para Ligações Cruzadas/química , Condutividade Elétrica , Técnicas Eletroquímicas , Desenho de Equipamento/instrumentação , Desenho de Equipamento/métodos , Fibroblastos/citologia , Humanos , Hidrogéis/metabolismo , Camundongos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Movimento , Álcool de Polivinil/química , Reologia , Pele , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície , Taninos/química , Dispositivos Eletrônicos Vestíveis , Cicatrização
6.
Soft Matter ; 17(32): 7585-7595, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34341819

RESUMO

Mucus is a viscoelastic gel secreted by the pulmonary epithelium in the tracheobronchial region of the lungs. The coordinated beating of cilia moves mucus upwards towards the pharynx, removing inhaled pathogens and particles from the airways. The efficacy of this clearance mechanism depends primarily on the rheological properties of mucus. Here we use magnetic wire based microrheology to study the viscoelastic properties of human mucus collected from human bronchus tubes. The response of wires between 5 and 80 µm in length to a rotating magnetic field is monitored by optical time-lapse microscopy and analyzed using constitutive equations of rheology, including those of Maxwell and Kelvin-Voigt. The static shear viscosity and elastic modulus can be inferred from low frequency (3 × 10-3-30 rad s-1) measurements, leading to the evaluation of the mucin network relaxation time. This relaxation time is found to be widely distributed, from one to several hundred seconds. Mucus is identified as a viscoelastic liquid with an elastic modulus of 2.5 ± 0.5 Pa and a static viscosity of 100 ± 40 Pa s. Our work shows that beyond the established spatial variations in rheological properties due to microcavities, mucus exhibits secondary inhomogeneities associated with the relaxation time of the mucin network that may be important for its flow properties.


Assuntos
Magnetismo , Muco , Humanos , Fenômenos Magnéticos , Reologia , Viscosidade
7.
Wiad Lek ; 74(7): 1605-1611, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34459759

RESUMO

OBJECTIVE: The aim: Of work is to determine changes in blood flow in the vessels of the anterior abdominal wall that occur after plastic surgeries in order to improve the results of operations and to develop new methods for the prevention of complications. PATIENTS AND METHODS: Materials and methods: The study was conducted in 132 patients. Patients were divided into 2 groups: main group 64 and control group 68 patients. Main group has patients who underwent abdominoplasty in combination with liposuction; control group has patients who underwent abdominoplasty without liposuction. In both groups we make different simultaneous operations. Laser Doppler Flowmetry and Ultrasonic Doppler Flowmetry were performed to determine the blood flow indices in the flaps. RESULTS: Results: Liposuction volumes averaged 3.57 ± 0.74 liters of lipoaspirate. In the main group there were totaly 4 complications, in the control group complications developed in 9 patients. Comparing daily indicators between the two groups, no statistically significant difference in the dynamics of MI changes was found during the entire study period (p = 0.767). Increase in caliber of vessels, on average, from 1.55 ± 0.8 mm in the preoperative period to 1.68 ± 0.75 mm on the 14th day of the postoperative period was statistically significant (p < 0.05). CONCLUSION: Conclusions: The combination of abdominoplasty with liposuction and simultaneous operations does not lead to greater development of complications and allows to achieve good aesthetic results.


Assuntos
Parede Abdominal , Abdominoplastia , Parede Abdominal/diagnóstico por imagem , Parede Abdominal/cirurgia , Abdominoplastia/efeitos adversos , Humanos , Lasers , Reologia , Ultrassom
8.
Food Res Int ; 147: 110517, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34399495

RESUMO

The potential application of 3D printing technology in creating protein-rich desserts with multisensory design was investigated. Yoghurt-gel inks were formulated by varying the concentration of gelatine and whey protein isolate (WPI). Assessment of rheological and textural properties prior to printing, showed that an increase of gelatine concentration from 7.5 to 12.5% w/w increased the yield stress, storage modulus, loss modulus, firmness, and resilience of yoghurt gels. Addition of 12% WPI reduced these effects; creating softer gels with reduced resilience. However, these gels showed stable shape after printing, especially in formulations with higher gelatine concentrations. The changes in textural properties caused by the extrusion process need to be considered when designing yoghurt gels, as a significant reduction in firmness and resilience and an increase in adhesiveness were observed after 3D printing. The more stable and well-shaped 3D printed yoghurt gels were obtained by the combined effect of WPI and gelatine which provided a good balance of appearance, taste, flavour, and mouthfeel attributes evaluated by a trained sensory panel. A consumer study performed with thirty healthy adults showed the potential to improve sensory acceptance through the creation of multisensory layered design.


