Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49.475
Filtrar
1.
Nat Commun ; 11(1): 4784, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32963245

RESUMO

Genomic integrity is threatened by cytotoxic DNA double-strand breaks (DSBs), which must be resolved efficiently to prevent sequence loss, chromosomal rearrangements/translocations, or cell death. Polymerase µ (Polµ) participates in DSB repair via the nonhomologous end-joining (NHEJ) pathway, by filling small sequence gaps in broken ends to create substrates ultimately ligatable by DNA Ligase IV. Here we present structures of human Polµ engaging a DSB substrate. Synapsis is mediated solely by Polµ, facilitated by single-nucleotide homology at the break site, wherein both ends of the discontinuous template strand are stabilized by a hydrogen bonding network. The active site in the quaternary Pol µ complex is poised for catalysis and nucleotide incoporation proceeds in crystallo. These structures demonstrate that Polµ may address complementary DSB substrates during NHEJ in a manner indistinguishable from single-strand breaks.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Polimerase Dirigida por DNA/química , DNA/química , Cristalografia por Raios X , Dano ao DNA , Reparo do DNA por Junção de Extremidades , DNA Ligase Dependente de ATP/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/química , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Conformação Proteica
2.
Braz Oral Res ; 34: e101, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32901726

RESUMO

The DNA repair system involves genes and proteins that are essential for the maintenance of genome integrity and the consequent control of various cellular processes. Alterations in these genes and proteins play a role in tumor development and progression and might be associated with prognosis. The aims of this study were to analyze the immunoexpression of two DNA repair proteins, XPF and XRCC1, in lower lip squamous cell carcinoma (LLSCC) and oral tongue squamous cell carcinoma (OTSCC), and to investigate possible associations with clinical and histopathological parameters. The immunohistochemical expression of XPF and XRCC1 was analyzed semi-quantitatively in 40 cases each of LLSCC and OTSCC. The chi-squared test or Fisher's exact test, when appropriate, was used to investigate the association between expression of the proteins and clinicopathological characteristics. The cytoplasmic immunoexpression of XPF was high in OTSCC (95% of the cases analyzed) but low in LLSCC (52.5%). Among the clinicopathological parameters evaluated, a statistically significant association was observed between high nuclear expression of XRCC1 and the absence of regional lymph node metastasis in patients diagnosed with OTSCC (p=0.006). The high protein expression of XPF and XRCC1 in OTSCC and LLSCC suggests an important role in the development and progression of these tumors. Our study found an association between high nuclear expression of XRCC1 and the absence of loco-regional metastasis in cases diagnosed as OTSCC, suggesting a role of this protein in tumor progression.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Labiais , Reparo do DNA , Humanos , Imuno-Histoquímica , Lábio , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
3.
Nat Commun ; 11(1): 4437, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32895378

RESUMO

Efficient search for DNA damage embedded in vast expanses of the DNA genome presents one of the greatest challenges to DNA repair enzymes. We report here crystal structures of human 8-oxoguanine (oxoG) DNA glycosylase, hOGG1, that interact with the DNA containing the damaged base oxoG and the normal base G while they are nested in the DNA helical stack. The structures reveal that hOGG1 engages the DNA using different protein-DNA contacts from those observed in the previously determined lesion recognition complex and other hOGG1-DNA complexes. By applying molecular dynamics simulations, we have determined the pathways taken by the lesion and normal bases when extruded from the DNA helix and their associated free energy profiles. These results reveal how the human oxoG DNA glycosylase hOGG1 locates the lesions inside the DNA helix and facilitates their extrusion for repair.


Assuntos
DNA Glicosilases/química , Reparo do DNA , Simulação de Dinâmica Molecular , Cristalografia por Raios X , DNA/química , Dano ao DNA , Conformação Proteica
4.
Elife ; 92020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32936074

RESUMO

Three independent studies show that a protein called ZCWPW1 is able to recognize the histone modifications that initiate the recombination of genetic information during meiosis.


Assuntos
Quebras de DNA de Cadeia Dupla , Histonas , Animais , DNA , Reparo do DNA , Epigênese Genética , Masculino , Meiose , Camundongos , Leitura
5.
Nat Commun ; 11(1): 4709, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948765

RESUMO

Glioblastoma cancer-stem like cells (GSCs) display marked resistance to ionizing radiation (IR), a standard of care for glioblastoma patients. Mechanisms underpinning radio-resistance of GSCs remain largely unknown. Chromatin state and the accessibility of DNA lesions to DNA repair machineries are crucial for the maintenance of genomic stability. Understanding the functional impact of chromatin remodeling on DNA repair in GSCs may lay the foundation for advancing the efficacy of radio-sensitizing therapies. Here, we present the results of a high-content siRNA microscopy screen, revealing the transcriptional elongation factor SPT6 to be critical for the genomic stability and self-renewal of GSCs. Mechanistically, SPT6 transcriptionally up-regulates BRCA1 and thereby drives an error-free DNA repair in GSCs. SPT6 loss impairs the self-renewal, genomic stability and tumor initiating capacity of GSCs. Collectively, our results provide mechanistic insights into how SPT6 regulates DNA repair and identify SPT6 as a putative therapeutic target in glioblastoma.


Assuntos
Reparo do DNA , Instabilidade Genômica , Glioblastoma/genética , Células-Tronco Neoplásicas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Apoptose , Proteína BRCA1 , Neoplasias Encefálicas/genética , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Inativação Gênica , Glioblastoma/patologia , Células HEK293 , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Células-Tronco Neoplásicas/patologia , RNA Interferente Pequeno/genética , Tolerância a Radiação , Radiação Ionizante , Transcriptoma
6.
Mol Cell ; 79(6): 1037-1050.e5, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32882183

RESUMO

DNA double-stranded breaks (DSBs) are dangerous lesions threatening genomic stability. Fidelity of DSB repair is best achieved by recombination with a homologous template sequence. In yeast, transcript RNA was shown to template DSB repair of DNA. However, molecular pathways of RNA-driven repair processes remain obscure. Utilizing assays of RNA-DNA recombination with and without an induced DSB in yeast DNA, we characterize three forms of RNA-mediated genomic modifications: RNA- and cDNA-templated DSB repair (R-TDR and c-TDR) using an RNA transcript or a DNA copy of the RNA transcript for DSB repair, respectively, and a new mechanism of RNA-templated DNA modification (R-TDM) induced by spontaneous or mutagen-induced breaks. While c-TDR requires reverse transcriptase, translesion DNA polymerase ζ (Pol ζ) plays a major role in R-TDR, and it is essential for R-TDM. This study characterizes mechanisms of RNA-DNA recombination, uncovering a role of Pol ζ in transferring genetic information from transcript RNA to DNA.


Assuntos
DNA/genética , RNA/genética , Saccharomyces cerevisiae/genética , Adolescente , Adulto , DNA/ultraestrutura , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Replicação do DNA/genética , DNA Complementar/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/ultraestrutura , Instabilidade Genômica/genética , Humanos , Pessoa de Meia-Idade , RNA/ultraestrutura , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Adulto Jovem
7.
Mol Cell ; 79(6): 881-901, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32768408

RESUMO

Nucleosomes package genomic DNA into chromatin. By regulating DNA access for transcription, replication, DNA repair, and epigenetic modification, chromatin forms the nexus of most nuclear processes. In addition, dynamic organization of chromatin underlies both regulation of gene expression and evolution of chromosomes into individualized sister objects, which can segregate cleanly to different daughter cells at anaphase. This collaborative review shines a spotlight on technologies that will be crucial to interrogate key questions in chromatin and chromosome biology including state-of-the-art microscopy techniques, tools to physically manipulate chromatin, single-cell methods to measure chromatin accessibility, computational imaging with neural networks and analytical tools to interpret chromatin structure and dynamics. In addition, this review provides perspectives on how these tools can be applied to specific research fields such as genome stability and developmental biology and to test concepts such as phase separation of chromatin.


Assuntos
Cromatina/genética , Cromossomos/genética , DNA/genética , Nucleossomos/genética , Reparo do DNA/genética , Replicação do DNA/genética , Epigênese Genética/genética , Humanos
8.
Am J Hum Genet ; 107(3): 564-574, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32822602

RESUMO

KAT5 encodes an essential lysine acetyltransferase, previously called TIP60, which is involved in regulating gene expression, DNA repair, chromatin remodeling, apoptosis, and cell proliferation; but it remains unclear whether variants in this gene cause a genetic disease. Here, we study three individuals with heterozygous de novo missense variants in KAT5 that affect normally invariant residues, with one at the chromodomain (p.Arg53His) and two at or near the acetyl-CoA binding site (p.Cys369Ser and p.Ser413Ala). All three individuals have cerebral malformations, seizures, global developmental delay or intellectual disability, and severe sleep disturbance. Progressive cerebellar atrophy was also noted. Histone acetylation assays with purified variant KAT5 demonstrated that the variants decrease or abolish the ability of the resulting NuA4/TIP60 multi-subunit complexes to acetylate the histone H4 tail in chromatin. Transcriptomic analysis in affected individual fibroblasts showed deregulation of multiple genes that control development. Moreover, there was also upregulated expression of PER1 (a key gene involved in circadian control) in agreement with sleep anomalies in all of the individuals. In conclusion, dominant missense KAT5 variants cause histone acetylation deficiency with transcriptional dysregulation of multiples genes, thereby leading to a neurodevelopmental syndrome with sleep disturbance, cerebellar atrophy, and facial dysmorphisms, and suggesting a recognizable syndrome.