Assuntos
Gelatina , Iogurte , Géis , Humanos , Impressão Tridimensional , Reologia , Iogurte/análise
9.
Food Res Int ; 147: 110554, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34399531

RESUMO

Media milling, an efficient and organic solvent-free method without the use of chemical modification, has been developed to engineer novel walnut-based miscellaneous colloidal particles. The defatted walnut flour particles (DWFPs), which were prepared by a novel continuous phase transition extraction method operated under low temperature (i.e., 50-65 °C) followed by 6-h media milling, were spherical shape with an average size of 753.0 ± 27.8 nm. These particles were mainly composed of proteins (55.6 ± 0.2 wt%) and carbohydrates (24.0 ± 0.2 wt%) and demonstrated the ability to form a gel-like network structure in Pickering emulsions (PEs). The visual observation and confocal laser scanning microscopy (CLSM) showed that the PE droplets stabilized by DWFPs had a good stability over a prolonged storage time (i.e., 3-month storage). Increasing particle concentration (c) in aqueous phase led to the increased emulsified phase volume, decreased oil droplet sizes, and increased storage moduli G' for the viscoelastic responses. As the oil volume fraction (ϕ) increased, the emulsified phase volume fraction and droplet size increased while their rheological properties shifted from fluid-like to gel-like behaviors. The method developed in this study is significant in value-added utilization of walnut products and provides a new insight into facile fabrication of stable food-grade Pickering emulsions-based functional foods using miscellaneous particle stabilizers from walnut extracts.


Assuntos
Juglans , Emulsões , Farinha , Tamanho da Partícula , Reologia
10.
Food Res Int ; 147: 110558, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34399535

RESUMO

Food behavior during oral processing plays an essential role in the perception of texture. It depends on different factors, including food structure and composition, as well as its behavior when interacting with saliva. This study aimed to investigate the effect of particle size and thickener type of emulsified systems on physical, rheological, tribological, and oral oily coating properties under oral conditions. Six matrices based on oil-in-water emulsions with different particle sizes (NE-nanoemulsion and CE-conventional emulsions) were prepared using a mixture of emulsifiers (10% w/w) and sunflower oil (10% w/w). Thickened agents were added to the matrices (NE and CE) at different concentrations (3-4.5% w/w of starch-ST or 0.4-0.8% w/w xanthan gum-XG) to obtain equi-viscous samples (NE-EV) with their CE-based counterpart. Results showed a decrease in apparent viscosity values under oral conditions (saliva and shearing at 10 s-1) during the shear time, but this behavior was more evident in starch-based matrices. The lubrication properties of the different matrices depended mainly on the thickener concentration since equi-viscous samples (NE-ST-EV and NE-XG-EV) showed higher coefficient of friction (CoF) values. Finally, oral oily coating was more related to the oil droplets size than to the type of thickener since all NE-based matrices showed a higher amount of coating retained compared to the CE-based ones. Therefore, NE-based matrices could be used as an alternative to increase mouthfeel sensations in food emulsions.


Assuntos
Emulsificantes , Emulsões , Tamanho da Partícula , Reologia , Viscosidade
11.
Soft Matter ; 17(29): 7004-7013, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34240724

RESUMO

Viscous environments are ubiquitous in nature and in engineering applications, from mucus in lungs to oil recovery strategies in the earth's subsurface - and in all these environments, bacteria also thrive. The behavior of bacteria in viscous environments has been investigated for a single bacterium, but not for active suspensions. Dense populations of pusher-type bacteria are known to create superfluidic regimes where the effective viscosity of the entire suspension is reduced through collective motion, and the main purpose of this study is to investigate how a viscous environment will affect this behavior. Using a Couette rheometer, we measure shear stress as a function of the applied shear rate to define the effective viscosity of suspensions of Escherichia coli (E. coli), while varying both the bacterial density within the suspension and the viscosity of the suspending fluid. We document the remarkable observation that E. coli decreases the effective suspension viscosity to near-zero (superfluidic regime) for all solvent viscosities tested (1-17 mPa s). Specifically, we observe that the bacterial density needed to trigger this superfluidic regime and the maximum shear rate under which this regime can be sustained both decrease with increasing solvent viscosity. We find that the resulting rheograms can be well approximated by the Carreau-Yasuda law. Using this, we propose a constitutive model as a function of the solvent viscosity and the bacterial concentration only. This model captures the onset of the superfluidic regime and offers promising avenues for the modelling of flow of bacterial suspensions in viscous environments.


Assuntos
Bactérias , Escherichia coli , Reologia , Suspensões , Viscosidade
12.
Int J Mol Sci ; 22(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34298901

RESUMO

The aim of the study was to determine how the molecular structure of porcine fat-in-water type emulsions stabilised with potato starch affected their rheomechanical properties. Dynamic mechanical analysis (DMA) and instrumental analysis of the texture were the method used in experiments. Starch gels with concentrations corresponding to the water starch concentration of the examined emulsions were used as control systems. The analysis of the starch and starch-fat systems showed that the values characterising their rheomechanical and textural properties reflected the spatial reaction of the amylose matrix to dynamic mechanical interactions. Changes in their values resulted from conformational changes in the structure of segments and nodes of the lattice, conditioned by the concentration of starch and the presence of fat. As a result of these changes, starch-fat emulsions are distinguished by greater densities of network segments and nearly two times greater functionalities of nodes than starch gels. The instrumental analysis of the texture showed that the values of the texture parameters in the starch gels were greater than in the starch-fat emulsions. The high values of the correlation coefficients (R~0.9) between the texture determinants and the rheological parameters proved that there was a strong correlation between the textural properties of the tested systems and their rheomechanical properties.


Assuntos
Emulsões/química , Gorduras/química , Solanum tuberosum/química , Amido/química , Água/química , Amilose/química , Animais , Géis/química , Estrutura Molecular , Reologia/métodos , Suínos
13.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34298939

RESUMO

The present study deals with the mathematical modeling of crosslinking kinetics of polymer-phenol conjugates mediated by the Horseradish Peroxidase (HRP)-hydrogen peroxide (H2O2) initiation system. More specifically, a dynamic Monte Carlo (MC) kinetic model is developed to quantify the effects of crosslinking conditions (i.e., polymer concentration, degree of phenol substitution and HRP and H2O2 concentrations) on the gelation onset time; evolution of molecular weight distribution and number and weight average molecular weights of the crosslinkable polymer chains and gel fraction. It is shown that the MC kinetic model can faithfully describe the crosslinking kinetics of a finite sample of crosslinkable polymer chains with time, providing detailed molecular information for the crosslinkable system before and after the gelation point. The MC model is validated using experimental measurements on the crosslinking of a tyramine modified Hyaluronic Acid (HA-Tyr) polymer solution reported in the literature. Based on the rubber elasticity theory and the MC results, the dynamic evolution of hydrogel viscoelastic and molecular properties (i.e., number average molecular weight between crosslinks, Mc, and hydrogel mesh size, ξ) are calculated.


Assuntos
Ácido Hialurônico/química , Tiramina/química , Elasticidade , Peroxidase do Rábano Silvestre/química , Hidrogéis/química , Peróxido de Hidrogênio/química , Cinética , Modelos Teóricos , Método de Monte Carlo , Polímeros/química , Reologia
14.
J Mech Behav Biomed Mater ; 122: 104607, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34198231

RESUMO

We report a custom-made technique to synthesize process-convenient skin scaffolds by tuning the mechanical properties of hydrogels based on a few naturally occurring polysaccharides to match the rheological properties of previously established benchmarks, i.e., the ex vivo native human skins. We studied the mechanical parameters using oscillatory shear rheology. At small strain amplitudes, the intrinsic elastic modulus showed an almost linear dependence in the middle and a changing rate profile at the two ends with concentration of the principal hydrogel component variant, i.e., kappa (κ)-carrageenan. At large strain amplitudes, the hydrogels demonstrated intercycle strain-softening behavior, the onset of which was directly proportional to the κ-carrageenan concentration. We observed a concentration match for the intrinsic elastic modulus of the benchmark within this sigmoidal curve fit. Contextually, we need to explore other potent polymeric hydrogel systems to achieve mechanical affinity in terms of multiple rheological parameters derived from both strain amplitude and angular frequency sweeps. Additionally, we carried out diffusion experiments to study caffeine permeation attributes. The hydrogels show improved barrier features with increasing κ-carrageenan concentration. In terms of the penetration flux and total cumulative amount of permeated caffeine, this enhanced mechanical adherence demonstrates comparable penetration features with the commercial 3D skin model.


Assuntos
Hidrogéis , Polissacarídeos , Carragenina , Humanos , Reologia , Pele
15.
Int J Biol Macromol ; 185: 708-715, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34224756

RESUMO

Adding hydrocolloids into native starch is a secure and effective method of physical modification. In this study, the effect of sodium alginate (AG) on the gelatinization, rheological, and retrogradation properties of rice starch (RS) was investigated by measuring the pasting parameters, melting enthalpy (ΔH), rheological characteristic parameters, intensity ratio of 1047 cm-1 to 1022 cm-1 (R1047/1022), and relative crystallinity (RC) of RS-AG blends. Rapid visco analysis shows that AG could significantly change the gelatinization parameters of RS. Differential scanning calorimetry results show that the ΔH values of RS initially decreased in the low AG concentration range (0.10%-0.30%), but increased in the high AG concentration range (0.30%-0.50%). Dynamic rheological analysis reveals that the modulus (G', G'') and the loss tangent (tan δ) increased with the rise of the AG concentration from 0.10% to 0.50%. Fourier transform infrared spectroscopy and X-ray diffraction patterns collectively prove that the crystallinity of RS decreased with the addition of AG during the retrogradation periods. The interactions between AG and starch molecules in RS-AG blends were hypothesized to correlate with the aforementioned results.


Assuntos
Alginatos/química , Gelatina/química , Oryza/química , Varredura Diferencial de Calorimetria , Reologia , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
16.
Int J Pharm ; 606: 120913, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34298104

RESUMO

Tablet sticking occurrence is a persistent, costly, and time-consuming problem that needs to be resolved. Predicting the sticking tendency of a new formulation has been very difficult during the development batches because of short runs and limited data. A model formulation comprising ketoprofen and microcrystalline cellulose was used to predict the effect of magnesium stearate and sodium stearyl fumarate on the occurrence of tablet sticking relative to different punch metals. Lubricant amounts were varied from 0.0% to 2.0 %w/w. Five different metal coupons were used to represent punch metals. The sticking index (SI) of each formulation relative to each metal coupon was determined by measuring angle of internal friction and angle of wall friction by performing shear cell test and wall friction test, respectively. The SI was used to predict each formulation's sticking tendency rank order relative to metal coupon. Both lubricants show a decrease in the powder blend's sticking propensity with increased lubricant concentration. The predicted sticking propensity rank order was then validated by the compression study. The result suggests that the SI can be used to predict tablet sticking, such as by changing the composition of the formulation or changing the punch metal during tablet compression.


Assuntos
Cetoprofeno , Composição de Medicamentos , Lubrificantes , Pós , Reologia , Comprimidos
17.
Int J Mol Sci ; 22(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199374

RESUMO

BACKGROUND: Skinboosters represent the latest category of hyaluronan (HA) hydrogels released for aesthetic purposes. Different from originally developed gels, they are intended for more superficial injections, claiming a skin rejuvenation effect through hydration and possibly prompting biochemical effects in place of the conventional volumetric action. Here, three commercial skinboosters were characterized to unravel the scientific basis for such indication and to compare their performances. METHODS: Gels were evaluated for water-soluble/insoluble-HA composition, rheology, hydration, cohesivity, stability and effect, in vitro, on human dermal fibroblasts towards the production of extracellular matrix components. RESULTS: Marked differences in the insoluble-hydrogel amount and in the hydrodynamic parameters for water-soluble-HA chains were evidenced among the gels. Hydration, rigidity and cohesivity also varied over a wide range. Sensitivity to hyaluronidases and Reactive Oxygen Species was demonstrated allowing a stability ranking. Slight differences were found in gels' ability to prompt elastin expression and in ColIV/ColI ratio. CONCLUSIONS: A wide panel of biophysical and biochemical parameters for skinboosters was provided, supporting clinicians in the conscious tuning of their use. Data revealed great variability in gels' behavior notwithstanding the same clinical indication and unexpected similarities to the volumetric formulations. Data may be useful to improve customization of gel design toward specific uses.


Assuntos
Ácido Hialurônico/química , Hialuronoglucosaminidase/genética , Hidrogéis/química , Pele/efeitos dos fármacos , Elastina/química , Fibroblastos/efeitos dos fármacos , Humanos , Hialuronoglucosaminidase/química , Injeções , Espécies Reativas de Oxigênio/química , Rejuvenescimento/fisiologia , Reologia , Pele/crescimento & desenvolvimento , Pele/patologia , Envelhecimento da Pele/genética , Viscosidade
18.
Molecules ; 26(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200887

RESUMO

Royal jelly is a natural substance produced by worker bees that possesses a variety of biological activities, including antioxidant, anti-inflammatory, antibacterial, and protective. Although fresh royal jelly is kept at low temperatures, to increase its stability, it needs to be incorporated into pharmaceutical formulations, such as in situ gels. The aim of this study was to formulate in situ ocular gels containing Lithuanian royal jelly for topical corneal use in order to increase the retention time of the formulation on the ocular surface and bioavailability. Gels were evaluated for physicochemical characteristics (pH, rheological properties, refractive index) and in vitro drug release measuring the amount of 10-hydroxy-2-decenoic acid (10-HDA). An ocular irritation test and cell viability tests were performed using the SIRC (Statens Seruminstitut Rabbit Cornea) cell culture line. Results indicated that all the in situ gels were within an acceptable pH and refractive index range close to corneal properties. Rheology studies have shown that the gelation temperature varies between 25 and 32 °C, depending on the amount of poloxamers. The release studies have shown that the release of 10-HDA from in situ gels is more sustained than royal jelly suspension. All gel formulations were non-irritant according to the short-time exposure test (STE) using the SIRC cell culture line, and long-term cell viability studies indicated that the formulations used in small concentrations did not induce cell death. Prepared in situ gels containing royal jelly have potential for ocular drug delivery, and they may improve the bioavailability, stability of royal jelly, and formation of non-irritant ocular formulations.


Assuntos
Córnea/efeitos dos fármacos , Ácidos Graxos/química , Ácidos Graxos/farmacologia , Géis/química , Géis/farmacologia , Animais , Abelhas/metabolismo , Disponibilidade Biológica , Produtos Biológicos/química , Produtos Biológicos/farmacocinética , Produtos Biológicos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica/métodos , Córnea/metabolismo , Ácidos Decanoicos/química , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/efeitos dos fármacos , Excipientes/química , Géis/farmacocinética , Poloxâmero/química , Coelhos , Reologia , Temperatura
19.
Molecules ; 26(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209649

RESUMO

The aim of the study was to assess the influence of replacing wheat flour with hazelnuts or walnuts, in various amounts, on the thermal and rheological properties of the obtained systems. The research material were systems in which wheat flour was replaced with ground hazelnuts (H) or walnuts (W) in the amount of 5%, 10%, and 15%. The parameters of the thermodynamic gelatinization characteristics were determined by the differential scanning calorimetry method. In addition, the pasting characteristics were determined with the use of a viscosity analyzer and the viscoelastic properties were assessed. Sweep frequency and creep and recovery tests were used to assess the viscoelastic properties of the tested gels. It was found that replacing wheat flour with nuts increased the values of gelatinization temperature, gelatinization, and retrogradation enthalpy, and the degree of retrogradation. The highest viscosity was characteristic of the control sample (2039 mPa·s), and the lowest for the paste with 15% addition of walnuts (1120 mPa·s). Replacing the flour with nuts resulted in a very visible reduction in the viscosity of such systems. In addition, gels based on the systems with the addition of H and W were weak gels (tan δ = G″/G' > 0.1), and the values of G' and G″ parameters decreased with the increased share of nuts in the systems. Creep and recovery analysis indicated that the systems in which wheat flour was replaced with hazelnuts were less susceptible to deformation compared to the systems with the addition of W.


Assuntos
Farinha , Juglans/química , Nozes/química , Triticum/química , Reologia
20.
J Phys Chem B ; 125(29): 8205-8218, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34279933

RESUMO

Solutions of two types of cellulose in the ionic liquid 1-butyl-3-methyl-imidazolium acetate (BmimAc) have been analyzed using rheology and fast-field cycling nuclear magnetic resonance (NMR) spectroscopy, in order to analyze the macroscopic (bulk) and microscopic environments, respectively. The degree of polymerization (DP) was observed to have a significant effect on both the overlap (c*) and entanglement (ce) concentrations and the intrinsic viscosity ([η]). For microcrystalline cellulose (MCC)/BmimAc solutions, [η] = 116 mL g-1, which is comparable to that of MCC/1-ethyl-3-methyl-imidazolium acetate (EmimAc) solutions, while [η] = 350 mL g-1 for the commercial cellulose (higher DP). Self-diffusion coefficients (D) obtained via the model-independent approach were found to decrease with cellulose concentration and increase with temperature, which can in part be explained by the changes in viscosity; however, ion interactions on a local level are also important. Both Stokes-Einstein and Stokes-Einstein-Debye analyses were carried out to directly compare rheological and relaxometry analyses. It was found that polymer entanglements affect the microscopic environment to a much lesser extent than for the macroscopic environment. Finally, the temperature dependencies of η, D, and relaxation time (T1) could be well described by Arrhenius relationships, and thus, activation energies (Ea) for flow, diffusion, and relaxation were determined. We demonstrate that temperature and cellulose concentration have different effects on short- and long-range interactions.


Assuntos
Líquidos Iônicos , Acetatos , Celulose , Imidazóis , Reologia , Solubilidade , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...