Assuntos
Atrofia/genética , Doenças Cerebelares/genética , Deficiência Intelectual/genética , Lisina Acetiltransferase 5/genética , Anormalidades Múltiplas/diagnóstico por imagem , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/fisiopatologia , Adolescente , Adulto , Atrofia/diagnóstico por imagem , Atrofia/fisiopatologia , Doenças Cerebelares/diagnóstico por imagem , Doenças Cerebelares/fisiopatologia , Pré-Escolar , Cromatina/genética , Montagem e Desmontagem da Cromatina/genética , Reparo do DNA/genética , Epilepsia/diagnóstico por imagem , Epilepsia/genética , Epilepsia/fisiopatologia , Feminino , Heterozigoto , Histonas/genética , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/fisiopatologia , Masculino , Mutação de Sentido Incorreto/genética , Processamento de Proteína Pós-Traducional/genética
9.
Nat Commun ; 11(1): 4196, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826907

RESUMO

Cells utilise specialized polymerases from the Primase-Polymerase (Prim-Pol) superfamily to maintain genome stability. Prim-Pol's function in genome maintenance pathways including replication, repair and damage tolerance. Mycobacteria contain multiple Prim-Pols required for lesion repair, including Prim-PolC that performs short gap repair synthesis during excision repair. To understand the molecular basis of Prim-PolC's gap recognition and synthesis activities, we elucidated crystal structures of pre- and post-catalytic complexes bound to gapped DNA substrates. These intermediates explain its binding preference for short gaps and reveal a distinctive modus operandi called Synthesis-dependent Template Displacement (STD). This mechanism enables Prim-PolC to couple primer extension with template base dislocation, ensuring that the unpaired templating bases in the gap are ushered into the active site in an ordered manner. Insights provided by these structures establishes the molecular basis of Prim-PolC's gap recognition and extension activities, while also illuminating the mechanisms of primer extension utilised by closely related Prim-Pols.


Assuntos
Proteínas de Bactérias/química , DNA Primase/química , Reparo do DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/química , DNA/química , Mycobacterium/genética , Mycobacterium/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , DNA/metabolismo , DNA Primase/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Modelos Moleculares , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas
11.
Nat Commun ; 11(1): 3907, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764578

RESUMO

Nucleic acids can fold into G-quadruplex (G4) structures that can fine-tune biological processes. Proteins are required to recognize G4 structures and coordinate their function. Here we identify Zuo1 as a novel G4-binding protein in vitro and in vivo. In vivo in the absence of Zuo1 fewer G4 structures form, cell growth slows and cells become UV sensitive. Subsequent experiments reveal that these cellular changes are due to reduced levels of G4 structures. Zuo1 function at G4 structures results in the recruitment of nucleotide excision repair (NER) factors, which has a positive effect on genome stability. Cells lacking functional NER, as well as Zuo1, accumulate G4 structures, which become accessible to translesion synthesis. Our results suggest a model in which Zuo1 supports NER function and regulates the choice of the DNA repair pathway nearby G4 structures.


Assuntos
Reparo do DNA/fisiologia , Quadruplex G , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sítios de Ligação/genética , Dano ao DNA , Reparo do DNA/genética , DNA Fúngico/química , DNA Fúngico/genética , DNA Fúngico/metabolismo , Deleção de Genes , Aptidão Genética , Genoma Fúngico , Instabilidade Genômica , Modelos Biológicos , Chaperonas Moleculares/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
12.
Nat Commun ; 11(1): 3811, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32732914

RESUMO

Intratumoral genomic heterogeneity in glioblastoma (GBM) is a barrier to overcoming therapy resistance. Treatments that are effective independent of genotype are urgently needed. By correlating intracellular metabolite levels with radiation resistance across dozens of genomically-distinct models of GBM, we find that purine metabolites, especially guanylates, strongly correlate with radiation resistance. Inhibiting GTP synthesis radiosensitizes GBM cells and patient-derived neurospheres by impairing DNA repair. Likewise, administration of exogenous purine nucleosides protects sensitive GBM models from radiation by promoting DNA repair. Neither modulating pyrimidine metabolism nor purine salvage has similar effects. An FDA-approved inhibitor of GTP synthesis potentiates the effects of radiation in flank and orthotopic patient-derived xenograft models of GBM. High expression of the rate-limiting enzyme of de novo GTP synthesis is associated with shorter survival in GBM patients. These findings indicate that inhibiting purine synthesis may be a promising strategy to overcome therapy resistance in this genomically heterogeneous disease.


Assuntos
Neoplasias Encefálicas/radioterapia , Reparo do DNA/genética , Glioblastoma/radioterapia , Guanosina Monofosfato/metabolismo , Tolerância a Radiação/genética , Animais , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Feminino , Glioblastoma/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos SCID , Nucleosídeos de Purina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Nat Commun ; 11(1): 4124, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807787

RESUMO

In response to DNA damage, a synthetic lethal relationship exists between the cell cycle checkpoint kinase MK2 and the tumor suppressor p53. Here, we describe the concept of augmented synthetic lethality (ASL): depletion of a third gene product enhances a pre-existing synthetic lethal combination. We show that loss of the DNA repair protein XPA markedly augments the synthetic lethality between MK2 and p53, enhancing anti-tumor responses alone and in combination with cisplatin chemotherapy. Delivery of siRNA-peptide nanoplexes co-targeting MK2 and XPA to pre-existing p53-deficient tumors in a highly aggressive, immunocompetent mouse model of lung adenocarcinoma improves long-term survival and cisplatin response beyond those of the synthetic lethal p53 mutant/MK2 combination alone. These findings establish a mechanism for co-targeting DNA damage-induced cell cycle checkpoints in combination with repair of cisplatin-DNA lesions in vivo using RNAi nanocarriers, and motivate further exploration of ASL as a generalized strategy to improve cancer treatment.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Reparo do DNA/fisiologia , Animais , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Dano ao DNA/genética , Dano ao DNA/fisiologia , Reparo do DNA/genética , Células HCT116 , Humanos , Immunoblotting , Camundongos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Nanomedicina/métodos , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
14.
Nat Commun ; 11(1): 4154, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32814778

RESUMO

The DNA damage response (DDR) coordinates DNA metabolism with nuclear and non-nuclear processes. The DDR kinase Rad53CHK1/CHK2 controls histone degradation to assist DNA repair. However, Rad53 deficiency causes histone-dependent growth defects in the absence of DNA damage, pointing out unknown physiological functions of the Rad53-histone axis. Here we show that histone dosage control by Rad53 ensures metabolic homeostasis. Under physiological conditions, Rad53 regulates histone levels through inhibitory phosphorylation of the transcription factor Spt21NPAT on Ser276. Rad53-Spt21 mutants display severe glucose dependence, caused by excess histones through two separable mechanisms: dampening of acetyl-coenzyme A-dependent carbon metabolism through histone hyper-acetylation, and Sirtuin-mediated silencing of starvation-induced subtelomeric domains. We further demonstrate that repression of subtelomere silencing by physiological Tel1ATM and Rpd3HDAC activities coveys tolerance to glucose restriction. Our findings identify DDR mutations, histone imbalances and aberrant subtelomeric chromatin as interconnected causes of glucose dependence, implying that DDR kinases coordinate metabolism and epigenetic changes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Glucose/metabolismo , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/genética , Quinase do Ponto de Checagem 2/genética , Dano ao DNA , Reparo do DNA , Inativação Gênica , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Serina/genética , Serina/metabolismo , Telômero/genética , Fatores de Transcrição/genética
15.
Nat Commun ; 11(1): 4077, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796846

RESUMO

Double-strand breaks (DSBs) are the most toxic type of DNA lesions. Cells repair these lesions using either end protection- or end resection-coupled mechanisms. To study DSB repair choice, we present the Color Assay Tracing-Repair (CAT-R) to simultaneously quantify DSB repair via end protection and end resection pathways. CAT-R introduces DSBs using CRISPR/Cas9 in a tandem fluorescent reporter, whose repair distinguishes small insertions/deletions from large deletions. We demonstrate CAT-R applications in chemical and genetic screens. First, we evaluate 21 compounds currently in clinical trials which target the DNA damage response. Second, we examine how 417 factors involved in DNA damage response influence the choice between end protection and end resection. Finally, we show that impairing nucleotide excision repair favors error-free repair, providing an alternative way for improving CRISPR/Cas9-based knock-ins. CAT-R is a high-throughput, versatile assay to assess DSB repair choice, which facilitates comprehensive studies of DNA repair and drug efficiency testing.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas Mutadas de Ataxia Telangiectasia/genética , Ciclo Celular , Sobrevivência Celular , Dano ao DNA , Reparo do DNA por Junção de Extremidades , Avaliação Pré-Clínica de Medicamentos , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Poli(ADP-Ribose) Polimerase-1/genética
16.
Ecotoxicol Environ Saf ; 202: 110962, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800233

RESUMO

Chronic exposure to fluoride (F) beyond the permissible limit (1.5 ppm) is known to cause detrimental health effects by induction of oxidative stress-mediated DNA damage overpowering the DNA repair machinery. In the present study, we assessed F induced oxidative stress through monitoring biochemical parameters and looked into the effect of chronic F exposure on two crucial DNA repair genes Ogg1 and Rad51 having important role against ROS induced DNA damages. To address this issue, we exposed Swiss albino mice to an environmentally relevant concentration of fluoride (15 ppm NaF) for 8 months. Results revealed histoarchitectural damages in liver, brain, kidney and spleen. Depletion of GSH, increase in lipid peroxidation and catalase activity in liver and brain confirmed the generation of oxidative stress. qRT-PCR result showed that expressions of Ogg1 and Rad51 were altered after F exposure in the affected organs. Promoter hypermethylation was associated with the downregulation of Rad51. F-induced DNA damage and the compromised DNA repair machinery triggered intrinsic pathway of apoptosis in liver and brain. The present study indicates the possible association of epigenetic regulation with F induced neurotoxicity.


Assuntos
Dano ao DNA , DNA Glicosilases/genética , Reparo do DNA , Epigênese Genética/efeitos dos fármacos , Fluoretos/toxicidade , Rad51 Recombinase/genética , Animais , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Relação Dose-Resposta a Droga , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos
17.
Mol Cell ; 79(3): 361-362, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32763222

RESUMO

In this issue of Molecular Cell, Zhang et al. (2020) reveal that ATM triggers RNA methylation of DNA-RNA hybrids formed at double-strand breaks (DSBs) to modulate repair, adding a new layer of complexity to RNA's role in the DNA damage response.


Assuntos
Quebras de DNA de Cadeia Dupla , RNA , Adenosina/análogos & derivados , Proteínas Mutadas de Ataxia Telangiectasia , DNA , Reparo do DNA , Metilação
18.
J Environ Pathol Toxicol Oncol ; 39(2): 191-199, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32749127

RESUMO

We have proven that naringin, a phytonutrient, diminishes oxidative damage and inflammatory responses by modulating PPAR-γ expressions in ultraviolet-B radiation (UVB)-induced NIH-3T3 cells. However, the role of naringin against DNA damage, photoaging, and apoptosis in NIH-3T3 cells has yet to be studied, necessitating investigation. We show that Naringin pretreatment significantly reduces UVB-induced alkaline DNA damage and potentially modulates NER gene (XPC, TFIIH, XPE, ERCC1, and GAPDH) expression, thereby augmenting DNA repair. We determined experimentally that naringin pretreatment prevents UVB-induced nuclear fragmentation in NIH-3T3 cells, as well as altering UVB-induced apoptotic marker (Bax, BCl-2, Caspase-9, and Caspase-3) expression in them. In addition, naringin pretreatment inhibits UVB-stimulated matrix metalloproteinase (MMP-2, MMP-9 and MMP-13) expression in these 3T3 cells. Therefore, we report that naringin can effectively avert UVB-mediated DNA damage, photoaging, and apoptosis in NIH-3T3 cells.


Assuntos
Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Flavanonas/farmacologia , Raios Ultravioleta/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Apoptose/efeitos da radiação , Reparo do DNA/efeitos da radiação , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Camundongos , Células NIH 3T3 , Protetores contra Radiação/farmacologia , Envelhecimento da Pele/efeitos dos fármacos
19.
Mol Cell ; 79(3): 368-370, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32763225

RESUMO

A recent study (Sulkowski et al., 2020) reveals that oncometabolites, which are produced by metabolic gene mutations in many cancers, sensitize cells to PARP inhibition by antagonizing histone demethylation and obscuring epigenetic marks that are necessary for efficient DNA repair.


Assuntos
Dano ao DNA , Neoplasias/genética , Reparo do DNA , Epigênese Genética , Epigenômica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA